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Recap

the set of players N = {1...n}
characteristic function v : 2N → R

I v(∅) = 0
Cooperative game (N, v)
Payoff vector x , where xi is profit of player i
Game classes=sets of games

I Γ set of all games
I Γ0 set of games on which the solution is defined
I Γc games with nonempty core

solution is a function σ : Γ0 → 2Rn
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Recap of restrictions

core of a game (N,v) is defined as

C(v) = {x ∈ Rn|
∑
i∈N

xi = v(N),
∑
i∈S

xi ≥ v(S), ∀S ⊆ N}

imputations (or allocations) are payoff vectors that are efficient and
individualy rational
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Reduced game

Definition
David-Maschler reduced game is for a game (N, v) ∈ Γ0 and non-empty
coalition T and vector x ∈ Rn defined as: (T , vT

x )

vT
x (S) =


0 S = ∅
v(N)− x(N \ S) S = T

max
Q⊂N\T

{v(S ∪ Q)− x(Q)} ∀S ⊂ T ,S 6= ∅
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Example

Have a game with N = {1, 2, 3}, v(1, 2) = 1, v(1, 3) = 1, v(2, 3) =
2, v(1, 2, 3) = 2, other = 0 and vector x = (1/2, 1/2, 0)

Then for T = {1, 2}

vT
x ({1}) = 1, (v(1, 3)− x(3))

vT
x ({2}) = 2, (v(2, 3)− x(3))

vT
x ({1, 2}) = 2, (v(1, 2, 3)− x(3))

we suppose that player 3 is happy with vector x
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Davis-Maschler reduced game property

A solution σ satisfies DM-RGP if for (N, v) ∈ Γ0, x ∈ σ(N, v) holds.

(S, vS
x ) ∈ Γ0, xS ∈ σ(S, vS

x )

For the example reduced games with player 3 would make it not DM-RGP
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Converse reduced game property

A solution σ satisfies CRGP if for a set L = {S ⊆ N : |S| = 2} holds:

∀S ∈ L, (S, vS
x ) ∈ Γ0 ∧ x s ∈ (S, vS

x ) =⇒ x ∈ σ(N, v)

Similarity with CG-completeness
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Constrained egalitarian property

A solution σ defined on Γc satisfies CEP, if every 2-person game in Γc
satisfies CEP.

Can happen only if 2-person games are superadditive

2-person solution
({i , j}, v) lets say that v(i) ≤ v(j) then the solution is.

CEj({i , j}, v) = max{v(ij)
2 , v(j)}

CEi ({i , j}, v) = v(ij)− CEj({i , j}, v)
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Egalitarian orderings in core

Lorenz binary relation �L
Leximin binary relation �m

for x ∈ RN , x̂ is obtained by rearranging coordinates of x in a
non-decreasing order so. x̂1 ≤ · · · ≤ x̂n
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Lorenz binary relation �L

for x , y ∈ Rn we say that x �L y when ∀k:

k∑
j=1

x̂j ≥
k∑

j=1
ŷj

∃k holds
k∑

j=1
x̂j >

k∑
j=1

ŷj
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Examples

Suppose the vectors are in the core

(3, 3, 3, 0), (4, 2, 2, 1), are not comparable

(3, 3, 3, 0), (4, 2, 2, 1) �L (5, 2, 2, 0)
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Lorenz stable set

we denote

LSS(N, v) = {x ∈ C(N, v) : @y ∈ C(N, v), y �L x}

The less wealth good players get the better.
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Leximin binary relation �m

for x , y ∈ Rn we say that x leximin dominates y when ∃k ∈ {1 . . . n − 1}
such

∀i ∈ {1 . . . k}, x̂i = ŷi ∧ x̂k+1 > ŷk+1
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Examples

Suppose the vectors are in the core

(4, 2, 2, 1) �m (3, 3, 3, 0)

Vectors are not comparable if and only if they are equal. (Linear ordering)

The more wealth worse players get the better.
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Leximin stable allocation

We denote

{LSA(N, v)} = {x ∈ C(N, v) : ∀y ∈ C(N, v), y 6= x , x �m y}
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Theorem 1.1

Lorenz stable set is non-empty and in general not single valued for
stable games.
LSS contains LSA (let’s say y)
Because for every other x ∈ C(N, v) there exists index k, before which
xj = yj and yj > xj =⇒ @b ∈ C(N, v), b �L y
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Theorem 1.2

LSA is in general not single valued for stable games. Example
Let (N,v) be a 4-person balanced game

v(S) =


6 S ∈ {{1, 2}, {1, 3}}
8 S = {1, 2, 3}
9 S = N
0 other

LSA = (4, 2, 2, 1) and so it is in LSS, also (3, 3, 3, 0) ∈ LSS
else the core restrictions would be violated
we can see that the two vectors are �L incomparable
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Theorem 2.1

Lemma
∀(N, v) ∈ Γc , ∀T ⊂ N, ∀y ∈ C(N, v), x ∈ C(T , vT

y ) =⇒ (x , yN\T ) ∈
C(N, v)
Not in scope of this presentation - papers
Core satisfies DM-RGP

Theorem 2
LSS satisfies CEP and DM-RGP (similarly can be proven that LSA satisfies
CEP and DM-RGP)
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Core satisfies DM-RGP

Let x ∈ C(N, v) =⇒ x(T ) + x(Q) >= v(T ∪ Q) for T ∩ Q = ∅

So we have that x(T ) >= v(T ∪ Q)− x(Q)

Let’s have a reduced game (S, vS
x ) and let’s say that T ⊆ S and Q be the

subset of N \ S which makes the maximum coalition with T

Then by definition of reduced games

x(T ) >= vS
x (T )
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LSS satisfies CEP

So lets have 2-person game with players i,j and let’s say that v(i) < v(j)

LSS is in the core by definition, this means that the solution is efficient.

So xi + xj = v(ij) then CEi = v(ij)− CEj is trivial.

We know that xj >= v(j) from definition of core.

If CEj < v(ij)/2 then xj < xi =⇒ (v(ij)/2, v(ij)/2) �L which means
xj >= max{ v(ij)

2 , v(j)}

Now let’s suppose that xj > max{ v(ij)
2 , v(j)}

Then again, (CEj , xi + xj − CEj) �L x which is a contradiction. That means
xj = CEPj
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LSS satisfies DM-RGP

Assuming that LSS does not satisfy DM-RGP.

=⇒ ∃S ⊂ N ∧ x ∈ LSS(N, v), xS /∈ (S, vy
S )

Due to the fact that core satisfies DM-RGP ∃z �L x

Have y ∈ R, j ∈ N \ Syj = xj , i ∈ S, yi = zi

By the lemma we know v(N) = v(y) ∧ y ∈ C(N, v)

We see that y �L x =⇒ y /∈ C(N, v)

Contradiction.

Lemma
∀(N, v) ∈ Γc , ∀T ⊂ N, ∀y ∈ C(N, v), x ∈ C(T , vT

y ) =⇒ (x , yN\T ) ∈
C(N, v)
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Surplus

For a game (N,v) and a payoff vector x ∈ Rn surplus of player i against
player j is defined as:

sij(x ,N.v) = max
i∈S,j /∈S,S⊂N

(v(S)− x(S))

It can be interpreted as how much can player i hope to gain without player j.
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Egalitarian core

For a game (N,v), EC(N,v) is the set:

EC(N, v) = {x ∈ C(N, v)|xi > xj =⇒ sij(x ,N, v) = 0}

By knowing the result (and by example) we get that LSA ∈ LSS ⊆ EC
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Associations with last lecture

“Last time” we had that EC is a solution where the result of any bilateral
transfer in x ∈ C(N, v) does not belong in Core.

If we look at the definition of surplus

sij(x ,N.v) = max
i∈S,j /∈S,S⊂N

(v(S)− x(S))

and on core constraints∑
i∈S xi ≥ v(S), ∀S ⊆ N

we see that surpluses can be either negative or equal 0
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Associations 2

Now if we consider a bilateral transfer between player i and j, where xi > xj

For coalitions with both j,i their worth does not change so they do not limit
maximal transfer.

Then The most xi can can give is the −sij , for coalitions S with player i but
without j, i can give at most min(x(S)-v(S)) (similar to surplus value)
otherwise Core constraints are violated.

We can see that sij = 0 implies that any bilateral transfer results outside of
the Core
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Results of the paper

Alternative definition of EC
Egalitarian core is a solution for balanced games that satisfies both CEP
and DM-RGP
This is by reference equivalent to solution that satisfies CEP, DM-RGP and
CRGP

Important relation
This can be seen, because, if x ∈ LSS ∧ x /∈ EC =⇒ there is a bilateral
transfer in the core, the transfer would create a vector y ∈ C(N, v)∧ y �L x

LSA ∈ LSS ⊆ EC
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Example

Let this be a 4-person balanced game.

v(S) =


2 S ∈ {{1, 3}, {1, 4}, {2, 3}, {2, 4}}
4 S = N
0 other

(1,1,1,1) and (2,2,0,0) are in EC(N,v) but (1, 1, 1, 1) �L (2, 2, 0, 0)

and due to core constraints LSS(N, v) = {(1, 1, 1, 1)}
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