# Fairness consideration in cooperative games 

Martin Černý

Game theory seminar, 2021

## Our goals

"What to do, what to do..."
In this presentation: Fairness

- revision of already known solution concepts
- introduction to further solution concepts
- an approach to study fairness concepts on solution concepts
- an approach to model situations with players with different fairness notion


## Cooperative game theory

"The cooperation, not the competition, is the main focus here."
Definition
A cooperative game is an ordered pair $(N, v)$ where $N=\{1, \ldots, n\}$ is a set of players and $v: 2^{N} \rightarrow \mathbb{R}$ is a characteristic function of the cooperative game. We always assume that $v(\emptyset)=0$.
E.g. $v(\{1,2,4\})$ is the value of cooperation of players 1,2 and 4 .

## Solution concepts

"How to split the reward?"
Definition
A payoff vector $x \in \mathbb{R}^{n}$ represents the profit of $i$ th player as its $i$ th coordinate $x_{i}$.

## Definition

A payoff vector $x \in \mathbb{R}^{n}$ is an imputation if

- $x_{i} \geq v(\{i\})$ for $i \in N$ (individual rationality),
- $\sum_{i \in N} x_{i}=v(N)$ (efficiency).


## Solution concepts

"When is the cooperation of everyone a stable situation?"

## Definition

A core of a game $(N, v)$ is defined as

$$
C(v)=\left\{x \in \mathbb{R}^{n} \mid \sum_{i \in N} x_{i}=v(N), \sum_{i \in S} x_{i} \geq v(S), \forall S \subseteq N\right\}
$$

"What is the most fair way to distribute the payoffs between players?"

## Definition

For a game $(N, v)$ the Shapley value for player $i$ is

$$
\phi_{i}(v)=\sum_{S \subseteq N \backslash\{i\}} \frac{|S|!(n-|S|-1)!}{n!}(v(S \cup\{i\})-v(S))
$$

## Solution concepts

"As close to $x(S)=v(S)$ as possible..."

- $e(S, x):=v(S)-x(S) \ldots$ excess
- $\theta(x) \in \mathbb{R}^{2^{|N|}} \ldots$ vector of excesses in non-increasing order


## Definition

For a game $(N, v)$, the nucleolus $n(v)$ is the minimal imputation $x$ with respect to the lexicographical ordering of $\theta(x)$ i.e.

$$
\theta(x)<\theta(y) \text { if } \exists k: \forall i<k: \theta_{i}(x)=\theta_{i}(y) \text { and } \theta_{k}(x)<\theta_{k}(y) .
$$

## Questions and solution concepts

"It makes sense, but tell me..."
Questions concerning solution concepts:

- When $C(v) \neq \emptyset$ ? (properties of concepts)
- If $|C(v)| \geq 2$, how to choose $x \in C(v)$ ?
- $\phi(v) \in C(v)$ ? (relations between concepts)
- How to compute $C(v)$ ? (computating the concepts)
- because of general definition of $(N, v)$, hard to answer in general
- $\Longrightarrow$ subsets of games (classes of games)


## Classes of games

"Bigger coalition is better."
Definition
A cooperative game $(N, v)$ is

- monotonic if for every $T \subseteq S \subseteq N$ it holds

$$
v(T) \leq v(S)
$$

- superadditive if for every $S, T \subseteq N$ such that $S \cap T=\emptyset$ it holds

$$
v(S)+v(T) \leq v(S \cup T),
$$

- convex if for every $S, T \subseteq N$ it holds

$$
v(S)+v(T) \leq v(S \cup T)+v(S \cap T) .
$$

## Classes of games

"Bigger coalition is better."
Definition
A cooperative game $(N, v)$ is

- monotonic

$$
v(T) \leq v(S)
$$

- superadditive

$$
v(S)+v(T) \leq v(S \cup T),
$$

- convex


$$
v(S)+v(T) \leq v(S \cup T)+v(S \cap T)
$$

## Yet another hierarchy

Catch the core!"

Definition
A cooperative game $(N, v)$ is

- semibalanced if $H(v) \neq \emptyset$
- quasibalanced if $C C(v) \neq \emptyset$
- balanced if $C(v) \neq \emptyset$
$C(v) \subseteq C C(v) \subseteq H(v)$



## Bounds on claims

"Bounds on what I can claim."

1. $b^{v}$... utopia vector

- $b_{i}^{v}:=v(N)-v(N \backslash i)$
- If I demand more, nobody cares...

2. $a^{v}$... minimal right vector

- the real world is not an utopia: $\sum_{j \in N} b_{j}^{v}>v(N)$
- take what you want, $i$ take the rest...
- $a_{i}^{v}:=\max _{S, i \in S} v(S)-\sum_{j \in S \backslash i} b_{j}^{v}$


## Bounds and cores and compromise

"In a view of the core.."

For $x \in C(v)$,

- $a_{i}^{v} \leq x_{i} \leq b_{i}^{v}$

For $(N, v)$ a quasibalanced game,

- $a^{v}(N) \leq v(N) \leq b^{v}(N)$

Pick an efficient compromise...

## Definition

the $\tau$-value $\tau(v)$ of game $(N, v)$ is defined as the unique convex combination of $a^{v}$ and $b^{v}$ such that $\sum_{i \in N} \tau(v)_{i}=v(N)$.

## The values $\phi, n$ and $\tau$

"To be fair, how fair are you?"
They are fair...:

- $\phi$ is frequently used as a fair solution concept (reasons already discussed)
- $\tau$-value also chosen as a fair solution in several applications
- $n$ is fair from point of view of one fairness predicate
- it is a core selector $(C(v) \neq \emptyset \Longrightarrow n(v) \in C(v))$
...are they not?
- $\phi$ and $\tau$ are often not core selectors
- in many games: $\phi(v) \neq n(v) \neq \tau(v)$
- Which one to choose?


## Egalitarianism

"If I can, I share with you..."
Definition
A tuple $(i, j, \alpha, x)$ is a bilateral transfer if

$$
x_{i}-\alpha \geq x_{j}+\alpha
$$

- $i, j \ldots$ me and you
- $x \in I(v)$... what we get
- $\alpha \geq 0$... what I share


## Egalitarian core

"... but it must be a stable transfer."
Definition
An imputation $x \in C(v)$ is egalitarian if no $y \in C(v)$ is the result of any ( $i, j, \alpha, x$ ).
"No matter what you do, this is the best..."
Definition
An imputation $x \in C(v)$ is strongly egalitarian if no $y \in C(v)$ is the result of a finite sequence of bilateral transfers.

## Differences in definitions

egalitarian $x \in C(v)$

- exists if $C(v) \neq \emptyset$
- more solutions
- $S E \subseteq E$
strongly egalitarian $x \in C(v)$
- unique solution
- solution of least squares:
- $\min _{y \in C(v)}\|y\|_{2}$


## $C_{e}$ as a fairness concept

"Fair and sane, however..."

1. fair thanks to bilateral transfers
2. sane thanks to core stability

Example
2-players game $(N, v)$ where $v(1)=1, v(2)=0$ and $v(12)=2$.
$C_{e}(v)=\left\{(1,1)^{T}\right\} \ldots$ why should 1 cooperate?
$\phi(v)=(1.5,0.5)^{T} \ldots$ this is more fair

- One might say: "Its overdoing fairness..."


## Inequity aversion

"How does it hurt, when I am better of?"
Definition
A players inequity aversion utility in the imputation $x$ is

$$
u_{i}(x)=x_{i}-\alpha_{i} \cdot \sum_{j \neq i} \max \left\{0, x_{j}-x_{i}\right\}
$$

- you feel like you lose $\alpha_{i}$ for 1 unit of $j$ 's advantage over you
- $u_{i}$ remains to you, if count in the losses
"I can't stand to be the one better of!"
Definition
A players inequity aversion utility in the imputation $x$ is

$$
u_{i}(x)=x_{i}-\alpha_{i} \cdot \sum_{j \neq i} \max \left\{0, x_{j}-x_{i}\right\}-\beta_{i} \cdot \sum_{j \neq i} \max \left\{0, x_{i}-x_{j}\right\}
$$

## Inequity aversion core

"In context of core stability..."
Definition
An inequity aversion core is a set of imputations $x \in C(v)$ such that for no $y \in C(v)$, there is a player $i$ with

$$
u_{i}(y)>u_{i}(x)
$$

## Example of inequity aversion

## Example

2-player game $(N, v)$ where $v(1)=a, v(2)=b$ and $v(1,2)=a+b+c, a \leq b$

- inequity $b-a$ before cooperation
- decision to cooperate $\Longrightarrow$ distribute $\left(a+c_{a}, b+c_{b}\right)$
- $c_{a}+c_{b}=c$
- inequity change $c_{b}-c_{a}=c-2 c_{a}$
- if $c_{a}<\alpha_{1} \cdot\left(c-2 c_{a}\right)$
- $c_{a}$... what player 1 gets by cooperation
- $\alpha_{1} \cdot\left(c-2 c_{a}\right) \ldots$ what he feels he loses
- if " $<$ " happens $\Longrightarrow$ won't cooperate
- $\alpha_{1}=0.25 \Longrightarrow$ cooperation $\Longleftrightarrow c_{a} \geq \frac{1}{6} c$
- $\alpha_{1}=1 \Longrightarrow$ cooperation $\Longleftrightarrow c_{a} \geq \frac{1}{3} c$
- $\alpha_{1}=" \infty " \Longrightarrow$ cooperation $\Longleftrightarrow c_{a} \geq \frac{1}{2} c$


## Disadvantage of IA

"All that matters is my aversion..."

- $c_{a}$ was dependend on $a, b$.
- $a \ll b \Longrightarrow$ same scenario as $a=b$

Presumption: "All players are equal."

## Fairness predicates

"Division of solution concepts into elementary properties..."

## Definition

A predicate on the imputation space of a cooperative n-person game is a mapping $\mathcal{P}$ that assigns every game $(N, v)$ a subset $\mathcal{P}(v) \subseteq I(v)$.

## Fairness Predicates

- subset of $I(v)$
- does not have to make sense on itself:
- Dummy player predicate $D P$
- rules out $x \in I(v): x_{i}>0$ for $i$ with contribution 0
- not much of a concept


## Solution concept

- subset of $I(v)$ (usually)
- does have to make sense on itself:
- Shapley value
- fair distribution of payoff given by rules (EFF, ADD, DP, SYM)
- an interesting concept


## Fairness predicates

"Axioms as predicates..."
A (partial) one-point solution concept $\mathcal{P}$ satisfies

- anonymity if for any permutation $\sigma$ of the player set $N$ we have $\mathcal{P}(v)_{i}=\mathcal{P}(\sigma(v))_{\sigma(v)}$
- additivity if for two cooperative $n$-person games $(N, v)$ and $(N, w)$ the equation $\mathcal{P}(v+w)=\mathcal{P}(v)+\mathcal{P}(w)$ holds.
- $\mathcal{P}(v) \neq \emptyset$ and $\mathcal{P}(w) \neq \emptyset$

A predicate $\mathcal{P}$ on the imputation space of cooperative $n$-person games

- split if for all $(N, v)$ we have $\mathcal{P}\left(v_{0}\right)+s(v)=\mathcal{P}(v)$
- $s(v)_{i}=v(i)$
"We are interested if solution concepts satisfy predicates..."


## Fairness based on desirability

"If you work hard, you should get more."
4 desirability predicates:


## Desirability of players $F_{\succeq}(v)$

"If you work hard, you should get more."
Definition
Player desirability relation $i \succeq j$ denotes that player $i$ is more desirable than $j$, i.e.

$$
v(A \cup\{i\}) \geq v(A \cup\{j\}) \text { for } A \subseteq N \backslash i, j
$$

Definition
Player desirability-fair imputation $x \in I(v)$ is such that

$$
i \succeq j \Longrightarrow x_{i} \geq x_{j}
$$

The set of all such $x$ is denoted by $F_{\succeq}(v)$.

## $F_{\succeq}(v)$ and solution concepts

"If only I had time, I would convince you..."
Theorem
For a game ( $N, v$ ), following hold.

1. $\operatorname{Ker}(v) \subseteq F_{\succeq}(v)$
2. $n(v) \in F_{\succeq}(v)$
3. $(N, v)$ is quasi-balanced $\Longrightarrow \tau$-value $\tau(v) \in F_{\succeq}(v)$,
4. $(N, v)$ super-additive $\Longrightarrow$ Shapley value $\phi(v) \in F_{\succeq}(v)$,
5. If $C(v) \neq \emptyset \Longrightarrow C(v) \cap F_{\succeq}(v) \neq \emptyset$,
6. If $C(v) \neq \emptyset \Longrightarrow \emptyset \neq C_{e}(v) \subseteq F_{\succeq}(v)$.

Open questions:

- What about other solution concepts? (Bargaining set, Prekernel, ...)
- What are full characterisations of 3.,4.


## $F_{\succeq}(v)$ and Core

"... at least something." If $C(v) \neq \emptyset \Longrightarrow C(v) \cap F_{\succeq}(v) \neq \emptyset$
Idea:

## $F_{\succeq}(v)$ and Core

"... at least something." If $C(v) \neq \emptyset \Longrightarrow C(v) \cap F_{\succeq}(v) \neq \emptyset$
Idea:

- $x \in C(v)$


## $F_{\succeq}(v)$ and Core

"... at least something." If $C(v) \neq \emptyset \Longrightarrow C(v) \cap F_{\succeq}(v) \neq \emptyset$
Idea:

- $x \in C(v)$

1. if $i \succeq j$ and $x_{i}<x_{j}$

- switch: $y_{j}=x_{i}$ and $y_{i}=x_{j}$


## $F_{\succeq}(v)$ and Core

"... at least something." If $C(v) \neq \emptyset \Longrightarrow C(v) \cap F_{\succeq}(v) \neq \emptyset$
Idea:

- $x \in C(v)$

1. if $i \succeq j$ and $x_{i}<x_{j}$

- switch: $y_{j}=x_{i}$ and $y_{i}=x_{j}$

2. if $\Sigma=\left\{i_{1}, \ldots, i_{k}\right\}$ substitutes (i.e. $i \succeq j$ and $j \succeq i$ )

## $F_{\succeq}(v)$ and Core

"... at least something." If $C(v) \neq \emptyset \Longrightarrow C(v) \cap F_{\succeq}(v) \neq \emptyset$
Idea:

- $x \in C(v)$

1. if $i \succeq j$ and $x_{i}<x_{j}$

- switch: $y_{j}=x_{i}$ and $y_{i}=x_{j}$

2. if $\Sigma=\left\{i_{1}, \ldots, i_{k}\right\}$ substitutes (i.e. $i \succeq j$ and $j \succeq i$ )

- redistribute: $i \in \Sigma \Longrightarrow y_{i}=\frac{x(\Sigma)}{|\Sigma|}$


## $F_{\succeq}(v)$ and Core

"... at least something." If $C(v) \neq \emptyset \Longrightarrow C(v) \cap F_{\succeq}(v) \neq \emptyset$
Idea:

- $x \in C(v)$

1. if $i \succeq j$ and $x_{i}<x_{j}$

- switch: $y_{j}=x_{i}$ and $y_{i}=x_{j}$

2. if $\Sigma=\left\{i_{1}, \ldots, i_{k}\right\}$ substitutes (i.e. $i \succeq j$ and $j \succeq i$ )

- redistribute: $i \in \Sigma \Longrightarrow y_{i}=\frac{x(\Sigma)}{|\Sigma|}$
- $y \in C(v)$


## $F_{\succeq}(v)$ and Core

1. If $i \succeq j$ and $x_{i}<x_{j}$, switch: $y_{j}=x_{i}$ and $y_{i}=x_{j}$

$$
\begin{aligned}
& y_{i}:=x_{j} \\
& y_{j}:=x_{i} \\
& y_{k}:=x_{k} \text { for } k \in N \backslash\{i, j\}
\end{aligned}
$$

Proof.

## $F_{\succeq}(v)$ and Core

1. If $i \succeq j$ and $x_{i}<x_{j}$, switch: $y_{j}=x_{i}$ and $y_{i}=x_{j}$

$$
\begin{aligned}
& y_{i}:=x_{j} \\
& y_{j}:=x_{i} \\
& y_{k}:=x_{k} \text { for } k \in N \backslash\{i, j\}
\end{aligned}
$$

Proof.

1. $x \in I(v) \Longrightarrow y \in I(v)$
2. $x(S) \geq v(S) \Longrightarrow y(S) \geq v(S)$

## $F_{\succeq}(v)$ and Core

1. If $i \succeq j$ and $x_{i}<x_{j}$, switch: $y_{j}=x_{i}$ and $y_{i}=x_{j}$
$y_{i}:=x_{j}$
$y_{j}:=x_{i}$
$y_{k}:=x_{k}$ for $k \in N \backslash\{i, j\}$
Proof.
2. $x \in I(v) \Longrightarrow y \in I(v)$
1.1 (efficiency) $y(N)=v(N)$
1.2 (individual rationality) $y_{k} \geq v(k)$ for $k \in N$
3. $x(S) \geq v(S) \Longrightarrow y(S) \geq v(S)$

## $F_{\succeq}(v)$ and Core

1. If $i \succeq j$ and $x_{i}<x_{j}$, switch: $y_{j}=x_{i}$ and $y_{i}=x_{j}$
$y_{i}:=x_{j}$
$y_{j}:=x_{i}$
$y_{k}:=x_{k}$ for $k \in N \backslash\{i, j\}$
Proof.
2. $x \in I(v) \Longrightarrow y \in I(v)$
1.1 (efficiency) $y(N)=v(N)$

- $y(N)=\sum_{i \in N} y_{i}=$
- $=y_{1}+\cdots+y_{i-1}+y_{i}+y_{i+1}+\ldots, y_{j-1}+y_{j}+y_{j+1}+\cdots+y_{n}=$
1.2 (individual rationality) $y_{k} \geq v(k)$ for $k \in N$

2. $x(S) \geq v(S) \Longrightarrow y(S) \geq v(S)$

## $F_{\succeq}(v)$ and Core

1. If $i \succeq j$ and $x_{i}<x_{j}$, switch: $y_{j}=x_{i}$ and $y_{i}=x_{j}$
$y_{i}:=x_{j}$
$y_{j}:=x_{i}$
$y_{k}:=x_{k}$ for $k \in N \backslash\{i, j\}$
Proof.
2. $x \in I(v) \Longrightarrow y \in I(v)$
1.1 (efficiency) $y(N)=v(N)$

- $y(N)=\sum_{i \in N} y_{i}=$
- $=y_{1}+\cdots+y_{i-1}+y_{i}+y_{i+1}+\ldots, y_{j-1}+y_{j}+y_{j+1}+\cdots+y_{n}=$
- $x_{1}+\cdots+x_{i-1}+x_{j}+x_{i+1}+\cdots+x_{j-1}+x_{i}+x_{j+1}+\cdots+y_{n}=$
- $=\sum_{i \in N} x_{i}=v(N)$
1.2 (individual rationality) $y_{k} \geq v(k)$ for $k \in N$

2. $x(S) \geq v(S) \Longrightarrow y(S) \geq v(S)$

## $F_{\succeq}(v)$ and Core

1. If $i \succeq j$ and $x_{i}<x_{j}$, switch: $y_{j}=x_{i}$ and $y_{i}=x_{j}$
$y_{i}:=x_{j}$
$y_{j}:=x_{i}$
$y_{k}:=x_{k}$ for $k \in N \backslash\{i, j\}$
Proof.
2. $x \in I(v) \Longrightarrow y \in I(v)$
1.1 (efficiency) $y(N)=v(N)$

- $y(N)=\sum_{i \in N} y_{i}=$
- $=y_{1}+\cdots+y_{i-1}+y_{i}+y_{i+1}+\ldots, y_{j-1}+y_{j}+y_{j+1}+\cdots+y_{n}=$
- $x_{1}+\cdots+x_{i-1}+x_{j}+x_{i+1}+\cdots+x_{j-1}+x_{i}+x_{j+1}+\cdots+y_{n}=$
- $=\sum_{i \in N} x_{i}=v(N)$
1.2 (individual rationality) $y_{k} \geq v(k)$ for $k \in N$
- $y_{j} \geq v(j): y_{j}=x_{i} \geq v(i) \geq v(j)$

2. $x(S) \geq v(S) \Longrightarrow y(S) \geq v(S)$

## $F_{\succeq}(v)$ and Core

1. If $i \succeq j$ and $x_{i}<x_{j}$, switch: $y_{j}=x_{i}$ and $y_{i}=x_{j}$
$y_{i}:=x_{j}$
$y_{j}:=x_{i}$
$y_{k}:=x_{k}$ for $k \in N \backslash\{i, j\}$
Proof.
2. $x \in I(v) \Longrightarrow y \in I(v)$
1.1 (efficiency) $y(N)=v(N)$

- $y(N)=\sum_{i \in N} y_{i}=$
- $=y_{1}+\cdots+y_{i-1}+y_{i}+y_{i+1}+\ldots, y_{j-1}+y_{j}+y_{j+1}+\cdots+y_{n}=$
- $x_{1}+\cdots+x_{i-1}+x_{j}+x_{i+1}+\cdots+x_{j-1}+x_{i}+x_{j+1}+\cdots+y_{n}=$
- $=\sum_{i \in N} x_{i}=v(N)$
1.2 (individual rationality) $y_{k} \geq v(k)$ for $k \in N$
- $y_{j} \geq v(j): y_{j}=x_{i} \geq v(i) \geq v(j)$
- $y_{i} \geq v(i): y_{i}=x_{j}>x_{i} \geq v(i)$

2. $x(S) \geq v(S) \Longrightarrow y(S) \geq v(S)$

## $F_{\succeq}(v)$ and Core

1. If $i \succeq j$ and $x_{i}<x_{j}$, switch: $y_{j}=x_{i}$ and $y_{i}=x_{j}$
$y_{i}:=x_{j}$
$y_{j}:=x_{i}$
$y_{k}:=x_{k}$ for $k \in N \backslash\{i, j\}$
Proof.
2. $x \in I(v) \Longrightarrow y \in I(v)$
1.1 (efficiency) $y(N)=v(N)$

- $y(N)=\sum_{i \in N} y_{i}=$
- $=y_{1}+\cdots+y_{i-1}+y_{i}+y_{i+1}+\ldots, y_{j-1}+y_{j}+y_{j+1}+\cdots+y_{n}=$
- $x_{1}+\cdots+x_{i-1}+x_{j}+x_{i+1}+\cdots+x_{j-1}+x_{i}+x_{j+1}+\cdots+y_{n}=$
- $=\sum_{i \in N} x_{i}=v(N)$
1.2 (individual rationality) $y_{k} \geq v(k)$ for $k \in N$
- $y_{j} \geq v(j): y_{j}=x_{i} \geq v(i) \geq v(j)$
- $y_{i} \geq v(i): y_{i}=x_{j}>x_{i} \geq v(i)$
- $y_{k} \geq v(k): y_{k}=x_{k} \geq v(k)$

2. $x(S) \geq v(S) \Longrightarrow y(S) \geq v(S)$

## $F_{\succeq}(v)$ and Core

1. If $i \succeq j$ and $x_{i}<x_{j}$, switch: $y_{j}=x_{i}$ and $y_{i}=x_{j}$
$y_{i}:=x_{j}$
$y_{j}:=x_{i}$
$y_{k}:=x_{k}$ for $k \in N \backslash\{i, j\}$
Proof.

$$
\begin{aligned}
& \text { 1. } x \in I(v) \Longrightarrow y \in I(v) \text { (PROVED) } \\
& \text { 2. } x(S) \geq v(S) \Longrightarrow y(S) \geq v(S)
\end{aligned}
$$

## $F_{\succeq}(v)$ and Core

1. If $i \succeq j$ and $x_{i}<x_{j}$, switch: $y_{j}=x_{i}$ and $y_{i}=x_{j}$
$y_{i}:=x_{j}$
$y_{j}:=x_{i}$
$y_{k}:=x_{k}$ for $k \in N \backslash\{i, j\}$
Proof.

$$
\begin{aligned}
& \text { 1. } x \in I(v) \Longrightarrow y \in I(v) \text { (PROVED) } \\
& \text { 2. } x(S) \geq v(S) \Longrightarrow y(S) \geq v(S) \\
& 2.1 i, j \in S \text { and } i, j \notin S \\
& 2.2 i \in S \text { and } j \notin S
\end{aligned}
$$

$2.3 i \notin S$ and $j \in S$

## $F_{\succeq}(v)$ and Core

1. If $i \succeq j$ and $x_{i}<x_{j}$, switch: $y_{j}=x_{i}$ and $y_{i}=x_{j}$
$y_{i}:=x_{j}$
$y_{j}:=x_{i}$
$y_{k}:=x_{k}$ for $k \in N \backslash\{i, j\}$
Proof.

$$
\begin{gathered}
\text { 1. } x \in I(v) \Longrightarrow y \in I(v) \text { (PROVED) } \\
\text { 2. } x(S) \geq v(S) \Longrightarrow y(S) \geq v(S) \\
2.1 \quad i, j \in S \text { and } i, j \notin S \\
\bullet y(S)=x(S) \geq 0 \\
2.2 \quad i \in S \text { and } j \notin S
\end{gathered}
$$

$2.3 i \notin S$ and $j \in S$

## $F_{\succeq}(v)$ and Core

1. If $i \succeq j$ and $x_{i}<x_{j}$, switch: $y_{j}=x_{i}$ and $y_{i}=x_{j}$
$y_{i}:=x_{j}$
$y_{j}:=x_{i}$
$y_{k}:=x_{k}$ for $k \in N \backslash\{i, j\}$
Proof.

$$
\begin{aligned}
& \text { 1. } x \in I(v) \Longrightarrow y \in I(v) \text { (PROVED) } \\
& \text { 2. } x(S) \geq v(S) \Longrightarrow y(S) \geq v(S) \\
& 2.1 \quad i, j \in S \text { and } i, j \notin S \\
& \quad \bullet y(S)=x(S) \geq 0 \\
& 2.2 \quad i \in S \text { and } j \notin S \\
& \quad \bullet v(S) \leq x(S)=x_{i}+x(S \backslash i)<x_{j}+x(S \backslash i)=y(S) \\
& 2.3 \quad i \notin S \text { and } j \in S
\end{aligned}
$$

## $F_{\succeq}(v)$ and Core

1. If $i \succeq j$ and $x_{i}<x_{j}$, switch: $y_{j}=x_{i}$ and $y_{i}=x_{j}$
$y_{i}:=x_{j}$
$y_{j}:=x_{i}$
$y_{k}:=x_{k}$ for $k \in N \backslash\{i, j\}$
Proof.

$$
\begin{aligned}
& \text { 1. } x \in I(v) \Longrightarrow y \in I(v) \text { (PROVED) } \\
& \text { 2. } x(S) \geq v(S) \Longrightarrow y(S) \geq v(S) \\
& 2.1 \quad i, j \in S \text { and } i, j \notin S \\
& \bullet y(S)=x(S) \geq 0 \\
& 2.2 \quad i \in S \text { and } j \notin S \\
& \bullet v(S) \leq x(S)=x_{i}+x(S \backslash i)<x_{j}+x(S \backslash i)=y(S) \\
& 2.3 \\
& i \notin S \text { and } j \in S \\
& \bullet v(S)=v((S \backslash j) \cup j) \leq v((S \backslash j) \cup i) \leq x((S \backslash j) \cup i)=y(S)
\end{aligned}
$$

## $F_{\succeq}(v)$ and Core

"... at least something." If $C(v) \neq \emptyset \Longrightarrow C(v) \cap F_{\succeq}(v) \neq \emptyset$
Idea:

- $x \in C(v)$

1. if $i \succeq j$ and $x_{i}<x_{j}$ (PROVED)

- switch: $y_{j}=x_{i}$ and $y_{i}=x_{j}$

2. if $\Sigma=\left\{i_{1}, \ldots, i_{k}\right\}$ substitutes (i.e. $i \succeq j$ and $j \succeq i$ )

- redistribute: $i \in \Sigma \Longrightarrow y_{i}=\frac{x(\Sigma)}{|\Sigma|}$
- $y \in C(v)$


## $F_{\succeq}(v)$ and Core

2. $\Sigma=\left\{i_{1}, \ldots, i_{k}\right\}$ substitutes (i.e. $i \succeq j$ and $j \succeq i$ ) redistribute: $i \in \Sigma \Longrightarrow y_{i}=\frac{x(\Sigma)}{|\Sigma|}$
Proof. Idea: $i \succeq j$ and $j \succeq i \Longrightarrow v(S \cup i)=v(S \cup j)$ for $S \backslash\{i, j\}$

## $F_{\succeq}(v)$ and Core

2. $\Sigma=\left\{i_{1}, \ldots, i_{k}\right\}$ substitutes (i.e. $i \succeq j$ and $j \succeq i$ ) redistribute: $i \in \Sigma \Longrightarrow y_{i}=\frac{x(\Sigma)}{|\Sigma|}$
Proof. Idea: $i \succeq j$ and $j \succeq i \Longrightarrow v(S \cup i)=v(S \cup j)$ for $S \backslash\{i, j\}$ 1. $x \in I(v) \Longrightarrow y \in I(v)$
3. $x(S) \geq v(S) \Longrightarrow y(S) \geq v(S)$

## $F_{\succeq}(v)$ and Core

2. $\Sigma=\left\{i_{1}, \ldots, i_{k}\right\}$ substitutes (i.e. $i \succeq j$ and $j \succeq i$ ) redistribute: $i \in \Sigma \Longrightarrow y_{i}=\frac{x(\Sigma)}{|\Sigma|}$
Proof.
Idea: $i \succeq j$ and $j \succeq i \Longrightarrow v(S \cup i)=v(S \cup j)$ for $S \backslash\{i, j\}$
3. $x \in I(v) \Longrightarrow y \in I(v)$
1.1 (efficiency) $y(N)=v(N)$
4. $x(S) \geq v(S) \Longrightarrow y(S) \geq v(S)$

## $F_{\succeq}(v)$ and Core

2. $\Sigma=\left\{i_{1}, \ldots, i_{k}\right\}$ substitutes (i.e. $i \succeq j$ and $j \succeq i$ ) redistribute: $i \in \Sigma \Longrightarrow y_{i}=\frac{x(\Sigma)}{|\Sigma|}$
Proof.
Idea: $i \succeq j$ and $j \succeq i \Longrightarrow v(S \cup i)=v(S \cup j)$ for $S \backslash\{i, j\}$
3. $x \in I(v) \Longrightarrow y \in I(v)$
1.1 (efficiency) $y(N)=v(N)$
1.2 (individual rationality) $y_{k} \geq v(k)$ for $k \in N$
4. $x(S) \geq v(S) \Longrightarrow y(S) \geq v(S)$

## $F_{\succeq}(v)$ and Core

2. $\Sigma=\left\{i_{1}, \ldots, i_{k}\right\}$ substitutes (i.e. $i \succeq j$ and $j \succeq i$ ) redistribute: $i \in \Sigma \Longrightarrow y_{i}=\frac{x(\Sigma)}{|\Sigma|}$
Proof.
Idea: $i \succeq j$ and $j \succeq i \Longrightarrow v(S \cup i)=v(S \cup j)$ for $S \backslash\{i, j\}$
3. $x \in I(v) \Longrightarrow y \in I(v)$
1.1 (efficiency) $y(N)=v(N)$

- $y(N)=\sum_{i \in \Sigma} \frac{x(\Sigma)}{|\Sigma|}+\sum_{i \in N \mid \Sigma} x_{i}=$
1.2 (individual rationality) $y_{k} \geq v(k)$ for $k \in N$

2. $x(S) \geq v(S) \Longrightarrow y(S) \geq v(S)$

## $F_{\succeq}(v)$ and Core

2. $\Sigma=\left\{i_{1}, \ldots, i_{k}\right\}$ substitutes (i.e. $i \succeq j$ and $j \succeq i$ ) redistribute: $i \in \Sigma \Longrightarrow y_{i}=\frac{x(\Sigma)}{|\Sigma|}$
Proof.
Idea: $i \succeq j$ and $j \succeq i \Longrightarrow v(S \cup i)=v(S \cup j)$ for $S \backslash\{i, j\}$
3. $x \in I(v) \Longrightarrow y \in I(v)$
1.1 (efficiency) $y(N)=v(N)$

- $y(N)=\sum_{i \in \Sigma} \frac{x(\Sigma)}{|\Sigma|}+\sum_{i \in N \backslash \Sigma} x_{i}=$
- $=x(\Sigma)+x(N \backslash \Sigma)=x(N)=v(N)$
1.2 (individual rationality) $y_{k} \geq v(k)$ for $k \in N$

2. $x(S) \geq v(S) \Longrightarrow y(S) \geq v(S)$

## $F_{\succeq}(v)$ and Core

2. $\Sigma=\left\{i_{1}, \ldots, i_{k}\right\}$ substitutes (i.e. $i \succeq j$ and $j \succeq i$ ) redistribute: $i \in \Sigma \Longrightarrow y_{i}=\frac{x(\Sigma)}{|\Sigma|}$
Proof.
Idea: $i \succeq j$ and $j \succeq i \Longrightarrow v(S \cup i)=v(S \cup j)$ for $S \backslash\{i, j\}$
3. $x \in I(v) \Longrightarrow y \in I(v)$
1.1 (efficiency) $y(N)=v(N)$

- $y(N)=\sum_{i \in \Sigma} \frac{x(\Sigma)}{|\Sigma|}+\sum_{i \in N \backslash \Sigma} x_{i}=$
- $=x(\Sigma)+x(N \backslash \Sigma)=x(N)=v(N)$
1.2 (individual rationality) $y_{k} \geq v(k)$ for $k \in N$
- $i \in \Sigma: v(i)=\min _{j \in \Sigma} v(j) \leq \min _{j \in \Sigma} x_{j} \leq \frac{x(\Sigma)}{|\Sigma|}=y_{i}$

2. $x(S) \geq v(S) \Longrightarrow y(S) \geq v(S)$

## $F_{\succeq}(v)$ and Core

2. $\Sigma=\left\{i_{1}, \ldots, i_{k}\right\}$ substitutes (i.e. $i \succeq j$ and $j \succeq i$ ) redistribute: $i \in \Sigma \Longrightarrow y_{i}=\frac{x(\Sigma)}{|\Sigma|}$
Proof.
Idea: $i \succeq j$ and $j \succeq i \Longrightarrow v(S \cup i)=v(S \cup j)$ for $S \backslash\{i, j\}$
3. $x \in I(v) \Longrightarrow y \in I(v)$
1.1 (efficiency) $y(N)=v(N)$

- $y(N)=\sum_{i \in \Sigma} \frac{x(\Sigma)}{|\Sigma|}+\sum_{i \in N \mid \Sigma} x_{i}=$
- $=x(\Sigma)+x(N \backslash \Sigma)=x(N)=v(N)$
1.2 (individual rationality) $y_{k} \geq v(k)$ for $k \in N$
- $i \in \Sigma: v(i)=\min _{j \in \Sigma} v(j) \leq \min _{j \in \Sigma} x_{j} \leq \frac{x(\Sigma)}{|\Sigma|}=y_{i}$
- $\quad i \notin \sum: v(i) \leq x_{i}=y_{i}$

2. $x(S) \geq v(S) \Longrightarrow y(S) \geq v(S)$

## $F_{\succeq}(v)$ and Core

2. $\Sigma=\left\{i_{1}, \ldots, i_{k}\right\}$ substitutes (i.e. $i \succeq j$ and $j \succeq i$ ) redistribute: $i \in \Sigma \Longrightarrow y_{i}=\frac{x(\Sigma)}{|\Sigma|}$
Proof.
Idea: $i \succeq j$ and $j \succeq i \Longrightarrow v(S \cup i)=v(S \cup j)$ for $S \backslash\{i, j\}$
3. $x \in I(v) \Longrightarrow y \in I(v)$ (PROVED)
4. $x(S) \geq v(S) \Longrightarrow y(S) \geq v(S)$

## $F_{\succeq}(v)$ and Core

2. $\Sigma=\left\{i_{1}, \ldots, i_{k}\right\}$ substitutes (i.e. $i \succeq j$ and $j \succeq i$ ) redistribute: $i \in \Sigma \Longrightarrow y_{i}=\frac{x(\Sigma)}{|\Sigma|}$
Proof.
Idea: $i \succeq j$ and $j \succeq i \Longrightarrow v(S \cup i)=v(S \cup j)$ for $S \backslash\{i, j\}$
3. $x \in I(v) \Longrightarrow y \in I(v)$ (PROVED)
4. $x(S) \geq v(S) \Longrightarrow y(S) \geq v(S)$

- $S=\Sigma_{S}+\bar{\Sigma}_{S}$



## $F_{\succeq}(v)$ and Core

2. $\Sigma=\left\{i_{1}, \ldots, i_{k}\right\}$ substitutes (i.e. $i \succeq j$ and $j \succeq i$ ) redistribute: $i \in \Sigma \Longrightarrow y_{i}=\frac{x(\Sigma)}{|\Sigma|}$
Proof.
Idea: $i \succeq j$ and $j \succeq i \Longrightarrow v(S \cup i)=v(S \cup j)$ for $S \backslash\{i, j\}$
3. $x \in I(v) \Longrightarrow y \in I(v)$ (PROVED)
4. $x(S) \geq v(S) \Longrightarrow y(S) \geq v(S)$

- $S=\Sigma_{S}+\bar{\Sigma}_{S}$
- $\Sigma_{S}=S \cap \Sigma$



## $F_{\succeq}(v)$ and Core

2. $\Sigma=\left\{i_{1}, \ldots, i_{k}\right\}$ substitutes (i.e. $i \succeq j$ and $j \succeq i$ ) redistribute: $i \in \Sigma \Longrightarrow y_{i}=\frac{x(\Sigma)}{|\Sigma|}$
Proof.
Idea: $i \succeq j$ and $j \succeq i \Longrightarrow v(S \cup i)=v(S \cup j)$ for $S \backslash\{i, j\}$
3. $x \in I(v) \Longrightarrow y \in I(v)$ (PROVED)
4. $x(S) \geq v(S) \Longrightarrow y(S) \geq v(S)$

- $S=\Sigma_{S}+\bar{\Sigma}_{S}$
- $\Sigma_{S}=S \cap \Sigma$
- $\bar{\Sigma}_{S}=S-\Sigma_{S}$



## $F_{\succeq}(v)$ and Core

$$
x(S) \geq v(S) \Longrightarrow y(S) \geq v(S)
$$

## $F_{\succeq}(v)$ and Core

$$
\begin{gathered}
x(S) \geq v(S) \Longrightarrow y(S) \geq v(S) \\
\text { 1. } y(S)=y\left(\Sigma_{S}\right)+y\left(\bar{\Sigma}_{S}\right)
\end{gathered}
$$

## $F_{\succeq}(v)$ and Core

$$
\begin{aligned}
& x(S) \geq v(S) \Longrightarrow y(S) \geq v(S) \\
& \text { 1. } y(S)=y\left(\Sigma_{S}\right)+y\left(\bar{\Sigma}_{S}\right) \\
& \text { 2. } y\left(\Sigma_{S}\right)+y\left(\bar{\Sigma}_{S}\right)=y\left(\Sigma_{S}\right)+x\left(\bar{\Sigma}_{S}\right)
\end{aligned}
$$

## $F_{\succeq}(v)$ and Core

$$
\begin{aligned}
& x(S) \geq v(S) \Longrightarrow y(S) \geq v(S) \\
& \text { 1. } y(S)=y\left(\Sigma_{S}\right)+y\left(\bar{\Sigma}_{S}\right) \\
& \text { 2. } y\left(\Sigma_{S}\right)+y\left(\bar{\Sigma}_{S}\right)=y\left(\Sigma_{S}\right)+x\left(\bar{\Sigma}_{S}\right)
\end{aligned}
$$

- no change outside $\Sigma$


## $F_{\succeq}(v)$ and Core

$$
\begin{aligned}
& x(S) \geq v(S) \Longrightarrow y(S) \geq v(S) \\
& \text { 1. } y(S)=y\left(\Sigma_{S}\right)+y\left(\bar{\Sigma}_{S}\right) \\
& \text { 2. } y\left(\Sigma_{S}\right)+y\left(\bar{\Sigma}_{S}\right)=y\left(\Sigma_{S}\right)+x\left(\bar{\Sigma}_{S}\right)
\end{aligned}
$$

- no change outside $\Sigma$


## $F_{\succeq}(v)$ and Core

$$
\begin{aligned}
& x(S) \geq v(S) \Longrightarrow y(S) \geq v(S) \\
& \text { 1. } y(S)=y\left(\Sigma_{S}\right)+y\left(\bar{\Sigma}_{S}\right) \\
& \text { 2. } y\left(\Sigma_{S}\right)+y\left(\bar{\Sigma}_{S}\right)=y\left(\Sigma_{S}\right)+x\left(\bar{\Sigma}_{S}\right)
\end{aligned}
$$

- no change outside $\Sigma$


## $F_{\succeq}(v)$ and Core

$$
\begin{aligned}
& x(S) \geq v(S) \Longrightarrow y(S) \geq v(S) \\
& \text { 1. } y(S)=y\left(\Sigma_{S}\right)+y\left(\bar{\Sigma}_{S}\right) \\
& \text { 2. } y\left(\Sigma_{S}\right)+y\left(\bar{\Sigma}_{S}\right)=y\left(\Sigma_{S}\right)+x\left(\bar{\Sigma}_{S}\right)
\end{aligned}
$$

- no change outside $\Sigma$


## $F_{\succeq}(v)$ and Core

$$
\begin{aligned}
& x(S) \geq v(S) \Longrightarrow y(S) \geq v(S) \\
& \text { 1. } y(S)=y\left(\Sigma_{S}\right)+y\left(\bar{\Sigma}_{S}\right) \\
& \text { 2. } y\left(\Sigma_{S}\right)+y\left(\bar{\Sigma}_{S}\right)=y\left(\Sigma_{S}\right)+x\left(\bar{\Sigma}_{S}\right)
\end{aligned}
$$

- no change outside $\Sigma$


## $F_{\succeq}(v)$ and Core

$$
\begin{aligned}
& x(S) \geq v(S) \Longrightarrow y(S) \geq v(S) \\
& \text { 1. } y(S)=y\left(\Sigma_{S}\right)+y\left(\bar{\Sigma}_{S}\right) \\
& \text { 2. } y\left(\Sigma_{S}\right)+y\left(\bar{\Sigma}_{S}\right)=y\left(\Sigma_{S}\right)+x\left(\bar{\Sigma}_{S}\right)
\end{aligned}
$$

- no change outside $\Sigma$


## $F_{\succeq}(v)$ and Core

$$
\begin{aligned}
& x(S) \geq v(S) \Longrightarrow y(S) \geq v(S) \\
& \text { 1. } y(S)=y\left(\Sigma_{S}\right)+y\left(\bar{\Sigma}_{S}\right) \\
& \text { 2. } y\left(\Sigma_{S}\right)+y\left(\bar{\Sigma}_{S}\right)=y\left(\Sigma_{S}\right)+x\left(\bar{\Sigma}_{S}\right)
\end{aligned}
$$

- no change outside $\Sigma$


## $F_{\succeq}(v)$ and Core

$$
\begin{aligned}
& x(S) \geq v(S) \Longrightarrow y(S) \geq v(S) \\
& \text { 1. } y(S)=y\left(\Sigma_{S}\right)+y\left(\bar{\Sigma}_{S}\right) \\
& \text { 2. } y\left(\Sigma_{S}\right)+y\left(\bar{\Sigma}_{S}\right)=y\left(\Sigma_{S}\right)+x\left(\bar{\Sigma}_{S}\right)
\end{aligned}
$$

- no change outside $\Sigma$

3. $y\left(\Sigma_{S}\right)+x\left(\bar{\Sigma}_{S}\right)=y\left(\Sigma_{a}\right)+x\left(\bar{\Sigma}_{S}\right)$

- $\Sigma_{i}$ for $i \in N$
- $i$ smallest players from $\Sigma$ ordered by $x$ :
- $\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{k}\right\}=\left\{e_{1}, \ldots, e_{k}\right\}$
- $i \leq j \Longrightarrow x\left(e_{i}\right) \leq x\left(e_{j}\right)$
- $\Sigma_{i}=\left\{e_{1}, \ldots, e_{i}\right\}$
- $a=\left|\Sigma_{S}\right|$
- $y\left(\Sigma_{S}\right)=y\left(\Sigma_{a}\right)$
- $\forall i, j \in \Sigma: y_{i}=y_{j}$


## $F_{\succeq}(v)$ and Core

$$
\begin{gathered}
x(S) \geq v(S) \Longrightarrow y(S) \geq v(S) \\
\text { 1. } y(S)=y\left(\Sigma_{S}\right)+y\left(\bar{\Sigma}_{S}\right) \\
\text { 2. } y\left(\Sigma_{S}\right)+y\left(\bar{\Sigma}_{S}\right)=y\left(\Sigma_{S}\right)+x\left(\bar{\Sigma}_{S}\right) \\
\bullet \text { no change outside } \Sigma \\
\text { 3. } y\left(\Sigma_{S}\right)+x\left(\bar{\Sigma}_{S}\right)=y\left(\Sigma_{a}\right)+x\left(\bar{\Sigma}_{S}\right) \\
\bullet y\left(\Sigma_{S}\right)=y\left(\Sigma_{a}\right) \\
\bullet \forall i, j \in \Sigma: y_{i}=y_{j}
\end{gathered}
$$

## $F_{\succeq}(v)$ and Core

$$
\begin{aligned}
& x(S) \geq v(S) \Longrightarrow y(S) \geq v(S) \\
& \text { 1. } y(S)=y\left(\Sigma_{S}\right)+y\left(\bar{\Sigma}_{S}\right) \\
& \text { 2. } y\left(\Sigma_{S}\right)+y\left(\bar{\Sigma}_{S}\right)=y\left(\Sigma_{S}\right)+x\left(\bar{\Sigma}_{S}\right)
\end{aligned}
$$

- no change outside $\Sigma$

3. $y\left(\Sigma_{S}\right)+x\left(\bar{\Sigma}_{S}\right)=y\left(\Sigma_{a}\right)+x\left(\bar{\Sigma}_{S}\right)$

- $y\left(\Sigma_{S}\right)=y\left(\Sigma_{a}\right)$
- $\forall i, j \in \Sigma: y_{i}=y_{j}$

4. $y\left(\Sigma_{a}\right)+x\left(\bar{\Sigma}_{S}\right) \geq x\left(\Sigma_{a}\right)+x\left(\bar{\Sigma}_{S}\right)$

- $y\left(\Sigma_{a}\right) \geq x\left(\Sigma_{a}\right)$


## $F_{\succeq}(v)$ and Core

$$
\begin{aligned}
& x(S) \geq v(S) \Longrightarrow y(S) \geq v(S) \\
& \text { 1. } y(S)=y\left(\Sigma_{S}\right)+y\left(\bar{\Sigma}_{S}\right) \\
& \text { 2. } y\left(\Sigma_{S}\right)+y\left(\bar{\Sigma}_{S}\right)=y\left(\Sigma_{S}\right)+x\left(\bar{\Sigma}_{S}\right)
\end{aligned}
$$

- no change outside $\Sigma$

3. $y\left(\Sigma_{S}\right)+x\left(\bar{\Sigma}_{S}\right)=y\left(\Sigma_{a}\right)+x\left(\bar{\Sigma}_{S}\right)$

- $y\left(\Sigma_{S}\right)=y\left(\Sigma_{a}\right)$
- $\forall i, j \in \Sigma: y_{i}=y_{j}$

4. $y\left(\Sigma_{a}\right)+x\left(\bar{\Sigma}_{S}\right) \geq x\left(\Sigma_{a}\right)+x\left(\bar{\Sigma}_{S}\right)$

- $y\left(\Sigma_{a}\right) \geq x\left(\Sigma_{a}\right)$
- a times average of $\Sigma$ is larger than first a elements of $\Sigma$
- with respect to $x$


## $F_{\succeq}(v)$ and Core

$$
\begin{aligned}
& x(S) \geq v(S) \Longrightarrow y(S) \geq v(S) \\
& \text { 1. } y(S)=y\left(\Sigma_{S}\right)+y\left(\bar{\Sigma}_{S}\right) \\
& \text { 2. } y\left(\Sigma_{S}\right)+y\left(\bar{\Sigma}_{S}\right)=y\left(\Sigma_{S}\right)+x\left(\bar{\Sigma}_{S}\right)
\end{aligned}
$$

- no change outside $\Sigma$

3. $y\left(\Sigma_{S}\right)+x\left(\bar{\Sigma}_{S}\right)=y\left(\Sigma_{a}\right)+x\left(\bar{\Sigma}_{S}\right)$

- $y\left(\Sigma_{S}\right)=y\left(\Sigma_{a}\right)$
- $\forall i, j \in \Sigma: y_{i}=y_{j}$

4. $y\left(\Sigma_{a}\right)+x\left(\bar{\Sigma}_{S}\right) \geq x\left(\Sigma_{a}\right)+x\left(\bar{\Sigma}_{S}\right)$

- $y\left(\Sigma_{a}\right) \geq x\left(\Sigma_{a}\right)$
- a times average of $\Sigma$ is larger than first a elements of $\Sigma$
- with respect to $x$


## $F_{\succeq}(v)$ and Core

$$
\begin{aligned}
& x(S) \geq v(S) \Longrightarrow y(S) \geq v(S) \\
& \text { 1. } y(S)=y\left(\Sigma_{S}\right)+y\left(\bar{\Sigma}_{S}\right) \\
& \text { 2. } y\left(\Sigma_{S}\right)+y\left(\bar{\Sigma}_{S}\right)=y\left(\Sigma_{S}\right)+x\left(\bar{\Sigma}_{S}\right)
\end{aligned}
$$

- no change outside $\Sigma$

3. $y\left(\Sigma_{S}\right)+x\left(\bar{\Sigma}_{S}\right)=y\left(\Sigma_{a}\right)+x\left(\bar{\Sigma}_{S}\right)$

- $y\left(\Sigma_{S}\right)=y\left(\Sigma_{a}\right)$
- $\forall i, j \in \Sigma: y_{i}=y_{j}$

4. $y\left(\Sigma_{a}\right)+x\left(\bar{\Sigma}_{S}\right) \geq x\left(\Sigma_{a}\right)+x\left(\bar{\Sigma}_{S}\right)$

- $y\left(\Sigma_{a}\right) \geq x\left(\Sigma_{a}\right)$
- a times average of $\Sigma$ is larger than first a elements of $\Sigma$
- with respect to $x$

5. $x\left(\Sigma_{a}\right)+x\left(\bar{\Sigma}_{S}\right) \geq v\left(\Sigma_{a} \cup \bar{\Sigma}_{S}\right)(x \in C(v))$

## $F_{\succeq}(v)$ and Core

$$
\begin{aligned}
& x(S) \geq v(S) \Longrightarrow y(S) \geq v(S) \\
& \text { 1. } y(S)=y\left(\Sigma_{S}\right)+y\left(\bar{\Sigma}_{S}\right) \\
& \text { 2. } y\left(\Sigma_{S}\right)+y\left(\bar{\Sigma}_{S}\right)=y\left(\Sigma_{S}\right)+x\left(\bar{\Sigma}_{S}\right)
\end{aligned}
$$

- no change outside $\Sigma$

3. $y\left(\Sigma_{S}\right)+x\left(\bar{\Sigma}_{S}\right)=y\left(\Sigma_{a}\right)+x\left(\bar{\Sigma}_{S}\right)$

- $y\left(\Sigma_{S}\right)=y\left(\Sigma_{a}\right)$
- $\forall i, j \in \Sigma: y_{i}=y_{j}$

4. $y\left(\Sigma_{a}\right)+x\left(\bar{\Sigma}_{S}\right) \geq x\left(\Sigma_{a}\right)+x\left(\bar{\Sigma}_{S}\right)$

- $y\left(\Sigma_{a}\right) \geq x\left(\Sigma_{a}\right)$
- a times average of $\Sigma$ is larger than first a elements of $\Sigma$
- with respect to $x$

5. $x\left(\Sigma_{a}\right)+x\left(\bar{\Sigma}_{S}\right) \geq v\left(\Sigma_{a} \cup \bar{\Sigma}_{S}\right)(x \in C(v))$
6. $v\left(\Sigma_{a} \cup \bar{\Sigma}_{S}\right)=v\left(\Sigma_{S} \cup \bar{\Sigma}_{S}\right)=v(S)$

## $F_{\succeq}(v)$ and Core

$$
\begin{aligned}
& x(S) \geq v(S) \Longrightarrow y(S) \geq v(S) \\
& \text { 1. } y(S)=y\left(\Sigma_{S}\right)+y\left(\bar{\Sigma}_{S}\right) \\
& \text { 2. } y\left(\Sigma_{S}\right)+y\left(\bar{\Sigma}_{S}\right)=y\left(\Sigma_{S}\right)+x\left(\bar{\Sigma}_{S}\right)
\end{aligned}
$$

- no change outside $\Sigma$

3. $y\left(\Sigma_{S}\right)+x\left(\bar{\Sigma}_{S}\right)=y\left(\Sigma_{a}\right)+x\left(\bar{\Sigma}_{S}\right)$

- $y\left(\Sigma_{S}\right)=y\left(\Sigma_{a}\right)$
- $\forall i, j \in \Sigma: y_{i}=y_{j}$

4. $y\left(\Sigma_{a}\right)+x\left(\bar{\Sigma}_{S}\right) \geq x\left(\Sigma_{a}\right)+x\left(\bar{\Sigma}_{S}\right)$

- $y\left(\Sigma_{a}\right) \geq x\left(\Sigma_{a}\right)$
- a times average of $\Sigma$ is larger than first a elements of $\Sigma$
- with respect to $x$

5. $x\left(\Sigma_{a}\right)+x\left(\bar{\Sigma}_{S}\right) \geq v\left(\Sigma_{a} \cup \bar{\Sigma}_{S}\right)(x \in C(v))$
6. $v\left(\Sigma_{a} \cup \bar{\Sigma}_{S}\right)=v\left(\Sigma_{S} \cup \bar{\Sigma}_{S}\right)=v(S)$

- $\Sigma$ are substitutes:
- $i \succeq j$ and $j \succeq i \Longrightarrow v(S \cup i)=v(S \cup j)$ for $S \backslash\{i, j\}$


## $F_{\succeq}(v)$ and Core

"... at least something." If $C(v) \neq \emptyset \Longrightarrow C(v) \cap F_{\succeq}(v) \neq \emptyset$
Idea:

- $x \in C(v)$

1. if $i \succeq j$ and $x_{i}<x_{j}$ (PROVED)

- switch: $y_{j}=x_{i}$ and $y_{i}=x_{j}$

2. if $\sum=\left\{i_{1}, \ldots, i_{k}\right\}$ substitutes (i.e. $i \succeq j$ and $j \succeq i$ ) (PROVED)

- redistribute: $i \in \Sigma \Longrightarrow y_{i}=\frac{x(\Sigma)}{|\Sigma|}$
- $y \in C(v)$


## $F_{\succeq}(v)$ and solution concepts

"If only I had time, I would convince you..."

Theorem
For a game ( $N, v$ ), following hold.

1. $\operatorname{Ker}(v) \subseteq F_{\succeq}(v)$
2. $n(v) \in F_{\succeq}(v)$
3. $(N, v)$ is quasi-balanced $\Longrightarrow \tau$-value $\tau(v) \in F_{\succeq}(v)$,
4. $(N, v)$ super-additive $\Longrightarrow$ Shapley value $\phi(v) \in F_{\succeq}(v)$,
5. If $C(v) \neq \emptyset \Longrightarrow C(v) \cap F_{\succeq}(v) \neq \emptyset$,
6. If $C(v) \neq \emptyset \Longrightarrow \emptyset \neq C_{e}(v) \subseteq F_{\succeq}(v)$.

## Weak Desirability of players $F_{\unrhd}(v)$

"I don't know if it holds, but I feel like it does..."
desirability: $i \succeq j \Longrightarrow v(A \cup\{i\}) \geq v(A \cup\{j\})$ for $A \subseteq N \backslash i, j$ \# of conditions: $2^{|N|-2}$

Problem:

## Weak Desirability of players $F_{\unrhd}(v)$

"I don't know if it holds, but I feel like it does..."
desirability: $i \succeq j \Longrightarrow v(A \cup\{i\}) \geq v(A \cup\{j\})$ for $A \subseteq N \backslash i, j$ \# of conditions: $2^{|N|-2}$

Problem:

- infeasible to check for relatively small number of players


## Weak Desirability of players $F_{\unrhd}(v)$

"I don't know if it holds, but I feel like it does..."
desirability: $i \succeq j \Longrightarrow v(A \cup\{i\}) \geq v(A \cup\{j\})$ for $A \subseteq N \backslash i, j$ \# of conditions: $2^{|N|-2}$

Problem:

- infeasible to check for relatively small number of players
- Solution: pick a subset of conditions


## Weak Desirability of players $F_{\unrhd}(v)$

" I don't know if it holds, but I feel like it does..."
desirability: $i \succeq j \Longrightarrow v(A \cup\{i\}) \geq v(A \cup\{j\})$ for $A \subseteq N \backslash i, j$ \# of conditions: $2^{|N|-2}$

Problem:

- infeasible to check for relatively small number of players
- Solution: pick a subset of conditions
- individual payoffs and marginal contributions to $N$


## Weak Desirability of players $F_{\unrhd}(v)$

1. individual payoffs
2. marginal contributions to the grandcoalition $N$

## Weak Desirability of players $F_{\unrhd}(v)$

1. individual payoffs

- $v(i) \geq v(j)$

2. marginal contributions to the grandcoalition $N$

## Weak Desirability of players $F_{\unrhd}(v)$

1. individual payoffs

- $v(i) \geq v(j)$

2. marginal contributions to the grandcoalition $N$

- $v(N)-v(N \backslash i) \geq v(N)-v(N \backslash j)$


## Weak Desirability of players $F_{\unrhd}(v)$

1. individual payoffs

$$
\text { - } v(i) \geq v(j)
$$

2. marginal contributions to the grandcoalition $N$

- $v(N)-v(N \backslash i) \geq v(N)-v(N \backslash j)$


## Definition

Player weak desirability relation $i \unrhd j$ denotes that player $i$ is more desirable (in a weak sense) than $j$, i.e.

$$
v(i) \geq v(j) \text { and } v(N \backslash i) \leq v(N \backslash j)
$$

## Definition

Weak player desirability-fair imputation $x \in I(v)$ is such that

$$
i \unrhd j \Longrightarrow x_{i} \geq x_{j}
$$

The set of such $x$ is denoted by $F_{\unrhd}(v)$.

$$
F_{\unrhd}(v) \subseteq F_{\succeq}(v)
$$

"It takes less to get me started..."

- $i \unrhd j$ is weaker than $i \succeq j$


## $F_{\unrhd}(v) \subseteq F_{\succeq}(v)$

"It takes less to get me started..."

- $i \unrhd j$ is weaker than $i \succeq j$
- therefore, it is activated more often
- $\succeq$ holds for at least as much pairs of players as $\unrhd$


## $F_{\unrhd}(v) \subseteq F_{\succeq}(v)$

"It takes less to get me started..."

- $i \unrhd j$ is weaker than $i \succeq j$
- therefore, it is activated more often
- $\succeq$ holds for at least as much pairs of players as $\unrhd$
- Example:
- $i_{1} \unrhd i_{2}, i_{3} \unrhd i_{4} \Longrightarrow x_{i_{1}} \geq x_{i_{2}}, x_{i_{3}} \geq x_{i_{4}}$
- $i_{3} \succeq i_{4} \Longrightarrow x_{i_{3}} \geq x_{i 4}$


## $F_{\unrhd}(v) \subseteq F_{\succeq}(v)$

"It takes less to get me started..."

- $i \unrhd j$ is weaker than $i \succeq j$
- therefore, it is activated more often
- $\succeq$ holds for at least as much pairs of players as $\unrhd$
- Example:
- $i_{1} \unrhd i_{2}, i_{3} \unrhd i_{4} \Longrightarrow x_{i_{1}} \geq x_{i_{2}}, x_{i_{3}} \geq x_{i_{4}}$
- $i_{3} \succeq i_{4} \Longrightarrow x_{i_{3}} \geq x_{i_{4}}$
- Consequence: $F_{\unrhd}(v) \subseteq F_{\succeq}(v)$


## $F_{\unrhd}(v)$ and solution concepts

"Is it interesting? Nobody knows yet..."
Theorem
For a game $(N, v)$, following hold:

1. $(N, v)$ is 1-convex $\Longrightarrow \tau(v) \in F_{\unrhd}(v) \cap C(v)$,
2. $(N, v)$ is quasi-balanced and a little condition $\Longrightarrow$ $\tau(v) \in F_{\unrhd}(v)$.

Open questions:

- basically the rest!


## Desirability relation on coalitions $F_{\sqsupseteq}(v)$

"United we stand, divided we fall..."
Definition
Desirability relation on coalitions $A \sqsupseteq B$ denotes coalition $A$ is more desirable than $B$, i.e.

$$
v(C \cup A) \geq v(C \cup B) \text { for all } C \subseteq N \backslash(A \cup B)
$$

## Definition

Coalition desirability-fair imputation $x \in I(v)$ is such that

$$
A \sqsupseteq B \Longrightarrow x(A) \geq x(B)
$$

The set of such $x$ is denoted by $F_{\sqsupseteq}(v)$.

## Desirability relation on coalitions $F_{\sqsupseteq}(v)$

"But we actually mostly fall..."

- $i \succeq j \Longleftrightarrow\{i\} \sqsupseteq\{j\}$
- $F_{\sqsupseteq}(v) \subseteq F_{\succeq}(v)$
- exists game ( $N, v$ ):
- $F_{\sqsupset}(v) \cap C(v)=\emptyset$
- $\tau(v) \notin F_{\sqsupset}(v)$
- $\phi(v) \notin F_{\sqsupset}(v)$
- $n(v) \notin F_{\sqsupset}(v)$
- Banktruptcy games: Aristotelian proportional division
- $x=\frac{E}{d_{1}+\cdots+d_{n}}\left(d_{1}, \ldots, d_{n}\right)$
- $x \in F_{\sqsupseteq}(v)$


## Desirability of equivalence classes $F_{l u}(v)$

"Getting $\sqsupseteq$ weaker by labor unions..."

- same problem as for $\succeq$ :
- $2^{N}$ coalitions
- many of them unlikely
- Task: select a sensible subset of condition
- coalition of substitutes $K$ (labor union)
- $K \sqsupseteq\{i\}$ (factory owner i)
- $x(K) \geq x_{i}$ (K: "We are not slaves!")


## Definition

The labor union-fair imputation $x \in I(v)$ is such that

1. $K \sqsupseteq\{i\} \Longrightarrow x(K) \geq x_{i}$,
2. $x \in F_{\succeq}(v)$.

The set of such $x$ is denoted by $F_{l u}(v)$.

## Desirability of equivalence classes $F_{l u}(v)$

"At least the egalitarian core $C_{e}$ is fair for the workers."

Theorem
$C_{e} \subseteq F_{l u}(v)$ for convex games ( $N, v$ ).
Also, minor results about Shapley, $\tau$-value and nucleolus.

## Fairness based on desirability

"If you work hard, you should get more."
4 desirability predicates:


## Core-satisfiability

"This is fair, and that is fair, so which one is more fair?"

## Core-satisfiability

"This is fair, and that is fair, so which one is more fair?"

1. Is the fairness predicate actually a good one?

## Core-satisfiability

"This is fair, and that is fair, so which one is more fair?"

1. Is the fairness predicate actually a good one?

- In general, it might be empty for a game ( $N, v$ )
- For a special case: Always better solution than other


## Core-satisfiability

"This is fair, and that is fair, so which one is more fair?"

1. Is the fairness predicate actually a good one?

- In general, it might be empty for a game ( $N, v$ )
- For a special case: Always better solution than other
- $F_{\sqsupset}(v)$ for banktruptcy games non-empty
- otherwise hard to say


## Core-satisfiability

"This is fair, and that is fair, so which one is more fair?"

1. Is the fairness predicate actually a good one?

- In general, it might be empty for a game ( $N, v$ )
- For a special case: Always better solution than other
- $F_{\sqsupset}(v)$ for banktruptcy games non-empty
- otherwise hard to say

2. which fairness predicate is better?

## Core-satisfiability

"This is fair, and that is fair, so which one is more fair?"

1. Is the fairness predicate actually a good one?

- In general, it might be empty for a game ( $N, v$ )
- For a special case: Always better solution than other
- $F_{\sqsupset}(v)$ for banktruptcy games non-empty
- otherwise hard to say

2. which fairness predicate is better?
3. we can find unpleasent games for the specific predicate

- Do these games really matter?


## Core-satisfiability

"This is fair, and that is fair, so which one is more fair?"

1. Is the fairness predicate actually a good one?

- In general, it is empty
- For a special case: Always better solution than other
- $F_{\sqsupseteq}(v)$ for banktruptcy games non-empty
- otherwise hard to say

2. which fairness predicate is better?
3. we can find unpleasent games for the specific concept

- Do these games really matter?

Definition
A predicate $\mathcal{P}$ is satisfiable within the core (in a class $G$ ) if

$$
(N, v) \in G: C(v) \neq \emptyset \Longrightarrow \mathcal{P}(v) \cap C(v) \neq \emptyset
$$

We say $\mathcal{P}$ is core-satisfiable or simply satisfiable.

## Core-satisfiability

"It is good, at least when the game is stable."
Definition
A predicate $\mathcal{P}$ is satisfiable within the core (in a class $G$ ) if

$$
(N, v) \in G: C(v) \neq \emptyset \Longrightarrow P(v) \cap C(v) \neq \emptyset .
$$

- we can define different ?-satifiability
- Core-satisfiability enoforces stability of the solution


## Core-satisfiability

"And how does it look, from the core point-of-view?"
Theorem

1. $F_{\succeq}(v)$ is satisfiable for every game,
2. $F_{\succeq}^{0}(v)$ is satisfiable for every game,
3. $F_{\unrhd}$ is satisfiable for every convex and 1-convex game,
4. $F_{\unrhd}$ is not satisfiable for every superadditive game,
5. $F_{l u}$ is satisfiable for every convex game, but not every superadditive game.

## Individual or Culture Specific Notions of Fairness

"This is fair to you?"

- the most natural setting
- not only different interests
- but also notions of fairness
- modification in the stability notion (different from Core)


## Modified stability condition

"The core sounds fine, but lets keep it sensible..."
imputation $x \in C(v)$ if

- $x(S) \geq v(S)$


## Modified stability condition

"The core sounds fine, but lets keep it sensible..."
imputation $x \in C(v)$ if

- $x(S) \geq v(S)$
- if $S$ does not form (does not agree on fair notion)


## Modified stability condition

"The core sounds fine, but lets keep it sensible..."
imputation $x \in C(v)$ if

- $x(S) \geq v(S)$
- if $S$ does not form (does not agree on fair notion)

1. why should we consider this condition?

- why shouldn't we allow for $y \notin C(v)$ ?


## Modified stability condition

"The core sounds fine, but lets keep it sensible..."
imputation $x \in C(v)$ if

- $x(S) \geq v(S)$
- if $S$ does not form (does not agree on fair notion)

1. why should we consider this condition?

- why shouldn't we allow for $y \notin C(v)$ ?

2. why should we agree on $x$ ?

- our differences might block all $x \in C(v)$


## Modified stability condition

"The core sounds fine, but lets keep it sensible..."
imputation $x \in C(v)$ if

- $x(S) \geq v(S)$
- if $S$ does not form (does not agree on fair notion)

1. why should we consider this condition?

- why shouldn't we allow for $y \notin C(v)$ ?

2. why should we agree on $x$ ?

- our differences might block all $x \in C(v)$
- my fairness notion $=$ my culture (cultural identification)


## Modified stability condition

"The core sounds fine, but lets keep it sensible..."
imputation $x \in C(v)$ if

- $x(S) \geq v(S)$
- if $S$ does not form (does not agree on fair notion)

1. why should we consider this condition?

- why shouldn't we allow for $y \notin C(v)$ ?

2. why should we agree on $x$ ?

- our differences might block all $x \in C(v)$
- my fairness notion $=$ my culture (cultural identification)
- How does our cultural differences affect us?


## Modified stability condition

"To work together, we have to find a common ground."

## Modified stability condition

"To work together, we have to find a common ground."

- $F_{i}$... fairness predicate (Cultural identification of player i)


## Modified stability condition

"To work together, we have to find a common ground."

- $F_{i}$... fairness predicate (Cultural identification of player $\mathbf{i}$ )
- $F_{i}(w) \ldots$ acceptable imputations of $i$ in $(N, w)$


## Modified stability condition

"To work together, we have to find a common ground."

- $F_{i}$... fairness predicate (Cultural identification of player $\mathbf{i}$ )
- $F_{i}(w) \ldots$ acceptable imputations of $i$ in ( $N, w$ )
- imputation outside $F_{i}(w)$ results in no cooperation


## Modified stability condition

"To work together, we have to find a common ground."

- $F_{i} \ldots$ fairness predicate (Cultural identification of player $\mathbf{i}$ )
- $F_{i}(w) \ldots$ acceptable imputations of $i$ in $(N, w)$
- imputation outside $F_{i}(w)$ results in no cooperation

A coalitions $S$ is culturally compatible (in a game $(N, v)$ ) if either

## Modified stability condition

"To work together, we have to find a common ground."

- $F_{i}$... fairness predicate (Cultural identification of player $\mathbf{i}$ )
- $F_{i}(w) \ldots$ acceptable imputations of $i$ in $(N, w)$
- imputation outside $F_{i}(w)$ results in no cooperation

A coalitions $S$ is culturally compatible (in a game $(N, v)$ ) if either

$$
\text { 1. } S=\{i\}
$$

## Modified stability condition

"To work together, we have to find a common ground."

- $F_{i}$... fairness predicate (Cultural identification of player i)
- $F_{i}(w) \ldots$ acceptable imputations of $i$ in $(N, w)$
- imputation outside $F_{i}(w)$ results in no cooperation

A coalitions $S$ is culturally compatible (in a game $(N, v)$ ) if either

1. $S=\{i\}$
2. exists $x \in \cap_{i \in S} F_{i}\left(v_{S}\right)$ :

$$
2.1 x(S)=v_{S}(S)
$$

## Modified stability condition

"To work together, we have to find a common ground."

- $F_{i}$... fairness predicate (Cultural identification of player $\mathbf{i}$ )
- $F_{i}(w) \ldots$ acceptable imputations of $i$ in ( $N, w$ )
- imputation outside $F_{i}(w)$ results in no cooperation

A coalitions $S$ is culturally compatible (in a game $(N, v)$ ) if either

1. $S=\{i\}$
2. exists $x \in \cap_{i \in S} F_{i}\left(v_{S}\right)$ :
$2.1 x(S)=v_{S}(S)$
$2.2 x(A) \geq v_{S}(A)$ for every $A \subseteq S$ culturally compatible

## Modified stability condition

"To work together, we have to find a common ground."

- $F_{i}$... fairness predicate (Cultural identification of player i)
- $F_{i}(w) \ldots$ acceptable imputations of $i$ in $(N, w)$
- imputation outside $F_{i}(w)$ results in no cooperation

A coalitions $S$ is culturally compatible (in a game ( $N, v$ ) ) if either

1. $S=\{i\}$
2. exists $x \in \cap_{i \in S} F_{i}\left(v_{S}\right)$ :
$2.1 \times(S)=v_{S}(S)$
$2.2 x(A) \geq v_{S}(A)$ for every $A \subseteq S$ culturally compatible

## Definition

Let $(N, v)$ be a cooperative game and let $C C(v)$ be the set of its culturally compatible coalitions.
A culturally compatible core $C_{c c}$ is
$C_{c c}(v)=\left\{x \in \cap_{i \in N} F_{i}(v) \mid x(N)=v(N)\right.$ and $\left.x(A) \geq v(A), \forall A \in C C(v)\right\}$.

## Example of the model - general

"I won't believe it until I see it..."

- $N=\{1,2,3,4\}$
- $F_{1}=F_{2}=F_{\succeq}^{0}(v), F_{3}=C_{e}, F_{4}=\phi(v)$
- $P\left(v_{0}\right)+s(v)=P(v)$ split
- Players 1 and 2 are mutually culturally compatible in
- every zero-normalised 2-player subgame $v_{\{1,2\}}$
- Players $1,2,4$ are culturally compatible in 3-player subgame which is
- zero-normalised: $v_{0}=v, s(v)=0$
- $\phi(v) \in C(v)$
- Players $1,2,3$ are culturally compatible in 3-player subgame which is
- zero-normalised
- Player 3,4 are mostly uncompatible $\left(\phi(v) \notin C_{e}(v)\right)$


## Example of the model - general

"Give me a real example!"


## Example of the model - general

"Give me a real example!"


- Subgame ( $N, v_{\{1,2,3\}}$ ) has an empty core
- blocking coalitions $\{1,3\}$ and $\{2,3\}$
- They are not culturally compatible
- $v(13)=v(23)=9$
- for player 3: $F_{3}=\{(4.5,4.5)\}$
- for players 1, 2: $F_{1}=F_{2}=\{(5.5,3.5)\}$
- therefore $(3,3,3) \in C_{c c}\left(v_{\{1,2,3\}}\right)$
- paradoxically: cultural incompatibility $\Longrightarrow$ cultural compatibility


## Example of the model - general

'Give me a real example!"


- $\phi(v)=(4,4,4,4)$
- $\phi(v) \in C_{e}$
- $\phi(v) \in F_{\succeq}(v)$
- $\Longrightarrow(4,4,4,4) \in C_{c c}(v)$

