
Active ValueQuerying to Minimize Additive Approximate Error
in Superadditive Set Function Learning

Anonymous Author(s)

Submission Id: «EasyChair submission id»

ABSTRACT
Superadditive set functions play a pivotal role in computational eco-

nomics, combinatorial optimization or artificial intelligence applica-

tions such as interpretable machine learning. However, specifying

a set function requires assigning values to an exponentially large

number of subsets, a task that is often resource-intensive in practice,

particularly when the values derive from external sources such as

retraining of machine learning models. A simple omission of certain

values introduces ambiguity that becomes especially significant

when the incomplete set function has to be further optimized over.

We study a problem of optimal querying of an unknown superad-

ditive set function for unknown values with the overarching goal

of efficiently closing the distance between minimal and maximal

superadditive completions. The key contributions are threefold: (i)

a thorough exploration of minimal and maximal completions of

set functions with missing values and an analysis of their resulting

distance, providing insights for more effective optimization; (ii) the

development of methods to minimize this distance over classes of

set functions with a known prior, achieved by disclosing values of

additional subsets in both offline and online modes; and (iii) em-

pirical demonstrations of the algorithms’ performance in practical

scenarios, accompanied by an investigation into the typical order

of revealing subset values.

KEYWORDS
Function approximation, Superadditive functions, Online learning

ACM Reference Format:
Anonymous Author(s). 2024. Active Value Querying to Minimize Additive

Approximate Error in Superadditive Set Function Learning. In Proc. of the
23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), Auckland, New Zealand, May 6 – 10, 2024, IFAAMAS, 18 pages.

1 INTRODUCTION
Set function optimization provides a versatile framework for mod-

eling subset selections where adding more inputs has (possibly)

non-linear additional benefits depending on the other elements.

Its far-reaching applications span diverse fields, including supply

chain management [21], communication networks [25], logistics

and resource allocation [17], or environmental agreements [13].

However, beneath its promising facade lies a fundamental chal-

lenge – specifying a set function for 𝑛 items requires assigning a

value to each possible subset, which can be a daunting process as

the number of subsets is exponential in 𝑛.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). This work is licenced under the Creative

Commons Attribution 4.0 International (CC-BY 4.0) licence.

In this paper, we study a scenario that often arises in practice,

when the set function is not a priori known, and acquiring even

a single value for a single subset can be a resource-intensive en-

deavor. Take, for instance, the realm of machine learning, where

determining the value of a feature subset in the celebrated explain-

able approach SHAP [18] corresponds to retraining an entire model,

consuming time and computational resources. What is more, these

contributions can have ripple effects on subsequent financial out-

lays, such as acquiring new training samples. In the corporate world,

estimating an employee’s contribution to collective performance

may facilitate their fair evaluation [20], but obtaining the value of

a “subset” may involve the intricate process of rearranging teams

of employees, incurring operational costs and potentially causing

disruptions.

Yet, simply leaving the values of many subsets undetermined

further compounds the problem by opening the doors to ambiguity.

The space of potential completions of partial set functions could be

large, which may negatively influence our abilities to optimize over

it. For example, consider criterion functions that aim to estimate

contributions of each element to the set function values. Such a

scenario often arises in, e.g., cooperative game theory, where the

criterion relates to feasible imputations. When the players lack

precise information about subset (in this case – coalition) values,

they may have inflated expectations. The individuals believe their

contributions are more significant than they objectively are. This

translates into unrealistic demands for a larger share of the grand,

i.e. all-agents, coalition value, even to the point where the sum of

individual claims surpasses the actual value of the grand coalition.

For example, the companies might sometimes demand exorbitant

prices for their data, just as employees may occasionally request

wages that are unrealistically high. This discrepancy creates a criti-

cal gap between what the players expect and what is feasible within

the game. More generally, we aim to minimize some notion of the

size of the space of potential completions of a partial set function.

In this work, we are able to identify two unique extremal points of

this space, and refer to their distance as the set function divergence.

To narrow this distance, we assume the existence of an external

principal. In the examples we mentioned, this role could be reserved

for the company manager or the machine learning engineer. This

principal possesses the unique ability to determine the sequence

in which subset values are revealed. However, they are provided

with only a limited number of opportunities to exercise this con-

trol. In this manner, the principal mitigates the ambiguity within

the system, thereby diminishing the divergence as a consequence.

Importantly, we assume that each revelation step carries a roughly

equivalent cost, ensuring that there is no inherent preference in

which subset value is unveiled next besides its effect on decreas-

ing the divergence. The primary objective of the principal hence

reduces solely to minimizing this distance under the budget con-

straint. Although we do not explicitly outline the methodology

for resolving situations when a non-zero divergence exists, our

underlying assumption is that a lower value is favorable.

1.1 Organization and Contributions
We begin by formally defining the framework of set functions. We

then explain how to extend the framework to encompass incom-

plete functions, which feature missing values. Afterward, we delve

into our main contributions. Central to our study is the introduc-

tion of superadditive extensions, resulting in the emergence of the

incomplete superadditive set function divergence. We establish

fundamental theoretical properties of the divergence, including

its monotonicity, additivity, and circumstances under which it be-

comes zero. We also demonstrate instances where the divergence

exhibits supermodularity.

Building upon these foundations, we formulate both offline and

online problems for the principal aiming tominimize the divergence,

offering a suite of heuristic and approximative algorithms for each

scenario. Our empirical analysis provides valuable insights into

algorithms’ performance and the subset values typically revealed

early in the online and offline setups. Importantly, our findings

also illustrate the non-linear nature of the divergence’s decrease

with the number of revealed values, offering nuanced perspectives

on what a principal can expect at various stages of the revelation

process. Our results further indicate that for specific classes of

monotone supermodular functions, the divergence can be nearly

completely reduced by revealing just O(𝑛) values.

1.2 Related Work
Much of the research dedicated to learning set functions focuses

on submodular or subadditive functions, largely motivated by the

need to represent bidders’ valuations in combinatorial auctions [14].

The emphasis on these specific classes arises because they describe

auctions without complements, meaning goods do not gain added

value in the presence of others, making them easier to solve and op-

timize. Additionally, the error is typically measured multiplicatively,

bounding the unknown set function 𝑓 from below by function 𝑔

and from above by 𝛼𝑔, rather than additively as in our case, where

the general distance of the completions is used. Subsequent de-

velopments have focused on passive approximative learning from

existing datasets [3–5, 11, 12]. It is worth noting that even in this

specialized application of set functions, complements (i.e., super-

additivity) are common in standard motivating applications for

combinatorial auctions, such as spectrum license auctions [1].

Active querying of the values can be seen as an online con-

struction of a compact function representation, an approach sup-

ported by promising results in the field of cooperative game the-

ory [8, 9, 19, 30]. These results indicate the feasibility of such an ap-

proach, with some efforts demonstrating a substantial exponential

reduction in the number of values required to represent superaddi-

tive functions. A comprehensive survey and detailed presentation

of many of these findings can be found in Chalkiadakis’ book [10].

While tailored representations have achieved significant reductions

in specific cases [16], no general approach for constructing such

representation when given a subclass of games has been identified.

Our work adopts an approach reminiscent of active learning [28],

where an algorithm actively queries an oracle for labels to new

data points to construct the most informative dataset, particularly

in situations where labeling is resource-intensive. In our context,

we seek values that minimize the utopian gap. To approximate

the optimal querying strategy based on this concept, we employ

reinforcement learning [29].

2 PRELIMINARIES
In this section, we expound upon set functions, defined as mappings

that assign values to all possible subsets of a designated ground set
𝑁 = {1, . . . 𝑛}. We delve into the categorization of these functions,

placing particular emphasis on the notion of superadditivity. Then,

going beyond the typical set function definition, we consider a

scenario when the function values are known only for a selected

subset of all subsets, defining an incomplete set function.

Definition 1. A set function 𝑓 : 2𝑁 → R assigns values to subsets
of the ground set 𝑁 . We say 𝑓 is

• additive if ∀𝑆 ⊆ 𝑁,

𝑓 (𝑆) =
∑︁
𝑖∈𝑆

𝑓 ({𝑖}), (1)

• superadditive if ∀𝑆,𝑇 ⊆ 𝑁, 𝑆 ∩𝑇 = ∅,

𝑓 (𝑆) + 𝑓 (𝑇) ≤ 𝑓 (𝑆 ∪𝑇), (2)

• supermodular if ∀𝑆 ⊆ 𝑁 \ {𝑖, 𝑗},

𝑣 (𝑆 ∪ { 𝑗}) − 𝑣 (𝑆) ≤ 𝑣 (𝑆 ∪ {𝑖, 𝑗}) − 𝑣 (𝑆 ∪ {𝑖}). (3)

By S𝑛 , we denote the set of superadditive functions on the ground set
of size 𝑛.

In many applications, acquiring all values proves to be cost-

prohibitive, and only selected values are known. To model such

scenario, we introduce an incomplete set function, capturing only
partial knowledge of the function. We use K ⊆ 2

𝑁
to denote the

set of subsets where the values are known. Expanding the set K
then models the acquisition of new information about the initially

unknown (yet well-defined) values. The set K can be hence seen

as a “masking set”, acting as a filter applied to a complete function.

Definition 2. An incomplete set function is an ordered pair (𝑓 ,K),
where 𝑓 : 2

𝑁 → R is a set function, and K ⊆ 2
𝑁 .

Assuming additional properties of the underlying set function 𝑓 ,

one can impose constraints on values of 𝑆 ∉ K , even in the absence

of the exact knowledge. In this work, we assert the superadditivity

of the underlying set function. With this assumption and relying

on the partial knowledge encapsulated by K , it becomes possible

to delineate a set of possible candidates for the underlying function.
This set comprises extensions of the partial set function that adhere

to the superadditivity condition. To bound this set, it is necessary

to know at least the minimal information K0, defined as

K0 B {∅, 𝑁 } ∪ {{𝑖} | 𝑖 ∈ 𝑁 }. (4)

Definition 3. Let (𝑓 ,K), K0 ⊆ K be an incomplete set function.
Then 𝑔 is a S𝑛-extension of (𝑓 ,K) if 𝑔 ∈ S𝑛 and

∀𝑆 ∈ K : 𝑓 (𝑆) = 𝑔(𝑆). (5)

We say (𝑓 ,K) is S𝑛-extendable if it has a S𝑛-extension and we denote
the set of S𝑛-extensions by S𝑛 (𝑓 ,K).

Since the set of S𝑛-extensions is given by a system of linear

inequalities, it forms a convex polytope in R2
𝑛
. The set S𝑛 (K, 𝑣)

can be tightly enclosed in a hyper-rectangle given by the so called

upper/lower functions. Specifically, the lower function 𝑓 K of (𝑓 ,K)
is a (complete) set function given by

𝑓 K (𝑆) B min

𝑆1,...,𝑆𝑘 ∈K⋃
𝑖 𝑆𝑖=𝑆

𝑆𝑖∩𝑆 𝑗=∅

𝑘∑︁
𝑖=1

𝑓 (𝑆𝑖), (6)

and the upper function 𝑓 K of (𝑓 ,K) is

𝑓 K (𝑆) B max

𝑇 ∈K :𝑆⊆𝑇

(
𝑓 (𝑇) − 𝑓 K (𝑇 \ 𝑆)

)
. (7)

The following result formally introduces the hyper-rectangle

mentioned above.

Proposition 1. Let (𝑓 ,K) be an S𝑛-extendable incomplete set func-
tion. Then for every S𝑛-extension 𝑔 of (𝑓 ,K) it holds

𝑓 K (𝑆) ≤ 𝑔(𝑆) ≤ 𝑓 K (𝑆), ∀𝑆 ⊆ 𝑁 . (8)

Further, ∀𝑆 ∉ K , there are S𝑛-extensions 𝑔−, 𝑔+ such that

𝑔− (𝑆) = 𝑓 K (𝑆) and 𝑔+ (𝑆) = 𝑓 K (𝑆) .

Proof. The first part of the theorem is equivalent to Theorem 1

in [19] with a slight distinction that Theorem 1 deals with super-

additivity instead of superadditivity. The second part follows from

Theorem 3 in [19], which states that any set function defined for a

non-empty set 𝑇 ⊆ 𝑁 as

𝑓 𝑆 (𝑇) B
{
𝑓 K (𝑇) 𝑆 ⊆ 𝑇,
𝑓 K (𝑇) 𝑆 ⊈ 𝑇,

(9)

is an S𝑛-extension of (𝑓 ,K). For 𝑆 ∉ K , choose 𝑔− = 𝑓 𝑁 and

𝑔+ = 𝑓 𝑆 . □

Note that the hyper-rectangle given by lower/upper functions

might also contain non-superadditive set functions.

3 MINIMIZING SET FUNCTION AMBIGUITY
The “size” of the set of extensions S𝑛 (𝑓 ,K) measures the uncer-

tainty arising from only knowing values of 𝑓 in K . As stated in

Theorem 1, the upper and lower functions define a hyper-rectangle

which tightly bounds this set. The divergence measures the distance

of these two functions and ultimately gives a characterization on

the amount of uncertainty.

Definition 4. Let 𝑓 ∈ S𝑛 and ∥ · ∥ be a set function norm. The in-
complete superadditive set function divergence of 𝑓 and K induced
by ∥ · ∥ is a function Δ𝑓 : 2

2
𝑁 \K0 → R defined as

Δ𝑓 (K) B

𝑓 K0∪K − 𝑓 K0∪K

 . (10)

It follows trivially from the properties of norms that the di-

vergence is non-negative. Furthermore, it is zero if and only if

∀𝑆 ⊆ 𝑁 : 𝑓 K (𝑆) = 𝑓 K (𝑆), or equivalently, when there is just

a single extension. However, even with a single missing value in

the set function, divergence can be positive, indicating non-trivial

extension sets, as explained in Appendix A.

Since the set functions on a ground set 𝑁 can be regarded as

elements of a vector space R2
𝑛
, we may use any vector norm as a

divergence inducing norm. In the reminder of this text, we shall

focus on divergences induced by absolute norms, i.e. those, where

the norm of 𝑥 is equal to the norm of |𝑥 |. These include all 𝑙𝑝 -norms

as well as many others. Since the divergence is non-negative, this

restriction is without loss of generality.

Proposition 2. Let 𝑓 ∈ S𝑛 . Then the divergence Δ𝑓 is
(1) monotonically non-increasing, i.e.,

Δ𝑓 (K) ≥ Δ𝑓 (L), (11)

for K ⊆ L ⊆ 2
𝑁 \ K0,

(2) superadditive i.e.,

Δ𝑓 (K) + Δ𝑓 (L) ≥ Δ𝑓 (K ∪ L) (12)

for K,L ⊆ 2
𝑁 \ K0 such that K ∩ L = ∅.

(3) normalizable, i.e.

Δ𝛼 𝑓 +𝛽 (K) = 𝛼 · Δ𝑓 (K) (13)

for 𝛼 > 0, (𝛼𝑣 + 𝛽) (𝑆) B 𝛼𝑣 (𝑆) + ∑𝑖∈𝑁 𝛽𝑖 and 𝛽𝑖 ∈ R for
𝑖 ∈ 𝑁 .

Proof. Let
ˆK = K ∪ K0, ˆL = L ∪ K0 such that K ⊆ L. From

the definition of the upper and the lower extension, for 𝑇 ⊆ 𝑁 , it

follows

𝑓
ˆK (𝑇) ≥ 𝑓

ˆL (𝑇) and 𝑓
ˆL (𝑇) ≥ 𝑓

ˆK (𝑇),

or equivalently 𝑓
ˆK − 𝑓

ˆK ≥ 𝑓
ˆL − 𝑓

ˆL ≥ 0. Now (11) holds as long

as the norm satisfies 0 ≤ 𝑥 ≤ 𝑦 =⇒ |𝑥 | ≤ |𝑦 |. In [6], it is showed

this holds if ∥𝑥 ∥ = ∥|𝑥 |∥. Further, from non-negativity and (11),

superadditivity follows. Finally, we have

Δ𝛼 𝑓 +𝛽 (K) =

𝛼 𝑓 + 𝛽K0∪K − 𝛼 𝑓 + 𝛽K0∪K

= 𝛼

𝑓 K0∪K − 𝑓 K0∪K

 = 𝛼 · Δ𝑓 (K) .
□

Finally, we show that 𝑙1 induced divergence is concave in the

underlying set function for a fixed set of known subsets.

Proposition 3. Let K ⊆ 2
𝑁 , K0 ⊆ K and 𝑓 ∈ S𝑛 . Then the 𝑙1

divergence is concave in the underlying set function 𝑓 .

Proof Sketch. Follows from concavity, resp. convexity of the

upper, resp. lower function. See Appendix C for the proof. □

3.1 Principal’s Optimization Problems
A large divergence corresponds to a large uncertainty in the miss-

ing values. The more we know about the underlying function,

the smaller the divergence gets, being zero if there is a single S𝑛-
extension. However, to obtain all the necessary unknown values

might be too expensive, since there are exponentially many of them.

We thus seek a way to minimize the divergence as much as possible

within a limited number of known values.

To formulate the problem, we assume an existence of a principal.
Her task is to choose which subsets of 𝑁 should be investigated

0 2 4 6 8 10 12

Steps

0

20

40

60

80

100

l 1
D

iv
er

ge
n

ce

star(5)
Offline Greedy

Offline Optimal

Oracle Greedy

Oracle Optimal

PPO

Random

0 2 4 6 8 10 12

Steps

0

20

40

60

80

100

120

l 1
D

iv
er

ge
n

ce

cycle(5)
Offline Greedy

Offline Optimal

Oracle Greedy

Oracle Optimal

PPO

Random

0 2 4 6 8 10 12

Steps

0

5

10

15

20

25

l 1
D

iv
er

ge
n

ce

supermodular(5)
Offline Greedy

Offline Optimal

Oracle Greedy

Oracle Optimal

PPO

Random

Figure 1: Comparison of divergence across algorithmic steps for various algorithms, showcasing star(5) (left), cycle(5) (center),
and supermodular(5) (right) set function distributions. Notably, all algorithms significantly surpass the Random benchmark,
with greedy versions closely mirroring optimal performance.

to reduce the divergence the most. We further assume the prin-

cipal holds a level of expertise that guides the selection process.

This expertise is formalized as a prior distribution over a set of

potential functions. For example, in a medical context, a doctor

acting as the principal might seek to assess a patient’s response to

a combination of drugs, and base their selection on past clinical

experience. Similarly, a machine learning engineer could rely on

their prior knowledge of feature importance gained from previ-

ous problem-solving experiences. Consequently, we assume that

each problem instance can be viewed as a sample drawn from a

known prior distribution, denoted as F . To put bluntly, the principal
is aware of the prior distribution, but not of the specific instance

drawn from it.

There are two basic approaches to choosing which subsets to

investigate, online and offline. In the online approach, the princi-

pal operates sequentially, utilizing information from previously

revealed subsets.

Definition 5 (Online Principal’s Problem). Let 𝑡 ∈ N, F , supp F ⊆
S𝑛 be a distribution of superadditive set functions. ThenK∗𝑡 ⊆ 2

𝑁 \K0

is a solution of the online principal’s problem of size 𝑡 if

K∗𝑡 ∈ argmin

K𝑡 ⊆2𝑁 \K0, |K𝑡 |=𝑡

{
E

𝑓 ∼F

[
Δ𝑓 (K𝑡)

]}
, (14)

where K𝑖 = {𝑆1, . . . , 𝑆𝑖 }, 𝑆𝑖 = 𝜋 (𝑓 ,K𝑖−1 ∪ K0) and 𝜋 is a policy
function, which chooses 𝑆𝑖 based on the known values of 𝑓 , i.e. values
of {𝑆1, . . . , 𝑆𝑖−1} ∪ K0.

In contrast, the offline approach entails a lack of such information.

Definition 6 (Offline Principal’s Problem). Let 𝑡 ∈ N, F , supp F ⊆
S𝑛 be a distribution of superadditive set functions. ThenK∗ ⊆ 2

𝑁 \K0

is a solution of the offline principal’s problem of size 𝑡 if

K∗ ∈ argmin

K⊆2𝑁 \K0, |K |=𝑡

{
E

𝑓 ∼F

[
Δ𝑓 (K)

]}
. (15)

3.2 Algorithms Solving the Principal’s Problems
In this section, we discuss various methods for finding (approxi-

mate) solutions to the principal’s problems defined above. We defer

further technical details about all algorithms to Appendix B.

3.2.1 Offline Algorithms. At each step 𝑡 , the Offline Optimal

algorithm chooses subsets {𝑆𝑖 }𝑡𝑖=1 which minimize the expected

Algorithm 1: Offline Optimal
Input: distribution of superadditive functions F , number of

steps 𝑡 , number of samples 𝜅

1 K ← 2
𝑁 \ K0

2 𝐺 ← {} // trajectories & their E[Δ]
3 for S ⊆ K : |S| = 𝑡 do // each trajectory
4 𝜇 ← 0

5 for 𝑗 ∈ {1, . . . , 𝜅} do // approx. E[Δ]
6 𝑓 ∼ F
7 𝜇 ← 𝜇 + Δ𝑓 (S)
8 end
9 𝜇 ← 𝜇/𝜅

10 𝐺 [S] ← 𝜇

11 end
12 {𝑆𝑖 }𝑡𝑖=1 ← argminS⊆K : |S |=𝑡 𝐺 [S]
13 return {𝑆𝑖 }𝑡𝑖=1

divergence under F . We estimate the expectation w.r.t. F in Eq. (15)

by 𝜅 samples, see Algorithm 1.

A computationally less demanding variant of the Offline Opti-

mal is the Offline Greedy algorithm. It chooses the next subset

𝑆𝑡 such that, given the previous trajectory {𝑆𝑖 }𝑡−1𝑖=1
, it minimizes

the expected divergence. Consequently, it can perform no better

than the Offline Optimal. We again estimate the expectation in

Eq. (15) by 𝜅 samples, see Algorithm 2.

3.2.2 Online Algorithm. In comparison to the offline problem, solv-

ing the online problem poses a significantly greater challenge. Intu-

itively, one key reason is that an algorithm for the online problem

must compute (or approximate) a restriction of F that remains con-

sistent with the values it has uncovered in prior steps. However, this

can be particularly challenging, especially in case the only access

to F is through sampling. To tackle the online problem and derive

an approximate solution, we employ reinforcement learning [29],

specifically, the proximal policy optimization (PPO) [26].

At each step 𝜏 ≤ 𝑡 , PPO receives values of subsets K𝜏−1 =

{𝑆𝑖 }𝜏−1𝑖=1
it uncovered in the past and chooses the next subset 𝑆𝜏 .

To get a strategy which efficiently minimizes the divergence, we

Algorithm 2: Offline Greedy
Input: distribution of superadditive functions F , number of

steps 𝑡 , number of samples 𝜅

1 if 𝑡 > 1 then
2 {𝑆𝑖 }𝑡−1𝑖=1

← Offline Greedy(F , 𝑡 − 1)
3 end
4 K ← 2

𝑁 \ (K0 ∪ {𝑆𝑖 }𝑡−1𝑖=1)
5 𝐺 ← {} // trajectories & their E[Δ]
6 for 𝑆 ∈ K do // each trajectory
7 𝜇 ← 0

8 for 𝑗 ∈ {1, . . . , 𝜅} do // approx. E[Δ]
9 𝑓 ∼ F

10 𝜇 ← 𝜇 + Δ𝑓 ({𝑆𝑖 }𝑡−1𝑖=1 ∪ {𝑆})
11 end
12 𝜇 ← 𝜇/𝜅
13 𝐺 [𝑆] ← 𝜇

14 end
15 𝑆𝑡 ← argmin

𝑆∈K 𝐺 [𝑆]
16 return {𝑆𝑖 }𝑡𝑖=1

define the reward (which is maximized by the PPO algorithm) as

the negative expected divergence averaged over 𝜏 ≤ 𝑡 .

As previously mentioned, the greedy algorithm is significantly

more computationally efficient, with a linear complexity in the

number of subsets, while the optimal variant exhibits an exponential

time complexity
1
. A natural question is under which conditions

the local greedy search yields a “good” solution. It is known that, if

the optimized function is supermodular, the locally optimal steps

are guaranteed to yield a (1 − 1/𝑒)-approximation of the global

optimum [22, Proposition 3.4]. The divergence is one such function,

as long as the size of the ground set is less or equal to four.

Proposition 4. For 𝑛 ≤ 4, the 𝑙1-divergence Δ𝑓 is supermodular for
every 𝑓 ∈ S𝑛 .

Proof Sketch. For𝑛 = 3,Δ𝑓 is modular due to invariant bounds

post-revelation. For 𝑛 = 4, the supermodularity is demonstrated

through a more technical case analysis. □

When 𝑛 ≥ 5, however, the supermodularity of the divergence

imposes a very restrictive condition on the underlying function,

which is hardly satisfied in applications as 𝑛 grows larger.

Proposition 5. Let 𝑛 ≥ 5, 𝑔 ∈ S𝑛 have supermodular 𝑙1-divergence.
Then for 𝑓 ∈ S𝑛 defined as 𝑓 (𝑆) = 𝑔(𝑆) − ∑

𝑖∈𝑆 𝑔({𝑖}), there are
𝑖, 𝑗, 𝑘, 𝑙 ∈ 𝑁 such that 𝑓 ({𝑖, 𝑗}) ≤ 𝑓 ({ 𝑗, 𝑘}) ≤ 𝑓 ({𝑘, 𝑙}), and

𝑓 ({𝑖, 𝑗}) ≤ 1

2
𝑛−3 𝑓 ({𝑘, 𝑙}) . (16)

Proof Sketch. LetK = K0∪{{ 𝑗, 𝑘}}, 𝑆 = {𝑖, 𝑗}, and 𝑍 = {𝑘, 𝑙}.
Then the supermodularity constraint (3) implies the statement. □

1
Since the number of subsets is itself exponential in the size of the ground set, it makes

the difference between the two even greater.

Superadditive functions with supermodular divergence are e.g.

additive functions. As a corollary of Proposition 5, even supermod-

ular functions 𝑓 may have non-supermodular divergence. Proofs

of both propositions can be found in Appendix D.

4 EMPIRICAL EVALUATION
Finally, we demonstrate the performance of our algorithms on prac-

tical examples. We outline the domains used for our evaluation,

introduce baseline methods for comparison, detail the algorithmic

setups, and conduct a comprehensive analysis of the gathered re-

sults. All the details that could not be accommodated within the

main text have been addressed in the relevant appendices.

4.1 Experimental Domains
We conduct our experiments on two representative families of set

functions. Their main difference is the degree to which the values

of different subsets are correlated.

For the tightly correlated scenario, we use set functions defined

over graphs
2 𝐺 = (𝑁, 𝐸) on |𝑁 | ≥ 2 vertices. For a subset 𝑆 ⊆ 𝑁 ,

the value is 𝑓 (𝑆) = |𝐸 (𝑆) |, where 𝐸 (𝑆) is the set of edges in the

induced subgraph𝐺 [𝑆]. We define two classes of functions within

this framework based on the graph representing the functions.

First, star(𝑛) denotes a class where 𝐺 is a connected star, where

the ‘center’ is chosen uniformly at random. Similarly, cycle(𝑛)
denotes a class where the graph is a single cycle on all vertices

chosen uniformly at random.

The second family is the broad class of supermodular set func-

tions. These are among the most studied set functions [15] – in

some areas where set functions are applied, some authors consider

this property so important they even impose it in the definition of

the set function [23]. Incomplete supermodular set function have

been already studied in a broader context [27]. In [7], the authors

derived an efficient algorithm for uniform sampling of monotone su-

permodular functions. We refer to the distribution of corresponding

set functions of size 𝑛 as supermodular(𝑛).

4.2 Benchmarks
We compare our algorithms introduced in the previous section to

three baselines: a random algorithm and two oracle algorithms.

The random algorithm selects the next subset uniformly at random.

We refer to it in the results as Random. The oracle methods are

not deployable in practice because they assume the knowledge of

the underlying true set function. However, they provide an upper

bound on what an optimal online algorithm could possibly achieve.

The Oracle Optimal algorithm operates similarly to Offline

Optimal, but it additionally leverages an oracle to acquire values

of the underlying set function 𝑓 before making the subset selection.

Consequently, Oracle Optimal can utilize complete knowledge of

the underlying function to minimize the divergence.

Similarly, the Oracle Greedy algorithm selects next subset 𝑆𝑡
such that, in combination with the previous trajectory {𝑆𝑖 }𝑡−1𝑖=1

,

it minimizes the divergence. It also uses the oracle to gather all

information about the underlying function 𝑓 . The pseudocodes for

both Oracles can be found as Algorithms 3 and 4 in Appendix F.

2
One natural generalization of these classes would be to assume weighted graphs.

2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

R
ev

ea
le

d
Pe

rc
en

ta
ge

star(5) - step 1

2 3 4

star(5) - step 2

2 3 4

star(5) - step 3

2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

R
ev

ea
le

d
Pe

rc
en

ta
ge

star(5) - step 4

2 3 4

star(5) - step 5

2 3 4

star(5) - step 6

2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

R
ev

ea
le

d
Pe

rc
en

ta
ge

star(5) - step 7

2 3 4

star(5) - step 8

2 3 4

star(5) - step 9

2 3 4
Subset Size

0.0

0.2

0.4

0.6

0.8

1.0

R
ev

ea
le

d
Pe

rc
en

ta
ge

star(5) - step 10

2 3 4
Subset Size

star(5) - step 11

2 3 4
Subset Size

star(5) - step 12

OFFLINE GREEDY OFFLINE OPTIMAL ORACLE GREEDY ORACLE OPTIMAL PPO

Figure 2: Proportion of subsets of the same size selected up to step twelve for star(5) and each algorithm. The results unveil
a distinct inclination towards larger subsets, indicating their greater contribution to average set function information. The
oracle algorithms exhibit an early preference for smaller subsets, suggesting that a tailored representation of a specific set
function can efficiently incorporate even smaller subsets. PPO initially mirrors the behavior of the offline algorithms. However,
leveraging previously obtained values, it later aligns its selections with the oracle methods. See also Figure 5 in Appendix G.

5 6 7 8 9 10

Number of Players

10−2

10−1

100

N
or

m
al

iz
ed

l 1
D

iv
er

ge
n

ce

supermodular(n), Reveal Size n− 1

Largest Coalitions

Random

Figure 3: Comparison of normalized divergence for
supermodular(𝑛) as a function of the 𝑛 = |𝑁 |, normalized by
its minimal information value. We show the expected nor-
malized divergence when 𝑛 − 1 subsets are randomly chosen
with the scenario where all subsets of size 𝑛 − 1 are selected.

4.3 Experimental Setup
During the training phase, we execute the PPO algorithm for a

total of 2,000,000 time-steps. In each iteration, we repeatedly collect

6 · 2048 trajectories by sampling batches from the distribution F .
Following each iteration, we optimize the PPO surrogate objective

for 10 epochs. To ensure uniformity, we normalize the input values

𝑓 (𝑆) to a unit interval, as elaborated in Appendix H. For the two

optimal algorithms, we employ 𝜅 = 10 samples to estimate the

mean value in Eq. (15). See Appendix B for more details.

Among the proposed algorithms, both Offline Optimal and Or-

acle Optimal come with significantly higher computational costs

(scaling as O(22𝑛)) when compared to their greedy counterparts

(which scale as O(2𝑛)). To provide some perspective, our evaluation

for 𝑛 = 5 with twelve steps and ten samples required approximately

10 hours to finish. Extrapolating, we estimate that completing the

evaluations for the remaining steps in this setup, across all ten

samples, would require roughly 300 hours. Furthermore, extending

these experiments to 𝑛 = 6 would demand over 100 years.

Hardware and Software. All experiments are conducted on a com-

putational cluster with AMD EPYC 7532 CPUs running at 2.4 GHz.

When running algorithms on set functions with ground set of size

five, we utilize 15 cores and 12 GB of RAM. The code was imple-

mented in Python 3.10 using pytorch 2.0, stable_baselines3 2.0, and

gymnasium 0.28. Additional details are deferred to Appendix B.

4.4 Results
First, we study the star(5) and cycle(5) distributions. The depen-
dency of the divergence on the number of revealed subsets is il-

lustrated in Figure 1. As anticipated, the oracle algorithms exhibit

superior performance, particularly in the initial stages. Notably,

PPO initially aligns closely with the offline algorithms but lever-

ages online information to converge toward comparable divergence

values to the oracle methods. The greedy algorithms showcase per-

formance akin to their optimal counterparts. Figure 2 then depicts

the percentage of subsets chosen by each algorithm at each step.

Offline algorithms prefer larger subsets, indicating perceived com-

prehensive information. Oracle algorithms show slight gains with

smaller subsets, suggesting potential benefits from a tailored repre-

sentation that includes smaller subsets for a fixed set function. For a

detailed plot of individual subsets, refer to Figure 5 in Appendix G.

Turning our attention to the supermodular(5) distribution, Fig-
ure 1 shows the evolution of the divergence concerning the number

of revealed subsets in this domain. The divergence experiences

rapid deacrease, reaching about 99% reduction by step five. In each

instance, the algorithms consistently favored subsets of size 𝑛 − 1,
underscoring their significance in this distribution. To gauge the

impact of the largest subsets, we examined the divergence as a func-

tion of 𝑛 when all subsets of size 𝑛−1 are unveiled. Normalizing the

divergence by the divergence ofK0, Figure 3 reveals that this simple

heuristic significantly outperforms the Random strategy. Surpris-

ingly, the resulting normalized divergence diminishes with the size

of the ground set, indicating that the majority of information about

a supermodular function can be captured by values of only O(𝑛)
subsets. The reason is that, in expectation, the values of subset of

size 𝑛 − 1 are several orders of magnitude smaller than 𝑓 (𝑁). We

suspect this is because of concentration of supermodular functions

[2]. Note that this is not the case in general – see Appendix E.

5 CONCLUSION
In this paper, we study strategies for efficiently mitigating uncer-

tainty within incomplete set functions. We introduce the concept

of the “set function divergence”, which quantifies the size of the

set of possible extensions of a partial set function. We show fun-

damental properties of the set function divergence that enables us

to compute it more efficiently. We focus on reducing the set func-

tion divergence through well-informed queries about the unknown

values within the incomplete set function, effectively constructing

a tailored representation – in both online and offline fashion. Our

findings indicate that our approach significantly outperforms ran-

dom queries and approaches optimality. Particularly noteworthy is

our heuristic for supermodular set functions, which reduces the set

function divergence by orders of magnitude while requiring only

O(𝑛) queries – an amount logarithmic in the size of the domain.

Future Work. In our current exploration of set function diver-

gence, we have specifically concentrated on the 𝑙1-norm. However,

we recognize the potential for more generalized insights by extend-

ing our focus to divergences induced by various norms, as hinted by

the theorem on equivalence of norms. This approach holds promise,

as demonstrated by Proposition 2, which is applicable not only to

the 𝑙1-norm but also to any 𝑙𝑝 -norm.

Moreover, our findings have already revealed that the divergence

of functions on a ground set of size at least 5 may not necessarily be

supermodular, even for supermodular set functions. Consequently,

a crucial aspect of our future research will involve investigating

the properties of set functions that yield supermodularity. This

exploration particularly holds a lot of promise as, in many instances,

our results indicate that the greedy approach closely approximates

optimality, as if the divergences were supermodular.

Additionally, we aim to bolster our findings by providing guar-

antees on solution quality, which, we hope, can be achieved by

incorporating regret minimization into our methodology.

REFERENCES
[1] Ittai Abraham, Moshe Babaioff, Shaddin Dughmi, and Tim Roughgarden. 2012.

Combinatorial auctions with restricted complements. In Proceedings of the 13th
ACM Conference on Electronic Commerce. 3–16.

[2] Maria-Florina Balcan and Nicholas J. A. Harvey. 2010. Learning Submodular

Functions. CoRR abs/1008.2159 (2010). arXiv:1008.2159 http://arxiv.org/abs/1008.

2159

[3] Maria Florina Balcan, Florin Constantin, Satoru Iwata, and Lei Wang. 2012. Learn-

ing valuation functions. In Conference on Learning Theory. JMLR Workshop and

Conference Proceedings, 4–1.

[4] Maria-Florina Balcan and Nicholas JA Harvey. 2011. Learning submodular func-

tions. In Proceedings of the forty-third annual ACM symposium on Theory of
computing. 793–802.

[5] Maria-Florina Balcan and Nicholas JA Harvey. 2018. Submodular functions:

Learnability, structure, and optimization. SIAM J. Comput. 47, 3 (2018), 703–754.
[6] F. L. Bauer, J. Stoer, and C. Witzgall. 1961. Absolute and monotonic norms. Numer.

Math. 3 (1961), 257–264.
[7] Gleb Beliakov. 2022. On Random Generation of Supermodular Capacities. IEEE

TRANSACTIONS ON FUZZY SYSTEMS 30, 1 (2022), 293–295. https://doi.org/10.

1109/TFUZZ.2020.3036699

[8] Jan Bok and Martin Černý. 2023. 1-convex extensions of incomplete cooperative

games and the average value. Theory and Decisions (2023). https://doi.org/10.

1007/s11238-023-09946-8

[9] Martin Černý. 2023. Bounds on solution concepts of incomplete cooperative

games. arXiv:arXiv:2212.04748 [cs.GT]

[10] Georgios Chalkiadakis, Edith Elkind, and Michael Wooldridge. 2012. Compu-
tational Aspects of Cooperative Game Theory (1 ed.). Springer Cham. XVI, 150

pages. https://doi.org/10.1007/978-3-031-01558-8

[11] Vitaly Feldman, Pravesh Kothari, and Jan Vondrák. 2020. Tight bounds on l1

approximation and learning of self-bounding functions. Theoretical Computer
Science 808 (2020), 86–98.

[12] Vitaly Feldman and Jan Vondrák. 2014. Structure and learning of valuation

functions. ACM SIGecom Exchanges 12, 2 (2014), 50–53.
[13] Michael Finus. 2008. Game theoretic research on the design of international

environmental agreements: insights, critical remarks, and future challenges.

International Review of environmental and resource economics 2, 1 (2008), 29–67.
[14] Michel X Goemans, Nicholas JA Harvey, Satoru Iwata, and Vahab Mirrokni. 2009.

Approximating submodular functions everywhere. In Proceedings of the twentieth
annual ACM-SIAM symposium on Discrete algorithms. SIAM, 535–544.

[15] Michel Grabisch. 2016. Set Functions, Games and Capacities in Decision Making.
Number 978-3-319-30690-2 in Theory and Decision Library C. Springer.

[16] Samuel Ieong and Yoav Shoham. 2005. Marginal Contribution Nets: A Com-

pact Representation Scheme for Coalitional Games. https://www.cs.cmu.edu/

~sandholm/cs15-892F15/MarginalContributionEC05.pdf

[17] Sebastián Lozano, Placido Moreno, Belarmino Adenso-Díaz, and Encarnacion Al-

gaba. 2013. Cooperative game theory approach to allocating benefits of horizontal

cooperation. European Journal of Operational Research 229, 2 (2013), 444–452.

[18] Scott M Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting Model

Predictions. In Advances in Neural Information Processing Systems 30, I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett

(Eds.). Curran Associates, Inc., 4765–4774. http://papers.nips.cc/paper/7062-a-

unified-approach-to-interpreting-model-predictions.pdf

[19] S. Masuya and M. Inuiguchi. 2016. A fundamental study for partially defined

cooperative games. Fuzzy Optimization Decision Making 15, 1 (2016), 281–306.

[20] Kevin R Murphy and Jeanette N Cleveland. 1995. Understanding performance
appraisal: Social, organizational, and goal-based perspectives. Sage.

[21] Mahesh Nagarajan and Greys Sošić. 2008. Game-theoretic analysis of cooper-

ation among supply chain agents: Review and extensions. European journal of
operational research 187, 3 (2008), 719–745.

[22] G.L. Nemhauser, L.A. Wolsey, and M.L. Fisher. 1978. An analysis of approxima-

tions for maximizing submodular set functions I. Mathematical Programming 14

(1978), 265–294.

[23] G. Owen. 2013. Game Theory (4th ed.). Emerald Group Publishing, Bingley, U.K.

[24] Bezalel Peleg and Peter Sudhölter. 2007. Introduction to the Theory of Cooperative
Games. Springer. https://doi.org/10.1007/978-3-540-72945-7

[25] Walid Saad, Zhu Han, Mérouane Debbah, Are Hjorungnes, and Tamer Basar. 2009.

Coalitional game theory for communication networks. Ieee signal processing
magazine 26, 5 (2009), 77–97.

[26] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal Policy Optimization Algorithms. CoRR abs/1707.06347 (2017).

http://arxiv.org/abs/1707.06347

[27] C. Seshadhri and Jan Vondrák. 2014. Is Submodularity Testable? Algorithmica 69
(2014), 1–25. https://link.springer.com/article/10.1007/s00453-013-9847-6

[28] Burr Settles. 2009. Active Learning Literature Survey. University of Wisconsin-
Madison Department of Computer Sciences (2009).

[29] Richard S. Sutton and Andrew G. Barto. 2014. Reinforcement Learn-
ing: An Introduction. https://inst.eecs.berkeley.edu/~cs188/sp20/assets/files/

SuttonBartoIPRLBook2ndEd.pdf

[30] Martin Černý and Michel Grabisch. 2024. Incomplete cooperative games with

player-centered information. Discrete Applied Mathematics 346 (2024), 62–79.

https://doi.org/10.1016/j.dam.2023.12.007

https://arxiv.org/abs/1008.2159
http://arxiv.org/abs/1008.2159
http://arxiv.org/abs/1008.2159
https://doi.org/10.1109/TFUZZ.2020.3036699
https://doi.org/10.1109/TFUZZ.2020.3036699
https://doi.org/10.1007/s11238-023-09946-8
https://doi.org/10.1007/s11238-023-09946-8
https://arxiv.org/abs/arXiv:2212.04748
https://doi.org/10.1007/978-3-031-01558-8
https://www.cs.cmu.edu/~ sandholm/cs15-892F15/MarginalContributionEC05.pdf
https://www.cs.cmu.edu/~ sandholm/cs15-892F15/MarginalContributionEC05.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://doi.org/10.1007/978-3-540-72945-7
http://arxiv.org/abs/1707.06347
https://link.springer.com/article/10.1007/s00453-013-9847-6
https://inst.eecs.berkeley.edu/~ cs188/sp20/assets/files/SuttonBartoIPRLBook2ndEd.pdf
https://inst.eecs.berkeley.edu/~ cs188/sp20/assets/files/SuttonBartoIPRLBook2ndEd.pdf
https://doi.org/10.1016/j.dam.2023.12.007

A ZERO DIVERGENCE REQUIRES ALL
VALUES

We remark throughout the paper that we do not aim to achieve a

zero divergence, as this is impossible for most of the superadditive

functions until all of their values are known. To see this, consider

superadditive set function (𝑓 ,K), for which all of the conditions of

superadditivity hold with strict inequality and suppose all but one

values are known. Formally, let (𝑓 ,K) with K = 2
𝑁 \ {𝑆}, be such

that

𝑓 (𝑆) + 𝑓 (𝑇) < 𝑓 (𝑆 ∪𝑇)
for all 𝑆,𝑇 ⊆ 𝑁, 𝑆 ∩ 𝑇 = ∅. Then as 𝑓 (𝑆) < 𝑓 (𝑆 ∪ 𝑇) − 𝑓 (𝑇) for
every 𝑇 ⊆ 𝑁 \ 𝑆 and 𝑓 (𝑋) + 𝑓 (𝑆 \ 𝑋) < 𝑓 (𝑆) for every 𝑋 ⊆ 𝑆 , it

follows from the definition of the lower/upper functions that

𝑓 K (𝑆) < 𝑓 (𝑆) < 𝑓 K (𝑆).

This means there is more than one S𝑛-extension, which implies

Δ𝑓 (K) > 0.

B ALGORITHM SPECIFICATIONS
Oracle and Offline Algorithms. Greedy strategies are computa-

tionally straightforward compared to their optimal counterparts. A

single step using a greedy approach demands O(𝑔 · 2𝑛) time for a

single sample. Here, 𝑔 represents the time required to compute the

divergence.

On the other hand, optimal algorithms prove to be computation-

ally intensive due to the necessity of examining every sequence

of actions, that is, every subset of 2
𝑁
. For each sample, the time

complexity amounts to O(𝑔 · 22𝑛). Despite our efforts to parallelize
the computation where possible, given our available resources, we

were only able to compute the complete optimal strategies for set

function on ground sets of size up to 5. The computation for ground

set of size 5 took roughly 10 hours. We estimate, that to compute

the optimal strategies for ground set of size 6, for all steps, would

take over 100 years.

The online variants are easier to parallelize, since each sample

can be computed and evaluated independently, in contrast to the

offline variants, where all the samples need to be computed, put

together, averaged, and then finally evaluated.

When estimating the expectation with respect to F , we used
3,000 samples for ground sets of size 4. For ground sets of size 5,

we ended up using only 10 samples.

Reinforcement Learning. We apply reinforcement leaning [29] to

approximate the optimal strategy of the online principal’s problem.

Namely, we use the Proximal policy optimization (PPO) [26]. We

want to find a strategy of the principal which efficiently minimizes

the average divergence. As such, we train PPO to minimize the

divergence

𝑟 (K𝜏−1, 𝑆𝜏) = −Δ𝑓 (K𝜏−1 ∪ {𝑆𝜏 }),
at every step, which provides a stronger learning signal compared

to the final reward. This is equivalent to training over a distribution

of the online principal’s problems with uniformly distributed size 𝑡 .

In our implementation, we parametrize both actor and critic of

the PPO algorithmwith a two-layer fully-connected neural network

with 64 hidden units and ReLU activation each. To optimize the

Parameter Value Description

𝛼𝑎 3 · 10−4 Actor learning rate

𝛼𝑐 1.5 · 10−4 Critic learning rate

𝛽 0.1 Entropy regularization

𝛾 1 Reward discounting rate

𝜆 0.95 Generalized advantage estimate

𝜀 0.2 Surrogate clip range

𝐵 5 · 104 Rollout buffer size

𝑀 0.5 Max gradient norm

𝑛𝑒 10 Number of training epochs

Table 1: Hyperparameters used during training.

surrogate PPO objective, we used the Adam optimizer. The rest of

the hyperparameteres can be found in Table 1.

Random Algorithm. The Random algorithm is computationally

simple, requiring only O(𝑔) time to compute a single sample. As

such, it took only a few minutes to compute for ground sets of size

5. We again used 3,000 samples to approximate the expectation and

the standard deviation, for sizes of ground sets of 4 and 5.

C CONCAVITY OF DIVERGENCE
Proposition 3. Let K ⊆ 2

𝑁 , K0 ⊆ K and 𝑓 ∈ S𝑛 . Then the 𝑙1
divergence is concave in the underlying set function 𝑓 .

Proof. Let 𝛼 ∈ [0, 1] and denote ℎ = 𝛼 𝑓 + (1 − 𝛼)𝑔. Then we

want to show

Δ𝛼 𝑓 (K) + Δ(1−𝛼)𝑔 (K) ≤ Δℎ (K) .
Using the 𝑙1 definition of divergence, one can derive that∑︁

𝑆∈2𝑁
𝛼

(
𝑓 K (𝑆) + 𝑔K (𝑆)

)
+

∑︁
𝑆∈2𝑁

(1 − 𝛼)
(
𝑓 K (𝑆) + 𝑔K (𝑆)

)
has to be less or equal to∑︁

𝑇 ∈2𝑁

(
ℎK (𝑇) + ℎK (𝑇)

)
.

We show that a pair of stronger conditions hold, specifically

that the inequality holds for each element of the sum, and for the

lower/upper function separately, so

𝛼 𝑓 K (𝑇) + (1 − 𝛼)𝑔K (𝑇) ≥ ℎK (𝑇),

and

𝛼 𝑓 K (𝑇) + (1 − 𝛼)𝑔K (𝑇) ≤ ℎK (𝑇).
In other words, we require the lower function to be convex, and

the upper function to be concave. Consider the lower function first.

From its definition, it must hold

max

𝑆1,...,𝑆𝑘 ∈K⋃
𝑖 𝑆𝑖=𝑆

𝑆𝑖∩𝑆 𝑗=∅

𝑘∑︁
𝑖=1

𝛼 𝑓 (𝑆𝑖) + max

𝑆1,...,𝑆𝑘 ∈K⋃
𝑖 𝑆𝑖=𝑆

𝑆𝑖∩𝑆 𝑗=∅

𝑘∑︁
𝑖=1

(1 − 𝛼)𝑔(𝑆𝑖)

is larger or equal to

max

𝑆1,...,𝑆𝑘 ∈K⋃
𝑖 𝑆𝑖=𝑆

𝑆𝑖∩𝑆 𝑗=∅

𝑘∑︁
𝑖=1

𝛼 𝑓 (𝑆𝑖) + (1 − 𝛼)𝑔(𝑆𝑖).

This inequality clearly holds, as in the former expression, the two

maxima can be attained for different subsets of K , while in the

latter expression, a joint subset has to be chosen, which restricts

the number of possibilities.

Regarding the upper function, the argument is similar. It holds

that

min

𝑇 ∈K
𝑆⊆𝑇

(
ℎ(𝑆) − ℎ(𝑇 \ 𝑆)

)
is from the convexity of the lower game larger or equal to

min

𝑇 ∈K
𝑆⊆𝑇

(
ℎ(𝑆) −

(
𝛼 𝑓 (𝑇 \ 𝑆) + (1 − 𝛼)𝑔(𝑆)

))
which, since ℎ(𝑆) = 𝛼 𝑓 (𝑆) + (1 − 𝛼)𝑔(𝑆), is larger or equal to

min

𝑇 ∈K
𝑆⊆𝑇

𝛼

(
𝑓 (𝑆) − 𝑓 (𝑇 \ 𝑆)

)
+ min

𝑇 ∈K
𝑆⊆𝑇
(1 − 𝛼)

(
𝑔(𝑆) − 𝑔(𝑇 \ 𝑆)

)
.

□

D SUPERMODULARITY OF DIVERGENCE
Throughout this section, we often abuse the notation in the fol-

lowing sense. We write 𝑖 instead of {𝑖}, 𝑖 𝑗 instead of {𝑖, 𝑗} and 𝑆

instead of {𝑆}. Further, we implicitly assume that the set function

𝑓 : 2
𝑁 → R is normalized as described in Appendix H. This is

without the loss of generality, as this preserves the value of the gap,

see Observation 1. As a consequence, the lower function 𝑓 K (𝑆)
is zero for K = K0 for any 𝑆 ∈ 2

𝑁 \ K0. First, we prove several

lemmas.

Lemma 1. Let K0 ⊆ K ⊆ 2
𝑁 \ 𝑆 and 𝑓 ∈ S𝑛 . Then ∀𝑇 ∈ 2𝑁

𝑓 K (𝑇) ≤ 𝑓 K∪𝑆 (𝑇) and 𝑓 K (𝑇) ≥ 𝑓 K∪𝑆 (𝑇) .

Proof. By definition of the lower function, a larger set of known

subsets can only increase the value of the lower function. Conse-

quently, the upper function cannot increase if the set of known

values becomes larger. □

Lemma 2. Let K0 ⊆ K ⊆ 2
𝑁 , 𝑆 ∈ 2𝑁 \ K , and 𝑇 ∈ 2𝑁 . Then

𝑇 ⊊ 𝑆 =⇒ 𝑓 K (𝑇) = 𝑓 K∪𝑆 (𝑇),

and
𝑆 ⊊ 𝑇 =⇒ 𝑓 K (𝑇) = 𝑓 K∪𝑆 (𝑇).

Proof. The value of 𝑇 for 𝑓 K , resp. 𝑓 K∪𝑆 is given by maximal

partition of𝑇 inK , resp.𝑇 inK ∪ 𝑆 . As𝑇 ⊊ 𝑆 , revealing 𝑓 (𝑆) does
not appear in any partition of 𝑇 , thus 𝑓 K (𝑇) = 𝑓 K∪𝑆 (𝑇).

The value of 𝑇 for 𝑓 K , resp. 𝑓 K∪𝑆 is given by considering mini-

mum over 𝑋 ∈ K ,𝑇 ⊆ 𝑋 . As 𝑆 ⊊ 𝑇 , it does not appear as a possible
𝑋 . The only possibility for the change of the upper value would be

that by reavealing 𝑆 , we get 𝑓 K∪𝑆 (𝑋 \𝑇) ≠ 𝑓 K (𝑋 \𝑇) for some

𝑋 . This means 𝑆 ⊆ 𝑋 \𝑇 , but this is not possible as 𝑆 ⊊ 𝑇 . □

Lemma 3. Let K0 ⊆ K ⊆ 2
𝑁 \ 𝑆 and 𝑇 ∈ 2𝑁 , such that ∅ ≠ 𝑆 ∩𝑇 ,

𝑆 ⊊ 𝑇 and 𝑇 ⊈ 𝑆 . Then

𝑓 K (𝑇) = 𝑓 K∪𝑆 (𝑇), and 𝑓 K (𝑇) = 𝑓 K∪𝑆 (𝑇) .

Proof. Follows immediately from the definition of the upper/lower

functions. □

The divergence Δ𝑓 of a superadditive function 𝑓 is supermodular,

if for every
ˆK ⊆ 2

𝑁 \ (K0 ∪ 𝑆 ∪ 𝑍), it holds
Δ𝑓 (ˆK ∪ 𝑆 ∪ 𝑍) − Δ𝑓 (ˆK ∪ 𝑆) ≥ Δ𝑓 (ˆK ∪ 𝑍) − Δ𝑓 (ˆK). (17)

Denote K = ˆK ∪K0. By definition of the divergence and the fact

that |𝑓 K (𝑇) − 𝑓 K (𝑇) | = 𝑓 K (𝑇) − 𝑓 K (𝑇), the supermodularity

condition can be rewritten as∑︁
𝑇 ∈2𝑁

(
𝑓 L∪𝑍 (𝑇) − 𝑓 L∪𝑍 (𝑇) − 𝑓 L (𝑇) + 𝑓 L (𝑇)

)
≥∑︁

𝑇 ∈2𝑁

(
𝑓 K∪𝑍 (𝑇) − 𝑓 K∪𝑍 (𝑇) − 𝑓 K (𝑇) + 𝑓 K (𝑇)

)
.

where L = K ∪ 𝑆 .

D.1 Proof of Proposition 3
To prove this proposition, we show an even a stronger condition

holds, i.e., ∀𝑇 ∈ 2𝑁

𝑓 K∪𝑆∪𝑍 (𝑇) − 𝑓 K∪𝑆∪𝑍 (𝑇) − 𝑓 K∪𝑆 (𝑇) + 𝑓 K∪𝑆 (𝑇) ≥

𝑓 K∪𝑍 (𝑇) − 𝑓 K∪𝑍 (𝑇) − 𝑓 K (𝑇) + 𝑓 K (𝑇). (18)

For 𝑇 ∈ K ∪ 𝑆 , condition (18) holds for any superadditive

𝑓 : 2𝑁 → Rwith𝑁 of arbitrary size. To see this, notice 𝑓 K∪𝑆∪𝑍 (𝑇) =
𝑓 K∪𝑆∪𝑍 (𝑇) and 𝑓 K∪𝑆 (𝑇) = 𝑓 K∪𝑆 (𝑇), thus (18) reduces to

𝑓 K∪𝑆 (𝑇) − 𝑓 K∪𝑆 (𝑇) ≤ 𝑓 K (𝑇) − 𝑓 K (𝑇) .

This inequality follows from Lemma 1. For the sake of clarity, we

split the rest of the proof into two lemmas based on the size of 𝑁 .

Lemma 4. For a superadditive set function 𝑓 : 2𝑁 → R where
|𝑁 | = 3, the 𝑙1-divergence Δ𝑓 is a supermodular set function.

Proof. Since, only subsets of size 2 are possibly unknown, their

lower and upper bounds do not change when another subset of size

2 is revealed. Thus, for K0 ⊆ K ⊆ 2
𝑁 \ {𝑆, 𝑍 } and 𝑇 ∉ K ∪ 𝑆 , it

holds

𝑓 K∪𝑆∪𝑍 (𝑇) − 𝑓 K∪𝑆∪𝑍 (𝑇) = 𝑓 K∪𝑆 (𝑇) − 𝑓 K∪𝑆 (𝑇)

and similarly

𝑓 K∪𝑍 (𝑇) − 𝑓 K∪𝑍 (𝑇) = 𝑓 K (𝑇) − 𝑓 K (𝑇),

which means (18) holds. □

Lemma 5. For a superadditive set function 𝑓 : 2𝑁 → R where
|𝑁 | = 4, the 𝑙1-divergence Δ𝑓 is a supermodular set function.

Proof. To prove (18) for K0 ⊆ K ⊆ 2
𝑁 \ {𝑆, 𝑍 } and 𝑇 ∉ K ∪ 𝑆 ,

we distinguish several cases based on the relation between 𝑍 and

𝑇 . All of the cases follow a similar pattern.

(1) 𝑍 ⊊ 𝑇 :
Since |𝑁 | = 4 and 𝑍,𝑇 are unknown in K ∪ 𝑆 , they must be

of form 𝑍 = {𝑖, 𝑗} and𝑇 = {𝑖, 𝑗, 𝑘}. By Lemma 2, 𝑓 K∪𝑍 (𝑇) =
𝑓 K (𝑇) and 𝑓 K∪𝑆∪𝑍 (𝑇) = 𝑓 K∪𝑆 (𝑇), thus (18) reduces to

𝑓 K∪𝑆∪𝑍 (𝑇) − 𝑓 K∪𝑆 (𝑇) ≤ 𝑓 K∪𝑍 (𝑇) − 𝑓 K (𝑇).

For a contradiction, suppose the converse holds. As, by

Lemma 1, 𝑓 K∪𝑍 (𝑇) − 𝑓 K (𝑇) ≥ 0, this means 𝑓 K∪𝑆∪𝑍 (𝑇) >

𝑓 K∪𝑆 (𝑇). Thus 𝑓 K∪𝑆∪𝑍 (𝑇) = 𝑓 (𝑍) + 𝑓 ({𝑘}). As both 𝑍

and {𝑘} lie in K ∪ 𝑆 , it is one of the possible partition of

𝑇 , thus it follow 𝑓 K∪𝑆∪𝑍 (𝑇) ≤ 𝑓 K∪𝑍 (𝑇). By Lemma 1, the

opposite inequality holds. Thus, 𝑓 K∪𝑆∪𝑍 (𝑇) = 𝑓 K∪𝑍 (𝑇)
and the converse of (18) reduces to 𝑓 K (𝑇) > 𝑓 K∪𝑆 (𝑇), a
contradiction with Lemma 1.

(2) 𝑇 ⊊ 𝑍 : Similarly to the first case, we have 𝑇 = {𝑖, 𝑗}, 𝑍 =

{𝑖, 𝑗, 𝑘} and by Lemma 2, (18) reduces to

𝑓 K∪𝑆 (𝑇) − 𝑓 K∪𝑆∪𝑍 (𝑇) ≤ 𝑓 K (𝑇) − 𝑓 K∪𝑍 (𝑇).
For a contradiction, suppose the converse holds. As 𝑍 ∈
K∪𝑆∪𝑍,K∪𝑍 and𝑇 \𝑍 = {𝑘} ∈ K0, we have 𝑓 K∪𝑆∪𝑍 (𝑇) =
𝑓 (𝑍) − 𝑓 ({𝑘}) ≥ 𝑓 K∪𝑍 (𝑇), which by Lemma 1 implies

𝑓 K∪𝑆∪𝑍 (𝑇) = 𝑓 K∪𝑍 (𝑇), thus (18) reduces to 𝑓 K∪𝑆 (𝑇) >
𝑓 K (𝑇), a contradiction.

(3) 𝑍 = 𝑇 : It holds 𝑓 K∪𝑆∪𝑍 (𝑇) = 𝑓 K∪𝑆∪𝑍 (𝑇) and 𝑓 K∪𝑍 (𝑇) =
𝑓 K∪𝑍 (𝑇), thus (18) reduces to

𝑓 K∪𝑆 (𝑇) − 𝑓 K∪𝑆 (𝑇) ≤ 𝑓 K (𝑇) − 𝑓 K (𝑇)

which holds by Lemma 1.

(4) 𝑍 ∩𝑇 = ∅: In this case, 𝑍 = {𝑖, 𝑗},𝑇 = {𝑘, ℓ} and (18) reduces
to

𝑓 K∪𝑆 (𝑇) − 𝑓 K∪𝑆∪𝑍 (𝑇) ≤ 𝑓 K (𝑇) − 𝑓 K∪𝑍 (𝑇)
as 𝑓 K∪𝑆∪𝑍 (𝑇) = 𝑓 K∪𝑆 (𝑇) and 𝑓 K∪𝑍 (𝑇) = 𝑓 K (𝑇). For a
contradiction, if> holds, similarly to previous cases, 𝑓 K∪𝑆∪𝑍 (𝑇) >
𝑓 K∪𝑆 (𝑇). As 𝑍 is not superset of 𝑇 , it must be the case that

the lower bound of𝑋 such that𝑋 ∩𝑇 = ∅ and𝑇 ∪𝑋 ∈ K ∪𝑆
changed when 𝑍 was added. As 𝑇 = {𝑖, 𝑗}, only such 𝑋 is

𝑍 , therefore 𝑓 K∪𝑆∪𝑍 (𝑇) = 𝑣 (𝑁) − 𝑣 (𝑍) ≥ 𝑓 K∪𝑍 (𝑇), yield-
ing 𝑓 K∪𝑆∪𝑍 (𝑇) = 𝑓 K∪𝑍 (𝑇). This reduces the inequality to

𝑓 K∪𝑆 (𝑇) > 𝑓 K (𝑇), a contradiction.
(5) 𝑍 ∩ 𝑇 ≠ ∅ and 𝑍 ⊈ 𝑇 and 𝑇 ⊈ 𝑍 : By Lemma 3, it holds

𝑓 K∪𝑆 (𝑇) = 𝑓 K (𝑇) and 𝑓 L∪𝑆 (𝑇) = 𝑓 L (𝑇), thus (18) re-
duces to

𝑓 K∪𝑆 (𝑇) − 𝑓 K∪𝑆∪𝑍 (𝑇) ≤ 𝑓 K (𝑇) − 𝑓 K∪𝑍 (𝑇).

For a contradiction, let > hold, thus 𝑓 K∪𝑆 (𝑇) > 𝑓 K∪𝑆∪𝑍 (𝑇).
As 𝑍 is not superset of 𝑇 , it must be the case that the lower

bound of𝑋 such that𝑋∩𝑇 = ∅ and𝑇∪𝑋 ∈ L changed when

𝑍 was added. As 𝑍 ∩𝑇 ≠ ∅, no such𝑋 exists, a contradiction.

□

D.2 Proof of Proposition 5
We begin by stating a technical lemma which will be useful later.

Lemma 6. For every superadditive function 𝑓 on ground set |𝑁 | ≥ 5,
satisfying 𝑓 (𝑥) = 0 for every 𝑥 ∈ 𝑁 , there are 𝑖, 𝑗, 𝑘, 𝑙 ∈ 𝑁 such that

𝑓 (𝑖 𝑗) ≤ 𝑓 (𝑗𝑘) ≤ 𝑓 (𝑘𝑙) .

Proof. Let {𝑥,𝑦} be a subset such that 𝑓 (𝑥𝑦) is the smallest

value among all subsets of size 2. Further, let 𝑘1, 𝑘2, 𝑘3 be elements

different from 𝑥,𝑦 such that

𝑓 (𝑥𝑦) ≤ 𝑓 (𝑦𝑘1) ≤ 𝑓 (𝑦𝑘2) ≤ 𝑓 (𝑦𝑘3).

Now either 𝑓 (𝑦𝑘1) ≤ 𝑓 (𝑘1𝑘3), which gives us 𝑥,𝑦, 𝑘1, 𝑘3 satisfying

𝑓 (𝑥𝑦) ≤ 𝑓 (𝑦𝑘1) ≤ 𝑓 (𝑘1𝑘3)

or 𝑓 (𝑘1𝑘3) < 𝑓 (𝑦𝑘1) which gives us 𝑘3, 𝑘1, 𝑗, 𝑘2 satisfying

𝑓 (𝑘3𝑘1) ≤ 𝑓 (𝑘1 𝑗) ≤ 𝑓 (𝑗𝑘2).

□

Proposition 5. For 𝑛 ≥ 5, let 𝑔 ∈ S𝑛 be a superadditive function
with supermodular 𝑙1-divergence. For 𝑓 ∈ S𝑛 defined as 𝑓 (𝑆) =

𝑔(𝑆) − ∑
𝑖∈𝑆 𝑔({𝑖}), there are 𝑖, 𝑗, 𝑘, 𝑙 ∈ 𝑁 such that 𝑓 ({𝑖, 𝑗}) ≤

𝑓 ({ 𝑗, 𝑘}) ≤ 𝑓 ({𝑘, 𝑙}), and

𝑓 ({𝑖, 𝑗}) ≤ 1

2
𝑛−3 𝑓 ({𝑘, 𝑙}) . (19)

Proof. Let 𝑔 ∈ S𝑛 be the underlying set function with super-

modular divergence. Let 𝑓 ∈ S𝑛 be the normalization of 𝑔 s.t. the

singletons have values zero, see Appendix H for more details. By

Proposition 2, this preserves supermodularity of the divergence.

Consider distinct 𝑖, 𝑗, 𝑘, 𝑙 ∈ 𝑁 such that 𝑓 (𝑖 𝑗) ≤ 𝑓 (𝑗𝑘) ≤ 𝑓 (𝑘𝑙).
This quadruplet always exists (see Lemma 6). Denote 𝑓 (𝑖 𝑗) =

𝑓 (𝑗𝑘) − 𝜀 and 𝑓 (𝑘𝑙) = 𝑓 (𝑗𝑘) + 𝛿 for some 𝜀, 𝛿 ≥ 0. From super-

modularity of the 𝑙1 divergence, it holds∑︁
𝑇 ∈2𝑁

(
𝑓 L∪𝑍 (𝑇) − 𝑓 L∪𝑍 (𝑇) − 𝑓 L (𝑇) + 𝑓 L (𝑇)

)
≥∑︁

𝑇 ∈2𝑁

(
𝑓 K∪𝑍 (𝑇) − 𝑓 K∪𝑍 (𝑇) − 𝑓 K (𝑇) + 𝑓 K (𝑇)

)
.

for every K ⊆ 2
𝑁 \ {𝑆, 𝑍 } and L = K ∪ 𝑆 . Consider K = K0 ∪

{{ 𝑗, 𝑘}}, 𝑆 = {𝑖, 𝑗}, and 𝑍 = {𝑘, 𝑙} and compare sum members

corresponding to every 𝑇 , i.e.

𝐿𝑇 = 𝑓 K∪𝑆∪𝑍 (𝑇) − 𝑓 K∪𝑆∪𝑍 (𝑇) − 𝑓 K∪𝑆 (𝑇) + 𝑓 K∪𝑆 (𝑇),

𝑅𝑇 = 𝑓 K∪𝑍 (𝑇) − 𝑓 K∪𝑍 (𝑇) − 𝑓 K (𝑇) + 𝑓 K (𝑇).

We shall show that for different 𝑇 , either 𝐿𝑇 = 𝑅𝑇 , 𝐿𝑇 = 𝑅𝑇 +
𝜀 − 𝑓 (𝑗𝑘) = 𝑅𝑇 − 𝑓 (𝑖 𝑗), or 𝐿𝑇 = 𝑅𝑇 + 𝑓 (𝑘𝑙). We will arrive at the

criterion by considering the number of occurrences of each case.

In the reminder of the proof, we distinguish different cases based

on the relation of 𝑇 ∈ 2𝑁 \ K and {𝑖, 𝑗, 𝑘, 𝑙}.
(1) 𝑖, 𝑗, 𝑘, 𝑙 ∈ 𝑇 :

Using Lemma 2, we get

𝐿𝑇 = 𝑓 K∪𝑆 (𝑇) − 𝑓 K∪𝑆∪𝑍 (𝑇),
𝑅𝑇 = 𝑓 K (𝑇) − 𝑓 K∪𝑍 (𝑇),

which can be expressed as

𝐿𝑇 = 𝑓 (𝑗𝑘) − 𝑓 (𝑗𝑘) + 𝜀 − 𝑓 (𝑗𝑘) − 𝛿,
𝑅𝑇 = 𝑓 (𝑗𝑘) − 𝑓 (𝑗𝑘) − 𝛿.

It holds 𝐿𝑇 = 𝑅𝑇 + 𝜀 − 𝑓 (𝑗𝑘) = 𝑅𝑇 − 𝑓 (𝑖 𝑗).
(2) 𝑖, 𝑗, 𝑘, 𝑙 ∉ 𝑇 :

In this case, the lower bound on 𝑓 (𝑇) is unaffected by the

knowledge of 𝑆, 𝑍 , so

𝐿𝑇 = 𝑓 K∪𝑆∪𝑍 (𝑇) − 𝑓 K∪𝑆 (𝑇),

𝑅𝑇 = 𝑓 K∪𝑍 (𝑇) − 𝑓 K (𝑇).

Since the only superset of 𝑇 in K ∪ 𝑆 ∪ 𝑍 is 𝑁 , the upper

bound (7) reduces to

𝑓 L (𝑇) = 𝑓 (𝑁) − 𝑓 L (𝑁 \𝑇) = 1 − 𝑓 L (𝑁 \𝑇),

for every L ∈ {K,K ∪ 𝑆,K ∪ 𝑍,K ∪ 𝑆 ∪ 𝑍 }. Thus

𝐿𝑇 = 𝑓 K∪𝑆 (𝑁 \𝑇) − 𝑓 K∪𝑆∪𝑍 (𝑁 \𝑇),
𝑅𝑇 = 𝑓 K (𝑁 \𝑇) − 𝑓 K∪𝑍 (𝑁 \𝑇) .

Further, 𝑖, 𝑗, 𝑘, 𝑙 ∈ 𝑁 \𝑇 , which means

𝐿𝑇 = 𝑓 (𝑗𝑘) − 𝑓 (𝑗𝑘) + 𝜀 − 𝑓 (𝑗𝑘) − 𝛿,
𝑅𝑇 = 𝑓 (𝑗𝑘) − 𝑓 (𝑗𝑘) − 𝛿.

As in the previous case, 𝐿𝑇 = 𝑅𝑇 + 𝜀 − 𝑓 (𝑗𝑘) = 𝑅𝑇 − 𝑓 (𝑖 𝑗).
(3) 𝑆 = 𝑇 :

In this case, since 𝑓 L (𝑇) = 𝑓 L (𝑇) = 𝑓 (𝑇) if 𝑇 ∈ L and by

Lemma 2, it holds

𝐿𝑇 = 0,

𝑅𝑇 = 𝑓 K∪𝑍 (𝑇) − 𝑓 K (𝑇) = 𝑓 K (𝑁 \𝑇) − 𝑓 K∪𝑍 (𝑁 \𝑇) .

This means 𝑅𝑇 = 0 − 𝑓 (𝑗𝑘) − 𝛿 , therefore it holds 𝐿𝑇 =

𝑅𝑇 + 𝑓 (𝑗𝑘) + 𝛿 = 𝑅𝑇 + 𝑓 (𝑘𝑙).
(4) 𝑍 = 𝑇 :

In this case, by the fact that 𝑓 L (𝑇) = 𝑓 L (𝑇) = 𝑓 (𝑇) if
𝑇 ∈ L, it holds

𝐿𝑇 = 𝑓 K∪𝑆 (𝑇) − 𝑓 K∪𝑆 (𝑇),

𝑅𝑇 = 𝑓 K (𝑇) − 𝑓 K (𝑇).

Since 𝑆 ⊈ 𝑇 , it holds 𝑓 K∪𝑆 (𝑇) = 𝑓 K (𝑇), so we can rewrite

𝐿𝑇 = 𝑓 K∪𝑆 (𝑁 \𝑇) − 𝑓 (𝑁) = 𝑓 (𝑗𝑘) − 𝜀,
𝑅𝑇 = 𝑓 K (𝑁 \𝑇) − 𝑓 (𝑁) = −𝑓 (𝑁).

Thus it holds 𝐿𝑇 = 𝑅𝑇 + 𝑓 (𝑗𝑘) − 𝜀 = 𝑅𝑇 + 𝑓 (𝑖 𝑗).
(5) ∅ ≠ 𝑍 ∩𝑇, 𝑍 ⊈ 𝑇 , and 𝑇 ⊈ 𝑍 or

∅ ≠ 𝑆 ∩𝑇, 𝑆 ⊈ 𝑇 , and𝑇 ⊈ 𝑆 : By Lemma 1, and Lemma 3, one

immediately arrives at 𝐿𝑇 = 𝑅𝑇 = 0.

For supermodularity to hold, we want to have

∑
𝑇 ∈2𝑁 𝐿𝑇 −𝑅𝑇 ≥

0, which translates to −(𝑐1 + 𝑐2) 𝑓 (𝑖 𝑗) + 𝑓 (𝑘𝑙) + 𝑓 (𝑖 𝑗) ≥ 0, where

𝑐1 (𝑛) = 2
𝑛−4 − 1 and 𝑐2 (𝑛) = 2

𝑛−4 − 𝑛 + 3 is the number of terms

satisfying conditions 1 and 2, respectively. This yields

−(2𝑛−3 − 𝑛 + 2) 𝑓 (𝑖 𝑗) + 𝑓 (𝑘𝑙) + 𝑓 (𝑖 𝑗) ≥ 0,

or

𝑓 (𝑖 𝑗) ≤ 1

2
𝑛−3 − 𝑛 + 2

𝑓 (𝑘𝑙) ≤ 1

2
𝑛−3 𝑓 (𝑘𝑙) .

□

Corollary 1. Since the supermodular(𝑛) set includes functions
which have the same value after normalization, not even supermodu-
larity of the underlying function guarantees supermodularity of it’s
divergence. However, the supermodularity constraints typically hold
within floating point precision – see Appendix E for more details.

E THE LARGEST SUBSETS STRATEGY
We have shown how the Largest Subsets strategy performs on the

supermodular(𝑛) distribution. The results show that this simple

heuristic performs exceptionally well. In this section we argue

that this simple heuristic does not work well in general. Figure 4

shows analogous results to Figure 3 from the main text. Clearly,

the Largest Subsets heuristic’s performance drops significantly

compared to the supermodular(𝑛) distribution.
The distributions shown in Figure 4 are from the family of graph

functions, as described in Section 4.1. The cycle(𝑛) is the same as in

Section 4.1. The remaining distributions are based on an extension

of the graph functions, where there is an additional weight function

𝑤 : 𝐸 → R, and
𝑓 (𝑆) =

∑︁
𝑒∈𝐸 (𝑆)

𝑤 (𝑒).

The remaining distributions are then defined on a clique, where

for each 𝑒 ∈ 𝐸, the value of𝑤 (𝑒) is independently sampled from a

distribution.

For the beta distribution, the weights are from the Beta distri-

bution, with parameters 𝛼 = 4, 𝛽 = 5. The increasing distribution
uses weights from the interval [0, 1], such that the probability den-

sity function is zero at zero, and then linearly increases towards

one. The poiss distribution uses the Poisson distribution for its

weights, with 𝜆 = 0.01. Note that due to the low value of 𝜆, this

distribution has high variance.

We hypothesize that the reason behind the exceptional perfor-

mance of the Largest Subsets heuristic lies in concentration of

supermodular functions. [2] This phenomenon demonstrates itself

by large gap in values of subsets of size 𝑖 and 𝑖 + 1, often by orders

of magnitude. As such, revealing all subsets of size 𝑛 − 1 already
upper-bounds the rest of the values exceptionally well. One side

effect of this gap is that the set functions have almost supermodular

divergence. In fact, the inequalities constraints (17) are typically

satisfied within floating point precision.

F ORACLE ALGORITHMS
Following are the pseudocodes of Oracle algorithms discussed in

Section 4.2.

Algorithm 3: Oracle Optimal
Input: characteristic function 𝑓 ∈ S𝑛 , number of steps 𝑡

1 K ← 2
𝑁 \ K0

2 {𝑆𝑖 }𝑡𝑖=1 ← argminS⊆K : |S |=𝑡 Δ𝑓 (K0 ∪ S)
3 return {𝑆𝑖 }𝑡𝑖=1

G ADDITIONAL EXPERIMENTAL RESULTS
In this section, we present additional experimental results. Similar

to Figure 2, we show the cumulative probability of a subset of a given

size being selected by each algorithm. We do so for cycle(5) and
supermodular(5) in Figures 6 and 8, respectively. We also present

the probability per-subset in Figures 5, 7, and 9.

6 7 8 9 10
Number of Elements

5×10−1

6×10−1

7×10−1

8×10−1

N
or

m
al

iz
ed

l 1
D

iv
er

ge
nc

e

beta(n), Reveal Size n−1
LARGEST SUBSETS

RANDOM

6 7 8 9 10
Number of Elements

6×10−1

7×10−1

8×10−1

N
or

m
al

iz
ed

l 1
D

iv
er

ge
nc

e

cycle(n), Reveal Size n−1
LARGEST SUBSETS

RANDOM

6 7 8 9 10
Number of Elements

5×10−1

6×10−1

7×10−1

8×10−1

N
or

m
al

iz
ed

l 1
D

iv
er

ge
nc

e

increasing(n), Reveal Size n−1
LARGEST SUBSETS

RANDOM

6 7 8 9 10
Number of Elements

100

N
or

m
al

iz
ed

l 1
D

iv
er

ge
nc

e

poiss(n), Reveal Size n−1
LARGEST SUBSETS

RANDOM

Figure 4: Comparison of the normalized divergence for various distributions of superadditive set functions as a function of
the ground set size 𝑛. The figure contrasts the expected normalized divergence when subsets are randomly chosen with the
scenario where all subsets of size 𝑛 − 1 are selected.

Algorithm 4: Oracle Greedy
Input: characteristic function 𝑓 ∈ S𝑛 , number of steps 𝑡

1 if 𝑡 > 1 then
2 {𝑆𝑖 }𝑡−1𝑖=1

← Oracle Greedy(𝑓 , 𝑡 − 1)
3 end
4 K ← 2

𝑁 \ (K0 ∪ {𝑆𝑖 }𝑡−1𝑖=1)

5 𝑆𝑡 ← argmin
𝑆∈K Δ𝑓 (K0 ∪ {𝑆𝑖 }𝑡−1𝑖=1

∪ {𝑆})
6 return {𝑆𝑖 }𝑡𝑖=1

H NORMALIZATION
In our application, it is convenient to transform a set function 𝑓 by

an affine mapping such that after the transformation, the values

of the singletons are equal to 0 and the value of the ground set is

equal to 1. After such transformation, the minimal information K0

is trivial.

Formally, let 𝛼 > 0 and 𝛽 ∈ R𝑛 such that

𝑔(𝑆) = 𝛼 · 𝑓 (𝑆) +
∑︁
𝑖∈𝑆

𝛽𝑖 . (20)

By considering

𝛽𝑖 =
𝑓 ({𝑖})

𝑓 (𝑁) −∑𝑖∈𝑁 𝑓 ({𝑖}) and 𝛼 =
1

𝑓 (𝑁) ,

we achieve the desired transformation. Proposition 2 describes the

effect on the divergence when such a transformation is applied. We

summarize it also here.

Observation 1. The divergence Δ satisfies

Δ𝛼 𝑓 +𝛽 (K) = 𝛼 · Δ𝑓 (K) (21)

where 𝛼 > 0, (𝛼𝑣 + 𝛽) (𝑆) B 𝛼𝑣 (𝑆) +∑𝑖∈𝑁 𝛽𝑖 and 𝛽𝑖 ∈ R for 𝑖 ∈ 𝑁 .

Proof. It is a standard result [24] that 𝑓 ∈ S𝑛 =⇒ 𝛼 𝑓 + 𝛽 ∈ S𝑛 .
From these two results, we have

Δ𝛼 𝑓 +𝛽 (K) =

𝛼 𝑓 + 𝛽K0∪K − 𝛼 𝑓 + 𝛽K0∪K

= 𝛼

𝑓 K0∪K − 𝑓 K0∪K

= 𝛼 · Δ𝑓 (K) .

□

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

0.0

0.2

0.4

0.6

0.8

1.0

Se
le

ct
io

n
Pr

ob
ab

ili
ty

star(5) – step 1

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

star(5) – step 2

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

star(5) – step 3

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

0.0

0.2

0.4

0.6

0.8

1.0

Se
le

ct
io

n
Pr

ob
ab

ili
ty

star(5) – step 4

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

star(5) – step 5

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

star(5) – step 6

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

0.0

0.2

0.4

0.6

0.8

1.0

Se
le

ct
io

n
Pr

ob
ab

ili
ty

star(5) – step 7

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

star(5) – step 8

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

star(5) – step 9

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

Subset

0.0

0.2

0.4

0.6

0.8

1.0

Se
le

ct
io

n
Pr

ob
ab

ili
ty

star(5) – step 10

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

Subset

star(5) – step 11

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

Subset

star(5) – step 12

OFFLINE GREEDY OFFLINE OPTIMAL ORACLE GREEDY ORACLE OPTIMAL PPO

Figure 5: Percentage of subsets selected up to step twelve for star(5) and each algorithm. Results show clear preference for
larger subsets, i.e. they contribute more information about the set functions on average. The oracle algorithms favor smaller
subsets earlier, suggesting the representation of a specific function can efficiently use even smaller subsets. PPO initially behaves
similarly to the offline algorithms. At later steps, it uses the previously obtained values and its selections resemble the oracle
methods. See Figure 2 for plot showing subsets of given size.

2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

R
ev

ea
le

d
Pe

rc
en

ta
ge

cycle(5) - step 1

2 3 4

cycle(5) - step 2

2 3 4

cycle(5) - step 3

2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

R
ev

ea
le

d
Pe

rc
en

ta
ge

cycle(5) - step 4

2 3 4

cycle(5) - step 5

2 3 4

cycle(5) - step 6

2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

R
ev

ea
le

d
Pe

rc
en

ta
ge

cycle(5) - step 7

2 3 4

cycle(5) - step 8

2 3 4

cycle(5) - step 9

2 3 4
Subset Size

0.0

0.2

0.4

0.6

0.8

1.0

R
ev

ea
le

d
Pe

rc
en

ta
ge

cycle(5) - step 10

2 3 4
Subset Size

cycle(5) - step 11

2 3 4
Subset Size

cycle(5) - step 12

OFFLINE GREEDY OFFLINE OPTIMAL ORACLE GREEDY ORACLE OPTIMAL PPO

Figure 6: Percentage of subsets selected up to step twelve for cycle(5) and each algorithm. Results show clear preference for
larger subsets, i.e. they contribute more information about the set function on average. The oracle algorithms favor smaller
subsets earlier, suggesting the representation of a specific set function can efficiently use even smaller subsets. PPO initially
behaves similarly to the offline algorithms. At later steps, it uses the previously obtained values and its selections resemble the
oracle methods. See Figure 7 for plot showing individual subsets.

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

0.0

0.2

0.4

0.6

0.8

1.0

Se
le

ct
io

n
Pr

ob
ab

ili
ty

cycle(5) – step 1

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

cycle(5) – step 2

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

cycle(5) – step 3

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

0.0

0.2

0.4

0.6

0.8

1.0

Se
le

ct
io

n
Pr

ob
ab

ili
ty

cycle(5) – step 4

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

cycle(5) – step 5

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

cycle(5) – step 6

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

0.0

0.2

0.4

0.6

0.8

1.0

Se
le

ct
io

n
Pr

ob
ab

ili
ty

cycle(5) – step 7

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

cycle(5) – step 8

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

cycle(5) – step 9

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

Subset

0.0

0.2

0.4

0.6

0.8

1.0

Se
le

ct
io

n
Pr

ob
ab

ili
ty

cycle(5) – step 10

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

Subset

cycle(5) – step 11

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

Subset

cycle(5) – step 12

OFFLINE GREEDY OFFLINE OPTIMAL ORACLE GREEDY ORACLE OPTIMAL PPO

Figure 7: Percentage of subsets selected up to step twelve for cycle(5) and each algorithm. Results show clear preference for
larger subsets, i.e. they contribute more information about the set function on average. The oracle algorithms favor smaller
subsets earlier, suggesting the representation of a specific set function can efficiently use even smaller subsets. PPO initially
behaves similarly to the offline algorithms. At later steps, it uses the previously obtained values and its selections resemble the
oracle methods. See Figure 6 for plot showing subsets of given size.

2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

R
ev

ea
le

d
Pe

rc
en

ta
ge

supermodular(5) - step 1

2 3 4

supermodular(5) - step 2

2 3 4

supermodular(5) - step 3

2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

R
ev

ea
le

d
Pe

rc
en

ta
ge

supermodular(5) - step 4

2 3 4

supermodular(5) - step 5

2 3 4

supermodular(5) - step 6

2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

R
ev

ea
le

d
Pe

rc
en

ta
ge

supermodular(5) - step 7

2 3 4

supermodular(5) - step 8

2 3 4

supermodular(5) - step 9

2 3 4
Subset Size

0.0

0.2

0.4

0.6

0.8

1.0

R
ev

ea
le

d
Pe

rc
en

ta
ge

supermodular(5) - step 10

2 3 4
Subset Size

supermodular(5) - step 11

2 3 4
Subset Size

supermodular(5) - step 12

OFFLINE GREEDY OFFLINE OPTIMAL ORACLE GREEDY ORACLE OPTIMAL PPO

Figure 8: Percentage of subsets selected up to step twelve for supermodular(5) and each algorithm. Results show clear preference
for larger subsets, i.e. they contribute more information about the set function on average. The oracle algorithms favor smaller
subsets earlier, suggesting the representation of a specific set function can efficiently use even smaller subsets. PPO initially
behaves similarly to the offline algorithms. At later steps, it uses the previously obtained values and its selections resemble the
oracle methods. See Figure 9 for plot showing individual subsets.

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

0.0

0.2

0.4

0.6

0.8

1.0

Se
le

ct
io

n
Pr

ob
ab

ili
ty

supermodular(5) – step 1

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

supermodular(5) – step 2

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

supermodular(5) – step 3

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

0.0

0.2

0.4

0.6

0.8

1.0

Se
le

ct
io

n
Pr

ob
ab

ili
ty

supermodular(5) – step 4

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

supermodular(5) – step 5

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

supermodular(5) – step 6

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

0.0

0.2

0.4

0.6

0.8

1.0

Se
le

ct
io

n
Pr

ob
ab

ili
ty

supermodular(5) – step 7

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

supermodular(5) – step 8

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

supermodular(5) – step 9

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

Subset

0.0

0.2

0.4

0.6

0.8

1.0

Se
le

ct
io

n
Pr

ob
ab

ili
ty

supermodular(5) – step 10

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

Subset

supermodular(5) – step 11

{0
,1
}

{0
,2
}

{1
,2
}

{0
,3
}

{1
,3
}

{2
,3
}

{0
,4
}

{1
,4
}

{2
,4
}

{3
,4
}

{0
,1
,2
}

{0
,1
,3
}

{0
,2
,3
}

{1
,2
,3
}

{0
,1
,4
}

{0
,2
,4
}

{1
,2
,4
}

{0
,3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{0
,1
,2
,3
}

{0
,1
,2
,4
}

{0
,1
,3
,4
}

{0
,2
,3
,4
}

{1
,2
,3
,4
}

Subset

supermodular(5) – step 12

OFFLINE GREEDY OFFLINE OPTIMAL ORACLE GREEDY ORACLE OPTIMAL PPO

Figure 9: Percentage of subsets selected up to step twelve for supermodular(5) and each algorithm. Results show clear preference
for larger subsets, i.e. they contribute more information about the set function on average. The oracle algorithms favor smaller
subsets earlier, suggesting the representation of a specific set function can efficiently use even smaller subsets. PPO initially
behaves similarly to the offline algorithms. At later steps, it uses the previously obtained values and its selections resemble the
oracle methods. See Figure 8 for plot showing subsets of the same size.

	Abstract
	1 Introduction
	1.1 Organization and Contributions
	1.2 Related Work

	2 Preliminaries
	3 Minimizing Set Function Ambiguity
	3.1 Principal's Optimization Problems
	3.2 Algorithms Solving the Principal's Problems

	4 Empirical Evaluation
	4.1 Experimental Domains
	4.2 Benchmarks
	4.3 Experimental Setup
	4.4 Results

	5 Conclusion
	References
	A Zero Divergence Requires All Values
	B Algorithm Specifications
	C Concavity of Divergence
	D Supermodularity of Divergence
	D.1 Proof of Proposition 3
	D.2 Proof of Proposition 5

	E The Largest Subsets Strategy
	F Oracle algorithms
	G Additional Experimental Results
	H Normalization

