Fairness consideration in cooperative games

Martin Černý

Game theory seminar, 2021

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Our goals

"What to do, what to do ... "

In this presentation: Fairness

- revision of already known solution concepts
- introduction to further solution concepts
- an approach to study fairness concepts on solution concepts
- an approach to model situations with players with different **fairness** notion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Cooperative game theory

"The cooperation, not the competition, is the main focus here."

Definition

A cooperative game is an ordered pair (N, v) where $N = \{1, ..., n\}$ is a set of players and $v: 2^N \to \mathbb{R}$ is a characteristic function of the cooperative game. We always assume that $v(\emptyset) = 0$.

E.g. $v(\{1,2,4\})$ is the value of cooperation of players 1,2 and 4.

Solution concepts

"How to split the reward?"

Definition

A payoff vector $x \in \mathbb{R}^n$ represents the profit of *i*th player as its *i*th coordinate x_i .

Definition

A payoff vector $x \in \mathbb{R}^n$ is an *imputation* if

• $x_i \ge v(\{i\})$ for $i \in N$ (individual rationality),

•
$$\sum_{i \in N} x_i = v(N)$$
 (efficiency).

Solution concepts

"When is the cooperation of everyone a stable situation?"

Definition

A core of a game (N, v) is defined as

$$C(v) = \left\{ x \in \mathbb{R}^n | \sum_{i \in N} x_i = v(N), \sum_{i \in S} x_i \ge v(S), \forall S \subseteq N \right\}$$

"What is the most *fair* way to distribute the payoffs between players?"

Definition

For a game (N, v) the Shapley value for player *i* is

$$\phi_i(v) = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|!(n-|S|-1)!}{n!} (v(S \cup \{i\}) - v(S))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Solution concepts

- "As close to x(S) = v(S) as possible..."
 - $e(S, x) := v(S) x(S) \dots excess$
 - $\theta(x) \in \mathbb{R}^{2^{|N|}}$... vector of excesses in non-increasing order

Definition

For a game (N, v), the **nucleolus** n(v) is the minimal imputation x with respect to the lexicographical ordering of $\theta(x)$ i.e.

$$heta(x) < heta(y) ext{ if } \exists k: orall i < k: heta_i(x) = heta_i(y) ext{ and } heta_k(x) < heta_k(y).$$

Questions and solution concepts

"It makes sense, but tell me ... "

Questions concerning solution concepts:

- When $C(v) \neq \emptyset$? (properties of concepts)
- If $|C(v)| \ge 2$, how to choose $x \in C(v)$?
- $\phi(v) \in C(v)$? (relations between concepts)
- How to compute C(v)? (computating the concepts)
- because of general definition of (N, v), hard to answer in general

• \implies subsets of games (*classes of games*)

Classes of games

"Bigger coalition is better."

Definition

A cooperative game (N, v) is

• *monotonic* if for every $T \subseteq S \subseteq N$ it holds

 $v(T) \leq v(S),$

• superadditive if for every $S, T \subseteq N$ such that $S \cap T = \emptyset$ it holds

 $v(S) + v(T) \le v(S \cup T),$

• *convex* if for every $S, T \subseteq N$ it holds

 $v(S) + v(T) \leq v(S \cup T) + v(S \cap T).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Classes of games

"Bigger coalition is better."

Definition

A cooperative game (N, v) is

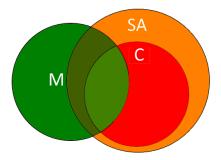
• monotonic

 $v(T) \leq v(S)$

• superadditive

 $v(S) + v(T) \leq v(S \cup T),$

• convex



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $v(S) + v(T) \leq v(S \cup T) + v(S \cap T)$

Yet another hierarchy

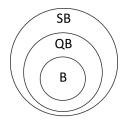
"Catch the core!"

Definition

A cooperative game (N, v) is

- semibalanced if $H(v) \neq \emptyset$
- quasibalanced if $CC(v) \neq \emptyset$
- balanced if $C(v) \neq \emptyset$

 $C(v) \subseteq CC(v) \subseteq H(v)$



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Bounds on claims

"Bounds on what I can claim."

1. b^{v} ... utopia vector

- $b_i^v := v(N) v(N \setminus i)$
- If I demand more, nobody cares...

2. a^{v} ... minimal right vector

• the real world is not an utopia: $\sum_{i \in N} b_i^v > v(N)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• take what you want, *i* take the rest...

•
$$a_i^{\mathsf{v}} := \max_{S,i\in S} \mathsf{v}(S) - \sum_{j\in S\setminus i} b_j^{\mathsf{v}}$$

Bounds and cores and compromise

"In a view of the core.."

For $x \in C(v)$,

•
$$a_i^v \leq x_i \leq b_i^v$$

For (N, v) a quasibalanced game,

•
$$a^{v}(N) \leq v(N) \leq b^{v}(N)$$

Pick an efficient compromise...

Definition

the τ -value $\tau(v)$ of game (N, v) is defined as the unique convex combination of a^v and b^v such that $\sum_{i \in N} \tau(v)_i = v(N)$.

The values ϕ , *n* and τ

"To be fair, how fair are you?"

They are fair ...:

• ϕ is frequently used as a fair solution concept (reasons already discussed)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- au-value also chosen as a fair solution in several applications
- *n* is *fair* from point of view of one fairness predicate
 - it is a core selector $(C(v) \neq \emptyset \implies n(v) \in C(v))$

... are they not?

- ϕ and τ are often **not** core selectors
- in many games: $\phi(v) \neq n(v) \neq \tau(v)$
- Which one to choose?

Egalitarianism

"If I can, I share with you..."

Definition A tuple (i, j, α, x) is a **bilateral transfer** if

$$x_i - \alpha \ge x_j + \alpha.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- *i*, *j* ... me and you
- $x \in I(v)$... what we get
- $\alpha \geq$ 0 ... what I share

Egalitarian core

"... but it must be a stable transfer."

Definition

An imputation $x \in C(v)$ is **egalitarian** if $no y \in C(v)$ is the result of any (i, j, α, x) .

"No matter what you do, this is the best ... "

Definition

An imputation $x \in C(v)$ is strongly egalitarian if $no y \in C(v)$ is the result of a finite sequence of bilateral transfers.

Differences in definitions

egalitarian $x \in C(v)$

- exists if $C(v) \neq \emptyset$
- more solutions
- *SE* ⊆ *E*

strongly egalitarian $x \in C(v)$

- unique solution
- solution of least squares:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• $\min_{y\in C(v)}\|y\|_2$

C_e as a fairness concept

"Fair and sane, however ... "

- 1. fair thanks to bilateral transfers
- 2. sane thanks to core stability

Example

2-players game (N, v) where v(1) = 1, v(2) = 0 and v(12) = 2.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

 $C_e(v) = \{(1,1)^T\}$... why should 1 cooperate?

 $\phi(v) = (1.5, 0.5)^T$... this is more fair

• One might say: "Its overdoing fairness..."

Inequity aversion

"How does it hurt, when I am better of?"

Definition

A players **inequity aversion utility** in the imputation x is

$$u_i(x) = x_i - \alpha_i \cdot \sum_{j \neq i} \max\{0, x_j - x_i\}.$$

- you feel like you lose α_i for 1 unit of j's advantage over you
- *u_i* remains to you, if count in the losses
- "I can't stand to be the one *better of*!"

Definition

A players **inequity aversion utility** in the imputation x is

Inequity aversion core

"In context of core stability..."

Definition

An **inequity aversion core** is a set of imputations $x \in C(v)$ such that for no $y \in C(v)$, there is a player *i* with

 $u_i(y) > u_i(x).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example of inequity aversion

Example

2-player game (N, v) where v(1) = a, v(2) = b and v(1, 2) = a + b + c, $a \le b$

- inequity b a before cooperation
- decision to cooperate \implies distribute $(a + c_a, b + c_b)$

• $c_a + c_b = c$

- inequity change $c_b c_a = c 2c_a$
- if $c_a < \alpha_1 \cdot (c 2c_a)$
 - c_a ... what player 1 gets by cooperation
 - $\alpha_1 \cdot (c 2c_a)$... what he feels he loses
 - if "<" happens \implies won't cooperate

• $\alpha_1 = 0.25 \implies \text{cooperation} \iff c_a \ge \frac{1}{6}c$ • $\alpha_1 = 1 \implies \text{cooperation} \iff c_a \ge \frac{1}{3}c$ • $\alpha_1 = "\infty" \implies \text{cooperation} \iff c_a \ge \frac{1}{2}c$

Disadvantage of IA

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

"All that matters is my aversion ... "

- *c_a* was dependend on *a*, *b*.
- $a \ll b \implies$ same scenario as a = b

Presumption: "All players are equal."

Fairness predicates

"Division of solution concepts into elementary properties..."

Definition

A predicate on the imputation space of a cooperative *n*-person game is a mapping \mathcal{P} that assigns every game (N, v) a subset $\mathcal{P}(v) \subseteq I(v)$.

Fairness Predicates

- subset of I(v)
- **does not** have to *make sense* on itself:
- Dummy player predicate DP
 - rules out x ∈ I(v) : x_i > 0 for i with contribution 0
 - not much of a concept

Solution concept

- subset of I(v) (usually)
- **does** have to *make sense* on itself:
- Shapley value
 - fair distribution of payoff given by rules (EFF, ADD, DP, SYM)
 - an interesting concept

Fairness predicates

"Axioms as predicates..."

A (partial) one-point solution concept ${\mathcal P}$ satisfies

- anonymity if for any permutation σ of the player set N we have P(v)_i = P(σ(v))_{σ(v)}
- additivity if for two cooperative *n*-person games (N, v) and (N, w) the equation $\mathcal{P}(v + w) = \mathcal{P}(v) + \mathcal{P}(w)$ holds.

•
$$\mathcal{P}(v) \neq \emptyset$$
 and $\mathcal{P}(w) \neq \emptyset$

A predicate $\ensuremath{\mathcal{P}}$ on the imputation space of cooperative $\ensuremath{\textit{n}}\xspace$ person games

- split if for all (N, v) we have $\mathcal{P}(v_0) + s(v) = \mathcal{P}(v)$
 - $s(v)_i = v(i)$

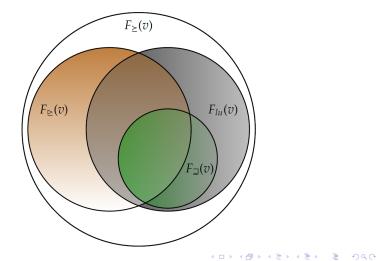
"We are interested if solution concepts satisfy predicates..."

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Fairness based on desirability

"If you work hard, you should get more."

4 desirability predicates:



Desirability of players $F_{\succeq}(v)$

"If you work hard, you should get more."

Definition

Player desirability relation $i \succeq j$ denotes that player *i* is more desirable than *j*, i.e.

$$v(A \cup \{i\}) \ge v(A \cup \{j\})$$
 for $A \subseteq N \setminus i, j$.

Definition

Player desirability-fair imputation $x \in I(v)$ is such that

$$i \succeq j \implies x_i \ge x_j.$$

The set of all such x is denoted by $F_{\succeq}(v)$.

$F_{\succeq}(v)$ and solution concepts

"If only I had time, I would convince you..."

Theorem

For a game (N, v), following hold.

1. $Ker(v) \subseteq F_{\succeq}(v)$

2.
$$n(v) \in F_{\succeq}(v)$$

- 3. (N, v) is quasi-balanced $\implies \tau$ -value $\tau(v) \in F_{\succeq}(v)$,
- 4. (N, v) super-additive \implies Shapley value $\phi(v) \in F_{\succeq}(v)$,

5. If
$$C(v) \neq \emptyset \implies C(v) \cap F_{\succeq}(v) \neq \emptyset$$
,

6. If $C(v) \neq \emptyset \implies \emptyset \neq C_e(v) \subseteq F_{\succeq}(v)$.

Open questions:

• What about other solution concepts? (Bargaining set, Prekernel, ...)

• What are full characterisations of 3.,4.

```
• ..
```

 $F_{\succ}(v)$ and Core

"... at least something." If $C(v) \neq \emptyset \implies C(v) \cap F_{\succeq}(v) \neq \emptyset$ Idea:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $F_{\succ}(v)$ and Core

"... at least something." If $C(v) \neq \emptyset \implies C(v) \cap F_{\succeq}(v) \neq \emptyset$ Idea:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

• $x \in C(v)$

 $F_{\succ}(v)$ and Core

"... at least something." If $C(v) \neq \emptyset \implies C(v) \cap F_{\succeq}(v) \neq \emptyset$ Idea:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- $x \in C(v)$
- 1. if $i \succeq j$ and $x_i < x_j$
 - switch: $y_j = x_i$ and $y_i = x_j$

 $F_{\succ}(v)$ and Core

"... at least something." If $C(v) \neq \emptyset \implies C(v) \cap F_{\succeq}(v) \neq \emptyset$

Idea:

x ∈ C(v)
1. if i ≿ j and x_i < x_j
switch: y_j = x_i and y_i = x_j
2. if Σ = {i₁,..., i_k} substitutes (i.e. i ≿ j and j ≿ i)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $F_{\succ}(v)$ and Core

"... at least something." If $C(v) \neq \emptyset \implies C(v) \cap F_{\succeq}(v) \neq \emptyset$

Idea:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $F_{\succ}(v)$ and Core

"... at least something." If $C(v) \neq \emptyset \implies C(v) \cap F_{\succeq}(v) \neq \emptyset$

Idea:

x ∈ C(v)
1. if i ≥ j and x_i < x_j

switch: y_j = x_i and y_i = x_j

2. if Σ = {i₁,..., i_k} substitutes (i.e. i ≥ j and j ≥ i)

redistribute: i ∈ Σ ⇒ y_i = x(Σ) / |Σ|

y ∈ C(v)

$F_{\succeq}(v)$ and Core 1. If $i \succeq j$ and $x_i < x_j$, switch: $y_j = x_i$ and $y_i = x_j$ $y_i := x_j$ $y_j := x_i$ $y_k := x_k$ for $k \in N \setminus \{i, j\}$ Proof.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ● 同 → の Q (2)

$F_{\succeq}(v)$ and Core 1. If $i \succeq j$ and $x_i < x_j$, switch: $y_j = x_i$ and $y_i = x_j$ $y_i := x_j$ $y_j := x_i$ $y_k := x_k$ for $k \in N \setminus \{i, j\}$ Proof.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

1. $x \in I(v) \implies y \in I(v)$

2.
$$x(S) \ge v(S) \implies y(S) \ge v(S)$$

$F_{\succeq}(v) \text{ and Core}$ 1. If $i \succeq j$ and $x_i < x_j$, switch: $y_j = x_i$ and $y_i = x_j$ $y_i := x_j$ $y_j := x_i$ $y_k := x_k$ for $k \in N \setminus \{i, j\}$ Proof. 1. $x \in I(v) \implies y \in I(v)$

1.2 (individual rationality) $y_k \ge v(k)$ for $k \in N$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

2.
$$x(S) \ge v(S) \implies y(S) \ge v(S)$$

1.1 (efficiency) v(N) = v(N)

$F_{\succeq}(v)$ and Core

1. If $i \succeq j$ and $x_i < x_j$, switch: $y_j = x_i$ and $y_i = x_j$

$$y_i := x_j$$

$$y_j := x_i$$

$$y_k := x_k \text{ for } k \in N \setminus \{i, j\}$$

Proof.

$$1 \quad x \in I(y) \implies y \in I(y)$$

1.
$$x \in I(v) \implies y \in I(v)$$

1.1 (efficiency) $y(N) = v(N)$
• $y(N) = \sum_{i \in N} y_i =$
• $= y_1 + \dots + y_{i-1} + y_i + y_{i+1} + \dots, y_{j-1} + y_j + y_{j+1} + \dots + y_n =$

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで

1.2 (individual rationality) $y_k \ge v(k)$ for $k \in N$

2.
$$x(S) \ge v(S) \implies y(S) \ge v(S)$$

1. If $i \succeq j$ and $x_i < x_j$, switch: $y_j = x_i$ and $y_i = x_j$

$$egin{aligned} y_i &:= x_j \ y_j &:= x_i \ y_k &:= x_k \ ext{for} \ k \in N \setminus \{i,j\} \end{aligned}$$

Proof.

1.
$$x \in I(v) \implies y \in I(v)$$

1.1 (efficiency) $y(N) = v(N)$
• $y(N) = \sum_{i \in N} y_i =$
• $= y_1 + \dots + y_{i-1} + y_i + y_{i+1} + \dots + y_j + y_{j+1} + \dots + y_n =$
• $x_1 + \dots + x_{i-1} + x_j + x_{i+1} + \dots + x_{j-1} + x_i + x_{j+1} + \dots + y_n =$
• $= \sum_{i \in N} x_i = v(N)$
1.2 (individual rationality) $y_i \ge y_i(k)$ for $k \in N$

1.2 (individual rationality) $y_k \ge v(k)$ for $k \in N$

2.
$$x(S) \ge v(S) \implies y(S) \ge v(S)$$

1. If $i \succeq j$ and $x_i < x_j$, switch: $y_j = x_i$ and $y_i = x_j$

$$y_i := x_j$$

 $y_j := x_i$
 $y_k := x_k$ for $k \in N \setminus \{i, j\}$

Proof.

1.
$$x \in I(v) \implies y \in I(v)$$

1.1 (efficiency) $y(N) = v(N)$
• $y(N) = \sum_{i \in N} y_i =$
• $= y_1 + \dots + y_{i-1} + y_i + y_{i+1} + \dots + y_j + y_{j+1} + \dots + y_n =$
• $x_1 + \dots + x_{i-1} + x_j + x_{i+1} + \dots + x_{j-1} + x_i + x_{j+1} + \dots + y_n =$
• $= \sum_{i \in N} x_i = v(N)$
1.2 (individual rationality) $y_k \ge v(k)$ for $k \in N$
• $y_j \ge v(j) : y_j = x_i \ge v(i) \ge v(j)$

◆□ > <四 > < E > < E > < E <</p>

2.
$$x(S) \ge v(S) \implies y(S) \ge v(S)$$

1. If $i \succeq j$ and $x_i < x_j$, switch: $y_j = x_i$ and $y_i = x_j$

$$y_i := x_j$$

 $y_j := x_i$
 $y_k := x_k$ for $k \in N \setminus \{i, j\}$

Proof.

1.
$$x \in I(v) \implies y \in I(v)$$

1.1 (efficiency) $y(N) = v(N)$
• $y(N) = \sum_{i \in N} y_i =$
• $= y_1 + \dots + y_{i-1} + y_i + y_{i+1} + \dots + y_j + y_{j+1} + \dots + y_n =$
• $x_1 + \dots + x_{i-1} + x_j + x_{i+1} + \dots + x_{j-1} + x_i + x_{j+1} + \dots + y_n =$
• $= \sum_{i \in N} x_i = v(N)$
1.2 (individual rationality) $y_k \ge v(k)$ for $k \in N$
• $y_j \ge v(j) : y_j = x_i \ge v(i) \ge v(j)$
• $y_i \ge v(i) : y_i = x_j > x_i \ge v(i)$

2.
$$x(S) \ge v(S) \implies y(S) \ge v(S)$$

1. If $i \succeq j$ and $x_i < x_j$, switch: $y_j = x_i$ and $y_i = x_j$

$$egin{aligned} y_i &:= x_j \ y_j &:= x_i \ y_k &:= x_k \ ext{for} \ k \in N \setminus \{i,j\} \end{aligned}$$

Proof.

1.
$$x \in I(v) \implies y \in I(v)$$

1.1 (efficiency) $y(N) = v(N)$
• $y(N) = \sum_{i \in N} y_i =$
• $= y_1 + \dots + y_{i-1} + y_i + y_{i+1} + \dots + y_j + y_{j+1} + \dots + y_n =$
• $x_1 + \dots + x_{i-1} + x_j + x_{i+1} + \dots + x_{j-1} + x_i + x_{j+1} + \dots + y_n =$
• $= \sum_{i \in N} x_i = v(N)$
1.2 (individual rationality) $y_k \ge v(k)$ for $k \in N$
• $y_j \ge v(j) : y_j = x_i \ge v(i) \ge v(j)$
• $y_i \ge v(i) : y_i = x_j > x_i \ge v(i)$
• $y_k \ge v(k) : y_k = x_k \ge v(k)$
2. $x(S) \ge v(S) \implies y(S) \ge v(S)$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 同

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

1. If $i \succeq j$ and $x_i < x_j$, switch: $y_j = x_i$ and $y_i = x_j$ $y_i := x_j$ $y_j := x_i$ $y_k := x_k$ for $k \in N \setminus \{i, j\}$

Proof.

1.
$$x \in I(v) \implies y \in I(v) \text{ (PROVED)}$$

2. $x(S) \ge v(S) \implies y(S) \ge v(S)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1. If $i \succeq j$ and $x_i < x_j$, switch: $y_j = x_i$ and $y_i = x_j$ $y_i := x_j$ $y_j := x_i$ $y_k := x_k$ for $k \in N \setminus \{i, j\}$

Proof.

1.
$$x \in I(v) \implies y \in I(v) (PROVED)$$

2. $x(S) \ge v(S) \implies y(S) \ge v(S)$
2.1 $i, j \in S$ and $i, j \notin S$

2.2 $i \in S$ and $j \notin S$

2.3 $i \notin S$ and $j \in S$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1. If $i \succeq j$ and $x_i < x_j$, switch: $y_j = x_i$ and $y_i = x_j$ $y_i := x_j$ $y_j := x_i$ $y_k := x_k$ for $k \in N \setminus \{i, j\}$

Proof.

1.
$$x \in I(v) \implies y \in I(v) \text{ (PROVED)}$$

2. $x(S) \ge v(S) \implies y(S) \ge v(S)$
2.1 $i, j \in S \text{ and } i, j \notin S$
• $y(S) = x(S) \ge 0$
2.2 $i \in S \text{ and } j \notin S$

2.3 $i \notin S$ and $j \in S$

1. If $i \succeq j$ and $x_i < x_j$, switch: $y_j = x_i$ and $y_i = x_j$ $y_i := x_j$ $y_j := x_i$ $y_k := x_k$ for $k \in N \setminus \{i, j\}$

Proof. 1. $x \in I(v) \implies y \in I(v)$ (PROVED) 2. $x(S) \ge v(S) \implies y(S) \ge v(S)$ 2.1 $i, j \in S$ and $i, j \notin S$ • $y(S) = x(S) \ge 0$ 2.2 $i \in S$ and $j \notin S$ • $v(S) \le x(S) = x_i + x(S \setminus i) < x_j + x(S \setminus i) = y(S)$ 2.3 $i \notin S$ and $j \in S$

1. If $i \geq j$ and $x_i < x_i$, switch: $y_i = x_i$ and $y_i = x_i$ $y_i := x_i$ $y_i := x_i$ $y_k := x_k$ for $k \in \mathbb{N} \setminus \{i, j\}$ Proof. 1. $x \in I(v) \implies y \in I(v)$ (PROVED) 2. $x(S) \ge v(S) \implies v(S) \ge v(S)$ 2.1 $i, j \in S$ and $i, j \notin S$ • y(S) = x(S) > 02.2 $i \in S$ and $i \notin S$ • $v(S) \leq x(S) = x_i + x(S \setminus i) < x_i + x(S \setminus i) = y(S)$ 2.3 $i \notin S$ and $i \in S$ • $v(S) = v((S \setminus j) \cup j) < v((S \setminus j) \cup i) < x((S \setminus j) \cup i) = v(S)$

 $F_{\succ}(v)$ and Core

"... at least something." If $C(v) \neq \emptyset \implies C(v) \cap F_{\succeq}(v) \neq \emptyset$

Idea:

x ∈ C(v)
1. if i ≥ j and x_i < x_j (PROVED)

switch: y_j = x_i and y_i = x_j

2. if Σ = {i₁,..., i_k} substitutes (i.e. i ≥ j and j ≥ i)

redistribute: i ∈ Σ ⇒ y_i = x(Σ) / |Σ|

y ∈ C(v)

2. $\Sigma = \{i_1, \dots, i_k\}$ substitutes (i.e. $i \succeq j$ and $j \succeq i$) redistribute: $i \in \Sigma \implies y_i = \frac{x(\Sigma)}{|\Sigma|}$

Proof.

Idea: $i \succeq j$ and $j \succeq i \implies v(S \cup i) = v(S \cup j)$ for $S \setminus \{i, j\}$

2. $\Sigma = \{i_1, \dots, i_k\}$ substitutes (i.e. $i \succeq j$ and $j \succeq i$) redistribute: $i \in \Sigma \implies y_i = \frac{x(\Sigma)}{|\Sigma|}$

Proof.

Idea: $i \succeq j$ and $j \succeq i \implies v(S \cup i) = v(S \cup j)$ for $S \setminus \{i, j\}$ 1. $x \in I(v) \implies y \in I(v)$

2.
$$x(S) \ge v(S) \implies y(S) \ge v(S)$$

2. $\Sigma = \{i_1, \dots, i_k\}$ substitutes (i.e. $i \succeq j$ and $j \succeq i$) redistribute: $i \in \Sigma \implies y_i = \frac{x(\Sigma)}{|\Sigma|}$

Proof.

Idea: $i \succeq j$ and $j \succeq i \implies v(S \cup i) = v(S \cup j)$ for $S \setminus \{i, j\}$ 1. $x \in I(v) \implies y \in I(v)$ 1.1 (efficiency) y(N) = v(N)

2.
$$x(S) \ge v(S) \implies y(S) \ge v(S)$$

2. $\Sigma = \{i_1, \dots, i_k\}$ substitutes (i.e. $i \succeq j$ and $j \succeq i$) redistribute: $i \in \Sigma \implies y_i = \frac{x(\Sigma)}{|\Sigma|}$

Proof.

Idea:
$$i \succeq j$$
 and $j \succeq i \implies v(S \cup i) = v(S \cup j)$ for $S \setminus \{i, j\}$
1. $x \in I(v) \implies y \in I(v)$
1.1 (efficiency) $y(N) = v(N)$

1.2 (individual rationality) $y_k \ge v(k)$ for $k \in N$

2.
$$x(S) \ge v(S) \implies y(S) \ge v(S)$$

2. $\Sigma = \{i_1, \dots, i_k\}$ substitutes (i.e. $i \succeq j$ and $j \succeq i$) redistribute: $i \in \Sigma \implies y_i = \frac{x(\Sigma)}{|\Sigma|}$

Proof.

Idea:
$$i \succeq j$$
 and $j \succeq i \implies v(S \cup i) = v(S \cup j)$ for $S \setminus \{i, j\}$
1. $x \in I(v) \implies y \in I(v)$
1.1 (efficiency) $y(N) = v(N)$
• $y(N) = \sum_{i \in \Sigma} \frac{x(\Sigma)}{|\Sigma|} + \sum_{i \in N \setminus \Sigma} x_i =$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1.2 (individual rationality) $y_k \ge v(k)$ for $k \in N$

2.
$$x(S) \ge v(S) \implies y(S) \ge v(S)$$

2. $\Sigma = \{i_1, \dots, i_k\}$ substitutes (i.e. $i \succeq j$ and $j \succeq i$) redistribute: $i \in \Sigma \implies y_i = \frac{x(\Sigma)}{|\Sigma|}$

Proof.

Idea:
$$i \succeq j$$
 and $j \succeq i \implies v(S \cup i) = v(S \cup j)$ for $S \setminus \{i, j\}$
1. $x \in I(v) \implies y \in I(v)$
1.1 (efficiency) $y(N) = v(N)$
• $y(N) = \sum_{i \in \Sigma} \frac{x(\Sigma)}{|\Sigma|} + \sum_{i \in N \setminus \Sigma} x_i =$
• $= x(\Sigma) + x(N \setminus \Sigma) = x(N) = v(N)$
1.2 (individual rationality) $y_k \ge v(k)$ for $k \in N$

2.
$$x(S) \ge v(S) \implies y(S) \ge v(S)$$

2. $\Sigma = \{i_1, \dots, i_k\}$ substitutes (i.e. $i \succeq j$ and $j \succeq i$) redistribute: $i \in \Sigma \implies y_i = \frac{x(\Sigma)}{|\Sigma|}$

Proof.

Idea: $i \succeq j$ and $j \succeq i \implies v(S \cup i) = v(S \cup j)$ for $S \setminus \{i, j\}$ 1. $x \in I(v) \implies y \in I(v)$ 1.1 (efficiency) y(N) = v(N)• $y(N) = \sum_{i \in \Sigma} \frac{x(\Sigma)}{|\Sigma|} + \sum_{i \in N \setminus \Sigma} x_i =$ • $= x(\Sigma) + x(N \setminus \Sigma) = x(N) = v(N)$ 1.2 (individual rationality) $y_k \ge v(k)$ for $k \in N$ • $i \in \Sigma : v(i) = \min_{j \in \Sigma} v(j) \le \min_{j \in \Sigma} x_j \le \frac{x(\Sigma)}{|\Sigma|} = y_i$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

2. $x(S) \ge v(S) \implies y(S) \ge v(S)$

2. $\Sigma = \{i_1, \dots, i_k\}$ substitutes (i.e. $i \succeq j$ and $j \succeq i$) redistribute: $i \in \Sigma \implies y_i = \frac{x(\Sigma)}{|\Sigma|}$

Proof.

Idea: $i \succeq j$ and $j \succeq i \Longrightarrow v(S \cup i) = v(S \cup j)$ for $S \setminus \{i, j\}$ 1. $x \in I(v) \Longrightarrow y \in I(v)$ 1.1 (efficiency) y(N) = v(N)• $y(N) = \sum_{i \in \Sigma} \frac{x(\Sigma)}{|\Sigma|} + \sum_{i \in N \setminus \Sigma} x_i =$ • $= x(\Sigma) + x(N \setminus \Sigma) = x(N) = v(N)$ 1.2 (individual rationality) $y_k \ge v(k)$ for $k \in N$ • $i \in \Sigma : v(i) = \min_{j \in \Sigma} v(j) \le \min_{j \in \Sigma} x_j \le \frac{x(\Sigma)}{|\Sigma|} = y_i$ • $i \notin \Sigma : v(i) \le x_i = y_i$ 2. $x(S) \ge v(S) \Longrightarrow y(S) \ge v(S)$

2. $\Sigma = \{i_1, \dots, i_k\}$ substitutes (i.e. $i \succeq j$ and $j \succeq i$) redistribute: $i \in \Sigma \implies y_i = \frac{x(\Sigma)}{|\Sigma|}$

Proof.

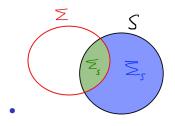
Idea: $i \succeq j$ and $j \succeq i \implies v(S \cup i) = v(S \cup j)$ for $S \setminus \{i, j\}$ 1. $x \in I(v) \implies y \in I(v)$ (PROVED) 2. $x(S) \ge v(S) \implies y(S) \ge v(S)$

2. $\Sigma = \{i_1, \dots, i_k\}$ substitutes (i.e. $i \succeq j$ and $j \succeq i$) redistribute: $i \in \Sigma \implies y_i = \frac{x(\Sigma)}{|\Sigma|}$

Proof.

Idea: $i \succeq j$ and $j \succeq i \implies v(S \cup i) = v(S \cup j)$ for $S \setminus \{i, j\}$ 1. $x \in I(v) \implies y \in I(v)$ (PROVED) 2. $x(S) \ge v(S) \implies y(S) \ge v(S)$

• $S = \Sigma_S + \overline{\Sigma}_S$



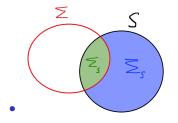
2. $\Sigma = \{i_1, \dots, i_k\}$ substitutes (i.e. $i \succeq j$ and $j \succeq i$) redistribute: $i \in \Sigma \implies y_i = \frac{x(\Sigma)}{|\Sigma|}$

Proof.

Idea: $i \succeq j$ and $j \succeq i \implies v(S \cup i) = v(S \cup j)$ for $S \setminus \{i, j\}$

1.
$$x \in I(v) \implies y \in I(v) \text{ (PROVED)}$$

2. $x(S) \ge v(S) \implies y(S) \ge v(S)$
• $S = \Sigma_S + \overline{\Sigma}_S$
• $\Sigma_S = S \cap \Sigma$



2. $\Sigma = \{i_1, \dots, i_k\}$ substitutes (i.e. $i \succeq j$ and $j \succeq i$) redistribute: $i \in \Sigma \implies y_i = \frac{x(\Sigma)}{|\Sigma|}$

Proof.

Idea: $i \succeq j$ and $j \succeq i \implies v(S \cup i) = v(S \cup j)$ for $S \setminus \{i, j\}$ 1. $x \in I(v) \implies y \in I(v)$ (PROVED) 2. $x(S) \ge v(S) \implies y(S) \ge v(S)$ • $S = \Sigma_{S} + \overline{\Sigma}_{S}$ • $\Sigma_{S} = S \cap \Sigma$ • $\overline{\Sigma}_{S} = S - \Sigma_{S}$ 5

・ロト・4日ト・モト・モト 音ののの

$x(S) \ge v(S) \implies y(S) \ge v(S)$

$$\begin{aligned} x(S) &\geq v(S) \implies y(S) \geq v(S) \\ 1. \ y(S) &= y(\Sigma_S) + y(\overline{\Sigma}_S) \end{aligned}$$

$$\begin{aligned} x(S) &\geq v(S) \implies y(S) \geq v(S) \\ 1. \ y(S) &= y(\Sigma_S) + y(\overline{\Sigma}_S) \\ 2. \ y(\Sigma_S) + y(\overline{\Sigma}_S) &= y(\Sigma_S) + x(\overline{\Sigma}_S) \end{aligned}$$

$$\begin{aligned} x(S) &\geq v(S) \implies y(S) \geq v(S) \\ 1. \ y(S) &= y(\Sigma_S) + y(\overline{\Sigma}_S) \\ 2. \ y(\Sigma_S) + y(\overline{\Sigma}_S) &= y(\Sigma_S) + x(\overline{\Sigma}_S) \\ \bullet \text{ no change outside } \Sigma \end{aligned}$$

$$\begin{aligned} x(S) &\geq v(S) \implies y(S) \geq v(S) \\ 1. \ y(S) &= y(\Sigma_S) + y(\overline{\Sigma}_S) \\ 2. \ y(\Sigma_S) + y(\overline{\Sigma}_S) &= y(\Sigma_S) + x(\overline{\Sigma}_S) \\ \bullet \text{ no change outside } \Sigma \end{aligned}$$

$$\begin{aligned} x(S) &\geq v(S) \implies y(S) \geq v(S) \\ 1. \ y(S) &= y(\Sigma_S) + y(\overline{\Sigma}_S) \\ 2. \ y(\Sigma_S) + y(\overline{\Sigma}_S) &= y(\Sigma_S) + x(\overline{\Sigma}_S) \\ \bullet \text{ no change outside } \Sigma \end{aligned}$$

$$\begin{aligned} x(S) &\geq v(S) \implies y(S) \geq v(S) \\ 1. \ y(S) &= y(\Sigma_S) + y(\overline{\Sigma}_S) \\ 2. \ y(\Sigma_S) + y(\overline{\Sigma}_S) &= y(\Sigma_S) + x(\overline{\Sigma}_S) \\ \bullet \text{ no change outside } \Sigma \end{aligned}$$

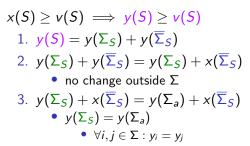
$$\begin{aligned} x(S) &\geq v(S) \implies y(S) \geq v(S) \\ 1. \ y(S) &= y(\Sigma_S) + y(\overline{\Sigma}_S) \\ 2. \ y(\Sigma_S) + y(\overline{\Sigma}_S) &= y(\Sigma_S) + x(\overline{\Sigma}_S) \\ \bullet \text{ no change outside } \Sigma \end{aligned}$$

$$\begin{aligned} x(S) &\geq v(S) \implies y(S) \geq v(S) \\ 1. \ y(S) &= y(\Sigma_S) + y(\overline{\Sigma}_S) \\ 2. \ y(\Sigma_S) + y(\overline{\Sigma}_S) &= y(\Sigma_S) + x(\overline{\Sigma}_S) \\ \bullet \text{ no change outside } \Sigma \end{aligned}$$

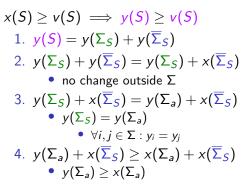
$$\begin{aligned} x(S) &\geq v(S) \implies y(S) \geq v(S) \\ 1. \ y(S) &= y(\Sigma_S) + y(\overline{\Sigma}_S) \\ 2. \ y(\Sigma_S) + y(\overline{\Sigma}_S) &= y(\Sigma_S) + x(\overline{\Sigma}_S) \\ \bullet \text{ no change outside } \Sigma \end{aligned}$$

$$\begin{aligned} x(S) &\geq v(S) \implies y(S) \geq v(S) \\ 1. \ y(S) &= y(\Sigma_S) + y(\overline{\Sigma}_S) \\ 2. \ y(\Sigma_S) + y(\overline{\Sigma}_S) &= y(\Sigma_S) + x(\overline{\Sigma}_S) \\ \bullet \text{ no change outside } \Sigma \\ 3. \ y(\Sigma_S) + x(\overline{\Sigma}_S) &= y(\Sigma_a) + x(\overline{\Sigma}_S) \\ \bullet \ \Sigma_i \text{ for } i \in N \\ \bullet \ i \text{ smallest players from } \Sigma \text{ ordered by } x: \\ \bullet \ \Sigma &= \{\sigma_1, \dots, \sigma_k\} = \{e_1, \dots, e_k\} \\ \bullet \ i \leq j \implies x(e_i) \leq x(e_j) \\ \bullet \ \Sigma_i &= \{e_1, \dots, e_i\} \\ \bullet \ a &= |\Sigma_S| \\ \bullet \ y(\Sigma_S) &= y(\Sigma_a) \\ \bullet \ \forall i, j \in \Sigma : y_i = y_j \end{aligned}$$

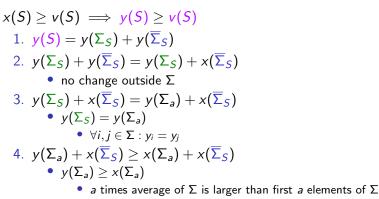
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

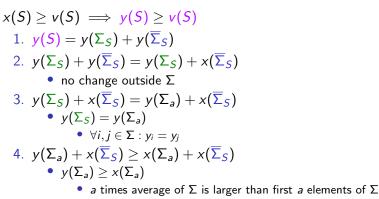


▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

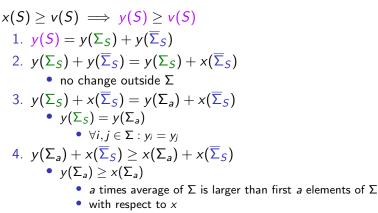


with respect to x

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00



with respect to x



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

5. $x(\Sigma_a) + x(\overline{\Sigma}_S) \ge v(\Sigma_a \cup \overline{\Sigma}_S) \ (x \in C(v))$

$$\begin{aligned} x(S) &\geq v(S) \implies y(S) \geq v(S) \\ 1. \ y(S) &= y(\Sigma_S) + y(\overline{\Sigma}_S) \\ 2. \ y(\Sigma_S) + y(\overline{\Sigma}_S) &= y(\Sigma_S) + x(\overline{\Sigma}_S) \\ \bullet \text{ no change outside } \Sigma \\ 3. \ y(\Sigma_S) + x(\overline{\Sigma}_S) &= y(\Sigma_a) + x(\overline{\Sigma}_S) \\ \bullet \ y(\Sigma_S) &= y(\Sigma_a) \\ \bullet \ \forall i, j \in \Sigma : y_i = y_j \\ 4. \ y(\Sigma_a) + x(\overline{\Sigma}_S) &\geq x(\Sigma_a) + x(\overline{\Sigma}_S) \\ \bullet \ y(\Sigma_a) &\geq x(\Sigma_a) \\ \bullet \ y(\Sigma_b) &\geq x(\Sigma_b) \\ \bullet \ y(\Sigma_b) &\leq x(\Sigma_b) \\ \bullet \ y(\Sigma_b) &\geq x(\Sigma_b) \\ \bullet \ y(\Sigma_b) &\leq x(\Sigma_b) \\ = x(\Sigma_b) \\ \bullet \ y(\Sigma_b) &\leq x(\Sigma_b) \\ = x(\Sigma_b) \\ = x(\Sigma_b$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

5. $x(\Sigma_a) + x(\overline{\Sigma}_S) \ge v(\Sigma_a \cup \overline{\Sigma}_S) \ (x \in C(v))$ 6. $v(\Sigma_a \cup \overline{\Sigma}_S) = v(\Sigma_S \cup \overline{\Sigma}_S) = v(S)$

$$\begin{aligned} x(S) &\geq v(S) \implies y(S) \geq v(S) \\ 1. \ y(S) &= y(\Sigma_S) + y(\overline{\Sigma}_S) \\ 2. \ y(\Sigma_S) + y(\overline{\Sigma}_S) &= y(\Sigma_S) + x(\overline{\Sigma}_S) \\ \bullet \text{ no change outside } \Sigma \\ 3. \ y(\Sigma_S) + x(\overline{\Sigma}_S) &= y(\Sigma_a) + x(\overline{\Sigma}_S) \\ \bullet \ y(\Sigma_S) &= y(\Sigma_a) \\ \bullet \ \forall i, j \in \Sigma : y_i = y_j \\ 4. \ y(\Sigma_a) + x(\overline{\Sigma}_S) &\geq x(\Sigma_a) + x(\overline{\Sigma}_S) \\ \bullet \ y(\Sigma_a) &\geq x(\Sigma_a) \\ \bullet \ y(\Sigma_a) &\geq x(\Sigma_a) \\ \bullet \ a \text{ times average of } \Sigma \text{ is larger than first } a \text{ elements of } \Sigma \\ \bullet \ \text{ with respect to } x \\ 5. \ x(\Sigma_a) + x(\overline{\Sigma}_S) &\geq v(\Sigma_a \cup \overline{\Sigma}_S) \ (x \in C(v)) \end{aligned}$$

6. $v(\Sigma_a \cup \overline{\Sigma}_S) = v(\Sigma_S \cup \overline{\Sigma}_S) = v(S)$

- Σ are substitutes:
- $i \succeq j \text{ and } j \succeq i \implies v(S \cup i) = v(S \cup j) \text{ for } S \setminus \{i, j\} \square$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

 $F_{\succ}(v)$ and Core

"... at least something." If $C(v) \neq \emptyset \implies C(v) \cap F_{\succeq}(v) \neq \emptyset$

Idea:

x ∈ C(v)
1. if i ≥ j and x_i < x_j (PROVED)

switch: y_j = x_i and y_i = x_j

2. if Σ = {i₁,..., i_k} substitutes (i.e. i ≥ j and j ≥ i)

(PROVED)
redistribute: i ∈ Σ ⇒ y_i = x(Σ) / |Σ|

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• $y \in C(v)$

$F_{\succeq}(v)$ and solution concepts

"If only I had time, I would convince you..."

Theorem For a game (N, v), following hold. 1. $Ker(v) \subseteq F_{\succeq}(v)$ 2. $n(v) \in F_{\succeq}(v)$ 3. (N, v) is quasi-balanced $\implies \tau$ -value $\tau(v) \in F_{\succeq}(v)$, 4. (N, v) super-additive \implies Shapley value $\phi(v) \in F_{\succeq}(v)$, 5. If $C(v) \neq \emptyset \implies C(v) \cap F_{\succeq}(v) \neq \emptyset$, 6. If $C(v) \neq \emptyset \implies \emptyset \neq C_e(v) \subseteq F_{\succeq}(v)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

"I don't know if it holds, but I feel like it does ... "

desirability: $i \succeq j \implies v(A \cup \{i\}) \ge v(A \cup \{j\})$ for $A \subseteq N \setminus i, j$ # of conditions: $2^{|N|-2}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Problem:

"I don't know if it holds, but I feel like it does ... "

desirability: $i \succeq j \implies v(A \cup \{i\}) \ge v(A \cup \{j\})$ for $A \subseteq N \setminus i, j$ # of conditions: $2^{|N|-2}$

Problem:

• infeasible to check for relatively small number of players

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

"I don't know if it holds, but I feel like it does ... "

desirability: $i \succeq j \implies v(A \cup \{i\}) \ge v(A \cup \{j\})$ for $A \subseteq N \setminus i, j$ # of conditions: $2^{|N|-2}$

Problem:

infeasible to check for relatively small number of players

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Solution: pick a subset of conditions

"I don't know if it holds, but I feel like it does ... "

desirability: $i \succeq j \implies v(A \cup \{i\}) \ge v(A \cup \{j\})$ for $A \subseteq N \setminus i, j$ # of conditions: $2^{|N|-2}$

Problem:

- infeasible to check for relatively small number of players
- Solution: pick a subset of conditions
 - individual payoffs and marginal contributions to N

Weak Desirability of players $F_{\triangleright}(v)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

1. individual payoffs

2. marginal contributions to the grandcoalition N

Weak Desirability of players $F_{\triangleright}(v)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

1. individual payoffs

•
$$v(i) \ge v(j)$$

2. marginal contributions to the grandcoalition N

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 1. individual payoffs
 - $v(i) \ge v(j)$
- 2. marginal contributions to the grandcoalition N
 - $v(N) v(N \setminus i) \ge v(N) v(N \setminus j)$

Weak Desirability of players $F_{\triangleright}(v)$

1. individual payoffs

• $v(i) \geq v(j)$

2. marginal contributions to the grandcoalition N

•
$$v(N) - v(N \setminus i) \ge v(N) - v(N \setminus j)$$

Definition

Player weak desirability relation $i \ge j$ denotes that player *i* is more desirable (in a weak sense) than *j*, i.e.

$$v(i) \ge v(j)$$
 and $v(N \setminus i) \le v(N \setminus j)$.

Definition

Weak player desirability-fair imputation $x \in I(v)$ is such that

$$i \ge j \implies x_i \ge x_j.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The set of such x is denoted by $F_{\geq}(v)$.

 $F_{\triangleright}(v) \subseteq F_{\succ}(v)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

"It takes less to get me started ... "

• $i \ge j$ is weaker than $i \succeq j$

 $F_{\triangleright}(v) \subseteq F_{\succ}(v)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

"It takes less to get me started ... "

- $i \ge j$ is weaker than $i \ge j$
- therefore, it is *activated* more often
- \succeq holds for at least as much pairs of players as \succeq

 $F_{\triangleright}(v) \subseteq F_{\succ}(v)$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

"It takes less to get me started ... "

- $i \ge j$ is weaker than $i \succeq j$
- therefore, it is *activated* more often
- \succeq holds for at least as much pairs of players as \succeq
- Example:

•
$$i_1 \supseteq i_2$$
, $i_3 \supseteq i_4 \implies x_{i_1} \ge x_{i_2}, x_{i_3} \ge x_{i_4}$

•
$$i_3 \succeq i_4 \implies x_{i_3} \ge x_{i_4}$$

 $F_{\triangleright}(v) \subseteq F_{\succ}(v)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

"It takes less to get me started..."

- $i \ge j$ is weaker than $i \ge j$
- therefore, it is *activated* more often
- \succeq holds for at least as much pairs of players as \succeq
- Example:
 - $i_1 \succeq i_2$, $i_3 \trianglerighteq i_4 \implies x_{i_1} \ge x_{i_2}, x_{i_3} \ge x_{i_4}$
 - $i_3 \succeq i_4 \implies x_{i_3} \ge x_{i_4}$
- Consequence: $F_{\succeq}(v) \subseteq F_{\succeq}(v)$

$F_{\triangleright}(v)$ and solution concepts

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

"Is it interesting? Nobody knows yet ... "

Theorem For a game (N, v), following hold: 1. (N, v) is 1-convex $\implies \tau(v) \in F_{\supseteq}(v) \cap C(v)$, 2. (N, v) is quasi-balanced and a little condition $\implies \tau(v) \in F_{\supseteq}(v)$.

Open questions:

• basically the rest!

Desirability relation on coalitions $F_{\Box}(v)$

"United we stand, divided we fall..."

Definition

Desirability relation on coalitions $A \supseteq B$ denotes coalition A is more desirable than B, i.e.

$$v(C\cup A)\geq v(C\cup B)$$
 for all $C\subseteq N\setminus (A\cup B).$

Definition

Coalition desirability-fair imputation $x \in I(v)$ is such that

$$A \sqsupseteq B \implies x(A) \ge x(B).$$

The set of such x is denoted by $F_{\square}(v)$.

Desirability relation on coalitions $F_{\Box}(v)$

"But we actually mostly fall..."

•
$$i \succeq j \iff \{i\} \sqsupseteq \{j\}$$

•
$$F_{\supseteq}(v) \subseteq F_{\succeq}(v)$$

• exists game (N, v):

•
$$F_{\exists}(v) \cap C(v) = \emptyset$$

•
$$\tau(\mathbf{v}) \notin F_{\exists}(\mathbf{v})$$

•
$$\phi(\mathbf{v}) \notin F_{\square}(\mathbf{v})$$

• $n(v) \notin F_{\exists}(v)$

• Banktruptcy games: Aristotelian proportional division

•
$$x = \frac{E}{d_1 + \dots + d_n}(d_1, \dots, d_n)$$

• $x \in F_{\supseteq}(v)$

Desirability of equivalence classes $F_{lu}(v)$

"Getting ⊒ weaker by labor unions..."

- - 2^N coalitions
 - many of them unlikely
- Task: select a sensible subset of condition
 - coalition of substitutes K (labor union)
 - $K \sqsupseteq \{i\}$ (factory owner i)
 - $x(K) \ge x_i$ (K: "We are not slaves!")

Definition

The labor union-fair imputation $x \in I(v)$ is such that

1.
$$K \sqsupseteq \{i\} \implies x(K) \ge x_i$$
,

2.
$$x \in F_{\succeq}(v)$$
.

The set of such x is denoted by $F_{lu}(v)$.

Desirability of equivalence classes $F_{lu}(v)$

"At least the egalitarian core C_e is fair for the workers."

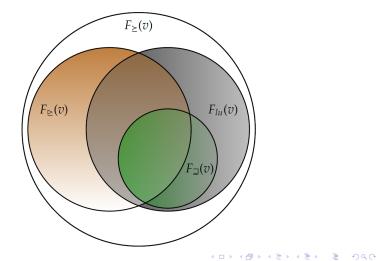
Theorem $C_e \subseteq F_{lu}(v)$ for convex games (N, v).

Also, minor results about Shapley, τ -value and nucleolus.

Fairness based on desirability

"If you work hard, you should get more."

4 desirability predicates:



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

"This is fair, and that is fair, so which one is more fair?"

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

"This is fair, and that is fair, so which one is more fair?"

1. Is the fairness predicate actually a good one?

"This is fair, and that is fair, so which one is more fair?"

1. Is the fairness predicate actually a good one?

- In general, it might be empty for a game (N, v)
- For a special case: Always better solution than other

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

"This is fair, and that is fair, so which one is more fair?"

- 1. Is the fairness predicate actually a good one?
 - In general, it might be empty for a game (N, v)
 - For a special case: Always better solution than other

- $F_{\supseteq}(v)$ for banktruptcy games non-empty
- otherwise hard to say

"This is fair, and that is fair, so which one is more fair?"

- 1. Is the fairness predicate actually a good one?
 - In general, it might be empty for a game (N, v)
 - For a special case: Always better solution than other

- $F_{\perp}(v)$ for banktruptcy games non-empty
- otherwise hard to say
- 2. which fairness predicate is better?

"This is fair, and that is fair, so which one is more fair?"

- 1. Is the fairness predicate actually a good one?
 - In general, it might be empty for a game (N, v)
 - For a special case: Always better solution than other
 - $F_{\perp}(v)$ for banktruptcy games non-empty
 - otherwise hard to say
- 2. which fairness predicate is better?
- 3. we can find *unpleasent* games for the specific predicate

• Do these games really matter?

"This is fair, and that is fair, so which one is more fair?"

- $1. \ \mbox{ls}$ the fairness predicate actually a good one?
 - In general, it is empty
 - For a special case: Always better solution than other
 - $F_{\square}(v)$ for banktruptcy games non-empty
 - otherwise hard to say
- 2. which fairness predicate is better?
- 3. we can find *unpleasent* games for the specific concept
 - Do these games really matter?

Definition

A predicate \mathcal{P} is satisfiable within the core (in a class G) if

$$(N, v) \in G : C(v) \neq \emptyset \implies \mathcal{P}(v) \cap C(v) \neq \emptyset.$$

We say \mathcal{P} is *core-satisfiable* or simply *satisfiable*.

"It is good, at least when the game is stable."

Definition

A predicate \mathcal{P} is satisfiable within the core (in a class G) if

$$(N, v) \in G : C(v) \neq \emptyset \implies P(v) \cap C(v) \neq \emptyset.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- we can define different ?-satifiability
- Core-satisfiability enoforces stability of the solution

"And how does it look, from the core point-of-view?"

Theorem

- 1. $F_{\succeq}(v)$ is satisfiable for every game,
- 2. $F^0_{\succ}(v)$ is satisfiable for every game,
- 3. F_{\geq} is satisfiable for every convex and 1-convex game,
- 4. F_{\geq} is **not** satisfiable for every superadditive game,
- 5. *F*_{*lu*} is satisfiable for every convex game, but **not** every superadditive game.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Individual or Culture Specific Notions of Fairness

"This is fair to you?"

- the most natural setting
 - not only different interests
 - but also notions of fairness

• modification in the stability notion (different from Core)

Modified stability condition

"The core sounds fine, but lets keep it sensible..."

imputation $x \in C(v)$ if

•
$$x(S) \ge v(S)$$

Modified stability condition

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

"The core sounds fine, but lets keep it sensible..."

imputation $x \in C(v)$ if

•
$$x(S) \ge v(S)$$

• if S does not form (does not agree on fair notion)

"The core sounds fine, but lets keep it sensible ... "

imputation $x \in C(v)$ if

- $x(S) \ge v(S)$
- if S does not form (does not agree on fair notion)
 - 1. why should we consider this condition?
 - why shouldn't we allow for $y \notin C(v)$?

"The core sounds fine, but lets keep it sensible ... "

imputation $x \in C(v)$ if

- $x(S) \ge v(S)$
- if S does not form (does not agree on fair notion)
 - 1. why should we consider this condition?
 - why shouldn't we allow for $y \notin C(v)$?
 - 2. why should we agree on x?
 - our differences might block all $x \in C(v)$

"The core sounds fine, but lets keep it sensible ... "

imputation $x \in C(v)$ if

- $x(S) \ge v(S)$
- if S does not form (does not agree on fair notion)
 - 1. why should we consider this condition?
 - why shouldn't we allow for $y \notin C(v)$?
 - 2. why should we agree on x?
 - our differences might block all $x \in C(v)$
- my fairness notion = my culture (cultural identification)

A D N A 目 N A E N A E N A B N A C N

"The core sounds fine, but lets keep it sensible ... "

imputation $x \in C(v)$ if

- $x(S) \ge v(S)$
- if S does not form (does not agree on fair notion)
 - 1. why should we consider this condition?
 - why shouldn't we allow for $y \notin C(v)$?
 - 2. why should we agree on x?
 - our differences might block all $x \in C(v)$
- my fairness notion = my culture (cultural identification)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• How does our cultural differences affect us?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

"To work together, we have to find a common ground."

"To work together, we have to find a common ground."

• *F_i* ... fairness predicate (**Cultural identification of player i**)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

"To work together, we have to find a common ground."

• F_i ... fairness predicate (Cultural identification of player i)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• $F_i(w)$... acceptable imputations of *i* in (N, w)

"To work together, we have to find a common ground."

• F_i ... fairness predicate (Cultural identification of player i)

- $F_i(w)$... acceptable imputations of *i* in (N, w)
 - imputation outside $F_i(w)$ results in **no** cooperation

"To work together, we have to find a common ground."

• F_i ... fairness predicate (Cultural identification of player i)

- $F_i(w)$... acceptable imputations of *i* in (N, w)
 - imputation outside $F_i(w)$ results in **no** cooperation

A coalitions S is **culturally compatible** (in a game (N, v)) if either

"To work together, we have to find a common ground."

• F_i ... fairness predicate (Cultural identification of player i)

- $F_i(w)$... acceptable imputations of *i* in (N, w)
 - imputation outside $F_i(w)$ results in **no** cooperation

A coalitions S is **culturally compatible** (in a game (N, v)) if either

1.
$$S = \{i\}$$

"To work together, we have to find a common ground."

• F_i ... fairness predicate (Cultural identification of player i)

- $F_i(w)$... acceptable imputations of *i* in (N, w)
 - imputation outside $F_i(w)$ results in **no** cooperation

A coalitions S is culturally compatible (in a game (N, v)) if either

- 1. $S = \{i\}$
- 2. exists $x \in \bigcap_{i \in S} F_i(v_S)$: 2.1 $x(S) = v_S(S)$

"To work together, we have to find a common ground."

- F_i ... fairness predicate (Cultural identification of player i)
- $F_i(w)$... acceptable imputations of *i* in (N, w)
 - imputation outside $F_i(w)$ results in **no** cooperation

A coalitions S is **culturally compatible** (in a game (N, v)) if either

1. $S = \{i\}$ 2. exists $x \in \bigcap_{i \in S} F_i(v_S)$: 2.1 $x(S) = v_S(S)$ 2.2 $x(A) \ge v_S(A)$ for every $A \subseteq S$ culturally compatible

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

"To work together, we have to find a common ground."

- *F_i* ... fairness predicate (**Cultural identification of player i**)
- $F_i(w)$... acceptable imputations of *i* in (N, w)

• imputation outside $F_i(w)$ results in **no** cooperation

A coalitions S is **culturally compatible** (in a game (N, v)) if either

1. $S = \{i\}$ 2. exists $x \in \bigcap_{i \in S} F_i(v_S)$: 2.1 $x(S) = v_S(S)$ 2.2 $x(A) \ge v_S(A)$ for every $A \subseteq S$ culturally compatible

Definition

Let (N, v) be a cooperative game and let CC(v) be the set of its culturally compatible coalitions.

A culturally compatible core C_{cc} is

 $C_{cc}(v) = \{x \in \bigcap_{i \in N} F_i(v) | x(N) = v(N) \text{ and } x(A) \ge v(A), \forall A \in CC(v)\}.$

"I won't believe it until I see it ... "

•
$$N = \{1, 2, 3, 4\}$$

• $F_1 = F_2 = F_{\succeq}^0(v), F_3 = C_e, F_4 = \phi(v)$
• $P(v_0) + s(v) = P(v)$ split

• Players 1 and 2 are mutually culturally compatible in

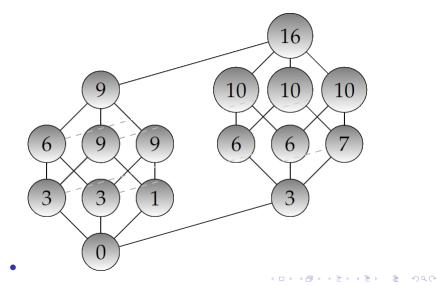
every zero-normalised 2-player subgame v_{{1,2}}

- Players 1, 2, 4 are culturally compatible in 3-player subgame which is
 - zero-normalised: $v_0 = v$, s(v) = 0
 - $\phi(v) \in C(v)$
- Players 1, 2, 3 are culturally compatible in 3-player subgame which is

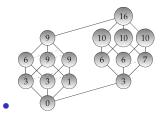
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- zero-normalised
- Player 3, 4 are mostly uncompatible $(\phi(v) \notin C_e(v))$

"Give me a real example!"



"Give me a real example!"



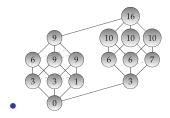
- Subgame $(N, v_{\{1,2,3\}})$ has an empty core
- blocking coalitions $\{1,3\}$ and $\{2,3\}$
- They are **not** culturally compatible

•
$$v(13) = v(23) = 9$$

- for player 3: $F_3 = \{(4.5, 4.5)\}$
- for players 1, 2: $F_1 = F_2 = \{(5.5, 3.5)\}$
- therefore $(3,3,3) \in C_{cc}(v_{\{1,2,3\}})$
- paradoxically: cultural incompatibility ⇒ cultural compatibility

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

"Give me a real example!"



- $\phi(v) = (4, 4, 4, 4)$
- $\phi(v) \in C_e$
- $\phi(\mathbf{v}) \in F_{\succeq}(\mathbf{v})$
- \implies (4, 4, 4, 4) \in $C_{cc}(v)$