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Abstract: Partially defined cooperative games are a generalisation of classical
cooperative games in which the worth of some of the coalitions is not known.
Therefore, they are one of the possible approaches to uncertainty in cooperative
game theory.

The main focus of this thesis is to collect and extend the existing results in
this theory. We present results on superadditivity, convexity, positivity and 1-
convexity of incomplete games. For all the aforementioned properties, a descrip-
tion of the set of all possible extensions (complete games extending the incomplete
game) is studied. Different subclasses of incomplete games are considered, among
others incomplete games with minimal information, incomplete games with de-
fined upper vector or symmetric incomplete games. Some of the results also apply
to fully generalised games.

For superadditivity and 1-convexity, solution concepts (considering only partial
information) are introduced and studied. Especially for 1-convexity, a thorough
investigation of the defined solution concepts consisting of different characterisa-
tions is provided.
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Introduction
The history of humankind taught us that there are many situations and scenarios
where cooperation is more profitable than competition. Despite potential advan-
tages, new challenges and questions arise with cooperation. Some of the most
urgent questions are the following. How to distribute the payoff of a group be-
tween its members? Is there a distribution which is profitable to every player?
And if there is more than one way to distribute the payoff, which one is the most
fair, stable or efficiently computable?

As a possible answer to these questions, cooperative games with transferable
utility were introduced. For every group of players (a so called coalition), a value
is assigned to represent the worth of the cooperation. With this simple definition
of cooperative games, many tools for distributing payoffs between players were
introduced, each focusing on a different goal. These goals are e.g. the fairness of
the distribution or a stability in the sense that it is not profitable for any player to
divert from this distribution. Also, different ways for modelling markets, solving
banktruptcy problems, sharing costs of constructions and many other OR or
optimisation problems were developed throughout the years. There is still an
extensive research in the theory of cooperative games even nowadays [13, 21].

The main disadvantage of cooperative games is the amount of information
necessary when we want to apply the model to the real-world. This gave rise to
the theory of partially defined cooperative games and the model of incomplete
games. The simplest (and informal) way to describe incomplete game is that it
consists of partial information of a classical (complete) cooperative game. This
model can be also applied to situations where uncertainty is involved, namely
circumstances under which a portion of data was lost or corrupted.

There are two major problems in the model of partially defined cooperative
games. The first is to describe possible extensions of an incomplete game to
complete games such that the extensions satisfy further properties. The second
problem is similar to the one existing in classical cooperative games – to define
possible distributions of payoff based on information acquired from the description
of extensions.

The theory of partially defined cooperative games is still at its beginnings.
Introduced in 1993 by Willson and revisited more than two decades later by
Masuya and Inuiguchi with new ideas, the field is nearly unexplored. This thesis
tries to fill this gap.

Chapter 1 is devoted to preliminaries and Chapter 2 to the introduction of
incomplete cooperative games. Chapter 3 is devoted to superadditivity, mostly
covering the research of Masuya and Inuiguchi. Chapter 4 is devoted to convexity
and Chapter 5 to positivity. Finally, in Chapter 6 we study 1-convexity.

We want to pinpoint that the results of Chapters 4 and 5 are based on J.
Bok, M. Černý, D. Hartman and M. Hlad́ık. Convexity and positivity in partially
defined cooperative games. arXiv preprint arXiv:2010.08578, 2020 [3]. The author
of this thesis made a significant contribution to the results therein.
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1. Preliminaries
In Section 1.1, we summarize basics of the theory of convex sets. These results
are useful because many of our results are connected to descriptions of specific
convex sets. Section 1.2 introduces basic definitions of the theory of cooperative
games, among them classes of cooperative games and different solution concepts
studied in further chapters of this text.

We denote a real closed interval from a to b, a < b, by [a, b]. For an inequality
L(x) ≤ R(x), where L(x) is the left-hand side in variable x ∈ Rn and R(x) is
the right-hand side in variable x ∈ Rn, we distinguish two cases. For x∗ ∈ Rn,
the inequality is strict (at x∗) if L(x∗) < R(x∗) and it is tight or binding at x∗

if L(x∗) = R(x∗). For the sake of brevity, we write ± (or ∓) in one inequality
instead of two inequalities with + and −, e.g. x ± y ≤ ∓z instead x + y ≤ −z
and x − y ≤ z. Notice the difference between ± and ∓.

1.1 Convex sets
In the model of partially defined cooperative games, we study subsets of complete
games, so called C-extensions. All of the classes of C-extensions studied to date
form convex sets. In this section, we revise the theory of convex sets and introduce
tools for elegant and compact description of C-extensions. We state all the results
as facts and refer the reader to the book by Soltan [28] with exhaustive analysis
of convex sets.
Definition 1.1. A set K ⊆ Rn is called convex provided λx + (1 − λ)y ∈ K
whenever x, y ∈ K and λ ∈ [0, 1].

See Figure 1.1 for an example of a convex and non-convex set.
We can reformulate Definition 1.1, saying that a nonempty set K ⊆ Rn is

convex if and only if it contains all segments with endpoints x, y ∈ K. We can
also define a convex combination as a linear combination ∑︁n

i=1 λixi where xi ∈ K
and ∑︁n

i=1 λi = 1 for λi ≥ 0. The convex sets can be characterised using convex
combinations.
Theorem 1.1. A nonempty set K ⊆ Rn is convex if and only if it contains all
convex combinations of points from K.

The convex sets we study are of a special form as they are intersections of
closed halfspaces. A closed halfspace is the set H := {x ∈ Rn | ax ≤ b} where
a ∈ Rn and b ∈ R. The hyperplane S is the set S := {x ∈ Rn | ax = b}.

Figure 1.1: A convex set on the left and a non-convex set on the right. The figure
is adapted from [28].
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Figure 1.2: An example of two polyhedrons. The one on the left is polytope, the
one on the right is not. The figure is adapted from [28].

Definition 1.2. A set P ⊆ Rn is called polyhedron if it is an intersection of
finitely many closed halfspaces, say H1, . . . , Hr:

P = H1 ∩ · · · ∩ Hr.

The sets ∅ and Rn are polyhedrons. A bounded convex polyhedron is called poly-
tope.

See Figure 1.2 for an example of polyhedrons and of polytope.
We say that a hyperplane Si corresponding to Hi is supporting the set P . An

important example of polyhedrons are sets P = {x ∈ Rn | Ax ≤ b} for some
A ∈ Rn×n and b ∈ Rn.

In the study of convex sets, so called faces are important. These are the
intersections of the convex set and its supporting hyperplanes. Extreme faces F
satisfy that whenever λx + (1 − λ)y ∈ F for λ ∈ [0, 1], then x, y ∈ F . Extreme
points and extreme rays are extreme faces of a special importance as they fully
characterise the polyhedrons.

Definition 1.3. Let K be a convex set. A point x ∈ K is an extreme point (or
vertex) of K if there is no way to express x as a convex combination λy+(1−λ)z
such that y, z ∈ K and 0 ≤ λ ≤ 1, except for taking y = z = x.

Whenever necessary, different characterisations of extreme points are intro-
duced and used throughout the text. If they are used only once, we dare to
omit them in this section for the sake of brevity. The following characterisation,
however, is used several times in the text.

Theorem 1.2. Let P ⊆ Rn be a convex polyhedron. A point e ∈ P is an extreme
point (or vertex) if and only if for every x ∈ Rn :

(e + x) ∈ P ∧ (e − x) ∈ P =⇒ x = 0.

Yet another characterisation of extreme points is in terms of binding of linearly
independent constraints.

Theorem 1.3. A nonzero element x of a polyhedron P ⊆ Rn is an extreme point
if and only if there are n linearly independent constraints binding at x.
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To define extreme rays, we use halflines. A closed halfline (from x to y) is
the set {(1 − λ)x + λy| λ ≥ 0} and an open halfline (from x to y) is the set
{(1 − λ)x + λy| λ > 0}. Closed and open halflines form together halflines. We
call x to be the endpoint of the halfline. Notice that halflines form a special case
of halfspaces.

Definition 1.4. An extreme ray of a convex set K is a halfline e ⊆ K which is
an extreme face of K.

In this text, we make use of an alternative definition of extreme rays arising
from the connection of extreme rays of a polyhedron and extreme rays of a specific
polyhedral cone (further defined as recession cone).

Definition 1.5. A nonempty set C ⊆ Rn is a cone with apex s ∈ Rn provided
s + λ(x − s) ∈ C whenever x ∈ C and λ ≥ 0. A convex cone is a cone which is a
convex set. Further, a polyhedral cone C is a convex cone which can be expressed
as C = {x ∈ Rn | Ax ≥ 0} for some A ∈ Rn×n.

Setting λ = 0 in the definition of the cone, we can observe the apex s is always
a part of the cone. One can reformulate this definition, stating that a nonempty
set C ⊆ Rn is a cone with apex s if and only if every halfline from s to x lies in
C whenever x ∈ C \ {s}. Hence a cone with apex s is either the singleton {s} or
a union of closed halflines with the common endpoint s.

In the following definition, a polyhedral cone with a connection to extreme
rays is introduced.

Definition 1.6. Consider a nonempty polyhedron P = {x ∈ Rn | Ax ≤ b} and
y ∈ P . The recession cone of P (at y) is the set

R := {d ∈ Rn | y + λd ∈ P for all λ ≥ 0}.

From its definition, the recession cone consists of all directions along which
we can move indefinitely from y and still remain in P . Notice that y + λd ∈ P
for all λ ≥ 0 if and only if A(y + λd) ≤ b for all λ ≥ 0 and this holds if and only
if Ad ≤ 0. Thus R does not depend on a specific vector y.

We call the extreme rays of R associated with P the extreme rays of P . Notice,
the recession cone allows us to associate extreme rays of polyhedrons with extreme
rays of convex cones. Any characterisation of extreme rays of polyhedral cones
(including the following one) can be therefore also applied to extreme rays of
polyhedrons.

Theorem 1.4. A nonzero element x of a polyhedral cone C ⊆ Rn is an extreme
ray if and only if there are n − 1 linearly independent constraints binding at x.

The following theorem gives a full description of pointed polyhedron (i.e.
unbounded convex set with at least one extreme point) based only on extreme
points and extreme rays.

Theorem 1.5. Let P = {x ∈ Rn | Ax ≤ b} be a nonempty polyhedron with at
least one extreme point. Let x1, . . . , xr be its extreme points and y1, . . . , yℓ be its
extreme rays. Then

P =
⎧⎨⎩

r∑︂
i=1

αixi +
ℓ∑︂

j=1
βiyi | ∀i, j : αi ≥ 0, βj ≥ 0,

r∑︂
i=1

αi = 1
⎫⎬⎭ .
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1.2 Cooperative games
Cooperation of players is an important concept in game theory. This section
presents only the basics of cooperative game theory, necessary in our research. For
more information on cooperative games, see aforementioned publications [13, 21].

In Subsection 1.2.1, we introduce cooperative games and fix useful abbrevia-
tions and notations when working with them. Subsection 1.2.2 presents different
classes of cooperative games and in Subsection 1.2.3, we describe how the prob-
lem of distribution of individual payoffs between players is tackled, employing so
called payoff vectors and solution concepts.

1.2.1 Main definitions and notation
Definition 1.7. A cooperative game is an ordered pair (N, v), where N is a
finite set of players (in this text {1, 2, . . . , n}) and v : 2N → R is the characteristic
function of the cooperative game. We further assume that v(∅) = 0.

We denote the set of n-person cooperative games by Γn. Subsets of N are
called coalitions and N itself is called the grand coalition. We often write v instead
of (N, v) whenever there is no confusion over what the player set is. We shall
often associate the characteristic functions v : 2N → R with vectors v ∈ R2|N| .
This will be more convenient for viewing sets of cooperative games as (possibly
convex) sets of points.

We note that the presented definition assumes transferable utility (shortly
TU). Therefore, by a cooperative game or a game we mean in fact a cooperative
TU game.

Generally, functions f : 2N → R (without the restriction v(∅) = 0) are called
set functions and there is a vast research concerning this field of mathematics.
We refer the reader to an excellent book by Grabisch [13] unifying the theory of
cooperative games and set functions. This connection between cooperative games
and set functions will be useful in Chapter 4.

To avoid cumbersome notation, we use the following abbreviations. Instead of
S ∪{i}, we use simply S ∪ i and analogously, instead of S \{i}, we use S \ i. Also,
we often replace singleton set {i} with i. We use ⊆ for the relation of “being a
subset of” and ⊊ for the relation “being a proper subset of”. By ∅ ≠ S ⊆ N , we
mean S ⊆ N and S ̸= ∅. To denote the sizes of coalitions e.g. N, S, T , we often
use n, s, t, respectively.

1.2.2 Classes of cooperative games
The definition of cooperative game is rather general, therefore in the follow-
ing chapters, we restrict ourselves to the classes of games introduced in this
subsection: superadditive, convex, positive and 1-convex games (we devote sepa-
rate chapters to these further in the text). We also introduce monotonic games,
symmetric games and zero-normalised games together with the concept of zero-
normalisation. They are also important for the study of the first four mentioned
classes.
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Monotonic cooperative games

Definition 1.8. A cooperative game (N, v) is monotonic if for every S ⊆ T ⊆ N ,
it holds

v(S) ≤ v(T ).

Monotonicity follows the idea that a bigger coalition is able to obtain a higher
profit as a group. In cooperative game theory, monotonicity often does not yield
strong results on itself. This might change when we consider monotonicity to-
gether with some additional properties of cooperative games, e.g. superadditivity
as can be seen in Chapter 3.

Superadditive cooperative games

Definition 1.9. A cooperative game (N, v) is superadditive if for every S, T ⊆ N
such that S ∩ T = ∅, it holds

v(S) + v(T ) ≤ v(S ∪ T ). (1.1)

We denote the set of all superadditive cooperative n-person games by Sn.

Intuitively, the condition of superadditivity states that the players from S and
T are worth at least as much together as is the sum of worths of the two separate
coalitions. The idea behind this follows an argument that the players can always
act as if they are working in two separate coalitions, even though, technically,
they form a joint coalition.

Of course, in many real world scenarios the superadditivity is violated. Usu-
ally, if the number of players of the two coalitions is big, the expenses connected
to managing and organising the joint coalition might be too high to be worth it.

There is an alternative characterisation of superadditivity, employing not two,
but arbitrarily many disjoint coalition. This characterisation is implicitly used in
Chapter 3, which contains results concerning superadditivity.

Theorem 1.6. [20] A cooperative game (N, v) is superadditive if and only if for
all S1, . . . , Sk ⊆ N such that ⋃︁Si = N and Sj ∩ Sℓ = ∅ for all j ̸= ℓ,

k∑︂
i=1

v(Si) ≤ v(N).

The relation between monotonic and superadditive cooperative games is some-
times incorrectly understood as that superadditive games are a subset of mono-
tonic games. This is not true and the misunderstanding is probably due to the
fact that in many cooperative game theory textbooks, the classes are defined se-
quentially without any mention of their relation. A 2-person game (N, v) with
v(1) = v(2) = 2 and v(12) = 3 is an example of a monotonic game which is
not superadditive. Also, a 2-person game (N, v) with v(1) = 3, v(2) = −1 and
v(12) = 2 is superadditive but not monotonic. The relation of monotonic and
superadditive games is studied thoroughly in [7].
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Convex cooperative games

Definition 1.10. A cooperative game (N, v) is convex if for all coalitions S, T ⊆
N , it holds that

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ). (1.2)
We denote the set of all convex cooperative n-person games by Cn.

The class of convex cooperative games is a subset of superadditive games.
Notice that for S, T ⊆ N such that S ∩ T = ∅, the convexity condition (1.2) is
equal to the superadditivity condition (1.1), since v(S ∩ T ) = v(∅) = 0. The
difference between the classes is in the conditions for coalitions with nonempty
intersection. Intuitively, for these coalitions, the worth of S ∩ T is considered
twice on the left-hand side of (1.2), therefore v(S ∩ T ) is added to the right-hand
side to balance the inequality.

An alternative characterisation of convexity views the game from the point of
view of marginal contributions of players. For player i, the marginal contribution
to S is v(S ∪ i) − v(S). The characterisation states that the games for which
marginal contribution grows with the size of the coalition are convex.

Theorem 1.7. [27] A cooperative game (N, v) is convex if and only if for every
i ∈ N and every S ⊆ T ⊆ N \ i, it holds that

v(S ∪ i) − v(S) ≤ v(T ∪ i) − v(T ).

Condition (1.2) is sometimes referred to as supermodularity. Supermodularity
and submodularity (a condition where we switch the inequality) is vastly studied
property in the theory of set functions [1, 2, 24]. This connection between the
theory of cooperative games and the theory of set function helps us in Chapter 4,
which concerns convexity.

Positive cooperative games

Positive cooperative games are a subclass of convex cooperative games, however,
the relation between them is not as straightforward as the relation between super-
additive and convex games. The reason for this is the difference in the definition of
these classes. Positive cooperative games employ unanimity games and Harsanyi
dividends in their definition.

Definition 1.11. For ∅ ≠ T ⊆ N , the unanimity game (N, uT ) is defined as

uT (S) :=
⎧⎨⎩1 if T ⊆ S,

0 otherwise.

The set of all n-person cooperative games Γn forms a vector space and as is
shown by Shapley [25], the unanimity games form one of its bases, i.e. every
game v ∈ Γn can be expressed as v = ∑︁

∅≠T ⊆N dv(T )uT . The coefficients of this
linear combination, dv(T ), are called Harsanyi dividends. In this text, they are
defined in their explicit form.

Definition 1.12. For ∅ ≠ T ⊆ N , the Harsanyi dividend dv(T ) of a game (N, v)
is defined as

dv(T ) :=
∑︂
S⊆T

(−1)|T |−|S|v(S).

8



Positive cooperative games are those games for which all the dividends are
non-negative.

Definition 1.13. A cooperative game (N, v) is positive, if it holds for all coali-
tions ∅ ≠ T ⊆ N that

dv(T ) ≥ 0.

We denote the set of all positive cooperative n-person games by P n.

Positive games are sometimes referred to as totally monotonic games. This
terminology comes from k-monotonicity, a property of cooperative games dis-
cussed for example in [13]. An interesting fact is that convex games are actually
2-monotonic games.

Unanimity games are themselves positive games. Also, it is easy to see that
every cooperative game z ∈ Γn can be expressed as a difference of two positive
games v, w ∈ P n, i.e. z = v − w.

1-convex cooperative games

Before we properly introduce 1-convex games, we need the notion of utopia vec-
tor bv ∈ Rn (sometimes referred to as upper vector). It captures each player’s
marginal contribution to the grand coalition, i.e. bv

i := v(N) − v(N \ i). When
there is no ambiguity, we use b instead of bv. The value bv

i is considered to be the
maximal rightful value that player i can claim when v(N) is distributed among
players. If he claims more, it is more advantageous for the rest of the players to
form a coalition without player i.

Definition 1.14. A cooperative game (N, v) is called 1-convex game, if for all
coalitions ∅ ≠ S ⊆ N , the inequality

v(S) ≤ v(N) − b(N \ S) (1.3)

holds and also
b(N) ≥ v(N). (1.4)

The set of 1-convex n-person games is denoted by Cn
1 .

From (1.3), (N, v) is 1-convex if even after every player outside the coalition
S gets paid his utopia value, there is still more left of the value of the grand
coalition for players from S than if they decided to cooperate on their own. This
condition challenges the players to remain in the grand coalition and try to find a
compromise in the payoff distribution. Also, in (1.4), the utopia vector sums to a
value at least as large as the value of the grand coalition N . This was motivated
by the idea that the study of possible distributions is not interesting if every
player can obtain his maximal rightful (utopia) value.

An equivalent formulation of 1-convexity is in terms of gap function, defined
as gv(S) := b(S) − v(S). It captures the gap between the utopia distribution for
coalition S and a possible distribution of the profit of S.

Theorem 1.8. [9] A game (N, v) is 1-convex if and only if 0 ≤ g(N) ≤ g(S)
for all coalitions S ⊆ N .
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Intuitively, the grand coalition is closest to the utopia distribution among
possible coalitions. We can also rewrite conditions (1.3) and (1.4) in terms of the
characteristic function as follows. For ∅ ≠ S ⊆ N ,

v(S) + (n − s − 1)v(N) ≤
∑︂

i∈N\S

v(N \ i), (1.5)

and
(n − 1)v(N) ≥

∑︂
i∈N

v(N \ i). (1.6)

Other classes of cooperative games

Definition 1.15. A cooperative game (N, v) is symmetric if for all S, T ⊆ N
such that |S| = |T |, it holds v(S) = v(T ).

The characteristic function of a symmetric cooperative game has a simple
structure, therefore, these games serve as a good initial object to study new
concepts on. This is the reason symmetric cooperative games are usually studied
in a connection with further properties.

Definition 1.16. A cooperative game (N, v) is zero-normalised if for all singleton
coalitions {i} ⊆ N , it holds v({i}) = 0.

Zero-normalised games can be considered as those games that capture only
the worth of cooperation between players, since the worth of individual players
is zero. If a game (N, v) is not zero-normalised, we can define a process of zero-
normalisation resulting in a zero-normalised game (N, v0) defined as

v0(S) := v(S) −
∑︂
i∈S

v(i).

All of the classes of cooperative games mentioned above are closed under zero-
normalisation, i.e. a class C ⊆ Γn is closed under zero-normalisation if for v ∈ C,
also v0 ∈ C. This fact is used in the proof of Theorem 3.7 and is often used
to simplify proofs in the cooperative game theory. We also base a characterisa-
tion of one of solution concepts for incomplete games on zero-normalisation (see
Theorem 6.20).

1.2.3 Solution concepts
The main task of cooperative game theory is to distribute the payoff of the grand
coalition v(N) between the players. To be able to work with individual payoffs
more easily, payoff vectors are introduced. Those are vectors x ∈ Rn where xi

represents the individual payoff of player i.
The definition of payoff vector is quite general, therefore, a suitable subset

of payoff vectors, so called imputations are defined. Those are payoff vectors
x ∈ Rn such that x is efficient, i.e. ∑︁i∈N xi = v(N) and individually rational, i.e.
xi ≥ v(i) for all i ∈ N . This means an imputation distributes the worth of the
grand coalition N between the players and only those payoffs where each player
is at least as better off as he would be on his own are considered.

To choose between payoff vectors, different solution concepts are defined.

10



Definition 1.17. Let C ⊆ Γn be a class of n-person cooperative games. Then a
function f : C → 2Rn is a solution concept (on class C).

If the image f(v) of every cooperative game v ∈ C is exactly one vector, we
write f : C → Rn and we say f is a one-point solution concept. Otherwise, we
say f is a multi-point solution concept.

Each solution concept follows a different goal, e.g. core (see [21] for definition)
is a multi-point solution concept focused on stability of the solution. Another
example might be the Shapley value, a one-point solution concept (defined further
in this subsection), which strives to distribute the payoff as fairly as possible.

Notice that solution concepts might be equivalently defined as subsets of payoff
vectors. There are situations where both approaches are advantageous, usually
depending on the specific definition of a solution concept.

In this text, we consider three one-point solution concepts, namely the τ -value,
the nucleolus and the aforementioned Shapley value. In the rest of this section,
we introduce the three solution concepts, stating their properties and different
characterisations. They will be useful further in the analysis of the respective
generalisations of solution concepts for incomplete games.

The τ-value τ(v)

The τ -value is a known solution concept for 1-convex games (actually introduced
for more general class of quasibalanced games). The concept was defined origi-
nally by Tijs in 1981 [29]. We will follow his definition where he describes the
τ -value as a compromise between the utopia vector bv and the minimal right vec-
tor av that is defined as av := bv − λv, where λv

i := min
S⊆N,i∈S

gv(S). The vector λ is
called concession vector.

The class of quasibalanced games Qn is defined as

Qn := {(N, v) | ∀i ∈ N : av
i ≤ bv

i and av(N) ≤ v(N) ≤ bv(N)}.

It holds that Cn
1 ⊆ Qn.

Definition 1.18. The τ -value τ : Qn → Rn is defined for every v ∈ Qn as the
unique convex combination of av and bv such that ∑︁

i∈N
τi(v) = v(N).

There is also a formula characterising the τ -value, when we restrict to the set
of 1-convex games. It employs the gap function and has a nice interpretation

Theorem 1.9. [8] For the τ -value τ : Qn → Rn, it holds for every v ∈ Cn
1 that

∀i ∈ N : τi(v) = bv
i − gv(N)

n
.

From the definition of gap function, gv(N) can be expressed as the value
missing from v(N) that is necessary for the utopia distribution bv(N), i.e. v(N)+
gv(N) = bv(N). Theorem 1.9 states that the τ -value is such a compromise of the
utopia vector that it distributes equally the losses (given by gv(N)) between all
the players.

The τ -value can be also described axiomatically, being uniquely characterised
by its properties.
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Theorem 1.10. [30] The τ -value is the only function f : Qn → Rn such that
the following properties hold for every v ∈ Qn:

1. (efficiency) ∑︁i∈N fi(v) = v(N),

2. (minimal right property) f(v) = av + f(v − av), where the game (v − av) is
defined as (v − av)(S) := v(S) −∑︁

i∈S av
i ,

3. (restricted proportionality property) f(v0) = αbv0, where α ∈ R and (N, v0)
is the zero-normalisation of (N, v).

The second characterisation can be found in work of Tijs [6]. It consists of five
axioms, namely efficiency, translation equivalence, bounded aspirations, convex-
ity, and restricted linearity. On top of that, there are further results concerning
axioms of τ -value, which help with a better comparison with other solution con-
cepts. In the next theorem, we state several of them.

Theorem 1.11. [29] For the τ -value τ : Qn → Rn, the following properties hold
for every v ∈ Qn:

1. (individual rationality) ∀i ∈ N : τi(v) ≥ v(i),

2. (efficiency) ∑︁i∈N τi(v) = v(N),

3. (dummy player) ∀i ∈ N and ∀S ⊆ N \ i : v(S ∪ i) = v(S) =⇒ τi(v) = 0,

4. (S-equivalence property) ∀k ∈ [0, ∞], ∀c ∈ R : τ(kv + c) = kτ(v) + c.

We note the τ -value does not satisfy additivity, which is going to be crucial
in our generalisation of this concept (see Subsection 6.2.2). Surprisingly, we
show that our generalisation of the τ -value for incomplete games with minimal
information satisfies a certain form of additivity on the class of incomplete games
with minimal information (see Theorem 6.19).

The nucleolus η(v)

An essential component of the definition of nucleolus is the excess e(S, x), which
is a function dependent on a coalition S and an imputation x. It computes
the remaining potential of S when the payoff is distributed according to x, i.e.
e(S, x) := v(S) − x(S). Further, θ(x) ∈ R2|N| is a vector of excesses with respect
to x, which is arranged in a non-increasing order.

Definition 1.19. The nucleolus, η : Γn → Rn, is the solution concept that assigns
to a given game the minimal imputation x with respect to the lexicographical
ordering θ(x), defined as:

θ(x) < θ(y) if ∃k : ∀i < k : θi(x) = θi(y) and θk(x) < θk(y).

It is a basic result in cooperative game theory that the nucleolus is a one-
point solution concept [21]. In general, the nucleolus can be computed by means
of linear programming [15]. For 1-convex games, however, the notion of the
nucleolus and the τ -value coincide.

Theorem 1.12. [8] For every v ∈ Cn
1 it holds that η(v) = τ(v).
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The Shapley value ϕ

The Shapley value is one of the oldest and one of the most well-known one-
point solution concepts, introduced already in 1953 by Shapley [25]. It computes
player’s payoff by summing up his marginal contributions to each coalition. As
these values do not sum up to v(N) when summing across all players, the values
are normalised by a factor dependent on its size.

Definition 1.20. The Shapley value ϕ : Γn → Rn is defined as

∀i ∈ N : ϕi(v) :=
∑︂

S⊆N,i∈S

(|S| − 1)!(n − |S|)!
n! (v(S) − v(S \ i)).

There are many different alternative formulas for the Shapley value, including
the one from the next theorem.

Theorem 1.13. [22] The Shapley value ϕ : ΓN → Rn can be expressed as follows:

∀i ∈ N : ϕi(v) = 1
n

∑︂
S⊆N\i

(︄
n − 1

s

)︄−1

(v(S ∪ i) − v(S)).

There are many axiomatic characterisations of the Shapley value. Among
those there are the following few: [23, 32, 33, 35]. In the next theorem, a char-
acterisation proposed and proved by Shapley in the aforementioned paper from
1953 is given.

Theorem 1.14. [25] The Shapley value is the only function f : Γn → Rn such
that the following properties hold for every v, w ∈ Γn:

1. (efficiency) ∑︁i∈N fi(v) = v(N),

2. (symmetry) ∀i, j ∈ N, ∀S ⊆ N \ {i, j} : v(S + i) = v(S + j) =⇒ fi(v) =
fj(v),

3. (null player) ∀ ∈ N and ∀S ⊆ N \ i : v(S) = v(S + i) =⇒ fi(v) = 0,

4. (additivity) f(v + w) = f(v) + f(w).

The Shapley value also satisfies all of the axioms from Theorem 1.11 except
for individual rationality.
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2. Incomplete cooperative games
In this chapter, we introduce the model of partially defined cooperative games.
In Section 2.1, we define incomplete game and present the fundamental objects of
the study, C-extensions, together with typical questions concerning them. After
that we mention special complete games that are used in bounding and describing
the set of C-extensions.

In Section 2.2, we present classes of incomplete games that are studied in this
text. We discuss their meaning in real-world applications as well as advantages
and disadvantages of their study.

The idea of incomplete games, as considered in this text, was introduced in
literature by Willson [34] in 1993. Wilson gave the basic notion of the incomplete
game and introduced a solution concept generalising the Shapley value for such
games. After more than two decades, Masuya and Inuiguchi revived the research.
In [19], they focused on the class of Sn-extensions and analysed a few different
generalisations of the Shapley value. Subsequently, Masuya pursued the research
for more general classes of Sn-extendable incomplete games in [17, 18], however,
most of the results were published without proofs. We discuss these results in
Chapter 3. Apart from that, Yu [36] introduced a generalisation of incomplete
games to games with coalition structures and studied the proportional Owen value
(which is a generalisation of the Shapley value for these games). Unfortunately
for the general public, the paper of Yu is published only in Chinese.

2.1 Definitions and notation
Definition 2.1. (Incomplete game) An incomplete game is a tuple (N, K, v)
where N is a finite set of players (in this text {1, . . . , n}), K ⊆ 2N is the set
of coalitions with known values and v : 2N → R is the characteristic function of
the incomplete game. We further assume that ∅ ∈ K and v(∅) = 0.

We denote the set of n-person incomplete games with K by Γn(K). An incom-
plete game can be viewed from several perspectives. In one of the views, there
is an underlying complete game (N, v) from a class of n-person games C ⊆ Γn.
The presence of (N, v) in C implies further properties of the characteristic func-
tion, e.g. superadditivity. Unfortunately, only partial information (captured by
(N, K, v)) is known and there is no way to acquire more knowledge. This can be
caused by an error in storing or transmitting information about the game as well
as by a lack of resources or funds while obtaining information about it. The goal
is then to reconstruct (N, v) as accurately as possible. This leads to the definition
of C-extensions.
Definition 2.2. (C-extension) Let C ⊆ Γn be a class of n-person games. A
cooperative game (N, w) ∈ C is a C-extension of an incomplete game (N, K, v) if
w(S) = v(S) for every S ∈ K.

The set of all C-extensions of an incomplete game (N, K, v) is denoted by C(v).
We write C(v)-extension whenever we want to emphasize the game (N, K, v).

To view the incomplete games from a different point, imagine we are mod-
elling a real-world problem and we acquire only partial information (N, K, v).
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Therefore, no further information about the underlying complete game is known.
In this case, it even makes sense to study if there is a C(v)-extension. In case
there is at least one C(v)-extension, we say the game (N, K, v) is C-extendable.
The set of all C-extendable incomplete games with fixed K is denoted by C(K).

The sets of C-extensions studied in this text are always convex. One of the
main goals of the model of partially defined cooperative games is to describe
these sets using their extreme points and extreme rays whenever the description
is possible. We refer to the extreme points as to extreme games.

If the structure of C(v) is too difficult to describe and it is bounded from either
above or from below, we introduce the lower and the upper game.

Definition 2.3. (The lower game and the upper game of a set of C-extensions)
Let (N, K, v) be a C-extendable incomplete game. Then the lower game (N, v) of
C(v) and the upper game (N, v) of C(v) are complete games such that for any
(N, w) ∈ C(v) and any S ⊆ N , it holds

v(S) ≤ w(S) ≤ v(S),

and for each S ⊆ N , there are (N, w1), (N, w2) ∈ C(v) such that

v(S) = w1(S) and v(S) = w2(S).

These games delimit the area of R2|N| that contains the set of C-extensions.
Even if we know the description of C(v), the lower and the upper game are still
useful as they encapsulate a range of possible profits [v(S), v(S)] of coalition S
across all possible C-extensions.

In many situations in the cooperative game theory, full information of a coop-
erative game is not necessary for a satisfiable answer. For example, the τ -value
of a 1-convex cooperative game (N, v) depends only on values v(N) and v(N \ i)
for i ∈ N . What if there are other satisfiable ways to distribute the the payoff
between players that can be computed only from partial information encoded
by an incomplete game? Based on this question, we can generalise the solution
concept to incomplete games.

Definition 2.4. Let C(K) be a class of C-extendable n-person incomplete games.
Then function f : C(K) → 2Rn is a solution concept (on class C(K)).

If the image f((N, K, v)) of every game (N, K, v) ∈ C(K) is exactly one vector,
we write f : C(K) → Rn and we say f is a one-point solution concept. Otherwise,
we say f is a multi-point solution concept.

If f always returns at most one vector, we write f : C(K) → Rn, instead of
writing 2Rn as the domain and we say f is a one-point solution concept. Other-
wise, we say f is multi-point solution concept.

The model of partially defined cooperative games is still at its beginnings. One
of the most significant downsides of classical cooperative games is the complexity
of information required. For an n-person game, we have to consider 2n different
coalitions with corresponding values of the characteristic function and to be able
to apply the model, we often need all this information (the τ -value of 1-convex
games is rather an exception). As we have already stated, what if in certain
applications, not exponential, but, let us say, polynomial information in n is
required to find an acceptable solution?
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2.2 Classes of incomplete games
For complete cooperative games, we usually restrict ourselves to certain classes.
These classes determine properties of the characteristic function v : 2N → R. For
incomplete games, we do the same thing with one distinction. Not only we define
a class of incomplete games based on the properties of v : 2K → R, we can also
impose a specific structure on K itself. In this text, we have already encountered
classes of incomplete games when we discussed C-extendability. Incomplete games
that are C-extendable are an example of such classes. We can also define different
types of classes that do not presume C-extendability itself, but rather restrictions
of both K and v. These restrictions reflect both the needs of a certain model
of partial information or the need for simpler situations that can be more easily
studied and analysed.

In this subsection, we define several important classes of incomplete games
and discuss their applicability as well as advantages and disadvantages in the
analysis of incomplete games.

Incomplete games with minimal information

Definition 2.5. An incomplete game with minimal information (N, K, v) satis-
fies K = {∅, N} ∪ {{i}|i ∈ N}.

We say that an incomplete game (N, K, v) contains minimal information when
we want to talk about incomplete games for which K might contain other coali-
tions than singletons and the grand coalition, i.e. {∅, N} ∪ {{i}|i ∈ N} ⊆ K.
Furthermore, we define Kmin := {∅, N} ∪ {{i} | i ∈ N} to be able to distinguish
between general incomplete games and incomplete games with minimal informa-
tion only by employing the set of coalitions with known values. When using Kmin,
the set N is always clear from the context.

In our definition of minimal information we do not enforce any restriction
on values of v as opposed to the definition of minimal information in [19] where
v(i) ≥ 0 for i ∈ N . We refer to their definition as to non-negative games with
minimal information. Also, the minimality might be misleading since there is
also a class with K = N , which is studied, but this class does not posses a special
name in our text.

The condition N ∈ K is not unreasonably restrictive in the study of incomplete
games. First, it often implies an upper bound for the sets of different extensions
(for example for P n-extensions, N ∈ K characterises the boundedness of P n(v),
see Theorem 5.4). Also, many of the solution concepts for complete cooperative
games (and all of those considered in this text) satisfy efficiency of payoff vectors,
i.e. the payoff vector x ∈ Rn satisfies ∑︁i∈N xi = v(N).

Similarly, the singleton coalitions {i} for i ∈ N often imply a lower bound in
many situations. However, for example, the set of Cn

1 -extensions of incomplete
games with minimal information is not bounded from below (see 6.14).

The main advantage of the class of games with minimal information is in its
simplicity. Usually, for this class of incomplete games, the structure of the set
of C-extensions is simpler than for more general structures of K, thus also the
description of this set is more compact and yields a more elegant form. Therefore,
it serves as a good starting point when studying an unknown set of C-extensions.
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Also, from the point of view of applications, it is relatively easy to get all infor-
mation needed to study these classes.

Incomplete games with defined upper vector

Definition 2.6. An incomplete game with defined upper vector (N, K, v) satisfies
{N \ i|i ∈ N} ∪ {N} ⊆ K.

The upper vector bv of a complete game (N, v) depends precisely on values
of coalitions N and N \ i for i ∈ N . This is key information for the study
of Cn

1 -extensions as well as generalisations of the τ -value (see Section 6.3 for
Cn

1 -extendable incomplete games with defined upper vector). Also, it might be
interesting to study this class of incomplete games on further generalisations of
Cn

1 -extensions like extensions of balanced games, quasibalanced games and semibal-
anced games (see [31] for analysis and relation of corresponding classes of complete
games).

When we want to stress that K = {N, \i|i ∈ N} ∪ {N}, we call the game an
incomplete game with exactly the defined upper vector.

As we already know, the upper vector represents marginal contributions of
each player to the grand coalition N . In many real world situations, this is still
relatively accessible and meaningful information.

Incomplete games with non-negative singletons

Definition 2.7. An incomplete game with non-negative singletons (N, K, v) sat-
isfies {∅, N} ∪ {{i}|i ∈ N} ⊆ K and v(i) ≥ 0 for all i ∈ N .

This class was introduced in Masuya [19] as the most general case for the
study of Sn-extensions. The non-negativity of values of singletons, together with
minimal information, enforce boundedness of the set Sn(v) as well as a relatively
simple structure.

We believe this is still a reasonable class as there are many real-world prob-
lems representing the values of characteristic functions as profits or any sorts of
payment for which the non-negativity is natural.

The main disadvantage is, in our opinion, the loss of a complex structure of
the set of C-extensions. In the case of Sn-extensions, non-negativity together
with superadditivity enforce monotonicity of the characteristic function, a strong
property that does not hold in general for Sn-extensions of an incomplete game.

Symmetric incomplete games

Definition 2.8. An incomplete game (N, K, v) is symmetric if for all S, T ∈ K
such that |S| = |T |, it holds v(S) = v(T ).

For this class of incomplete games, we are interested in C-extensions that
are also symmetric complete games. These classes (denoted as Cσ-extensions)
are studied for their nice theoretical aspects. The symmetry usually causes a
simpler structure of Cσ-extensions, however, it might still preserve key properties
of the set and might help to build-up intuition for the study of C-extensions.
Although lacking any empirical evidence, this approach helped us in the study
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of Cn
1 -extensions (Chapter 6) and also gave us a better understanding of Cn-

extensions in Chapter 4.
Many one-point solution concepts distribute the payoff equally between all

players when applied to symmetric cooperative games. Therefore, if the set of
Cσ-extensions is nonempty, equal distribution is a good candidate for a payoff.

In this text, we also consider other classes of games but as they are always
used on a single occasion, we omit them in this subsection.
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3. Superadditivity
In this chapter, we focus on superadditivity and the set of superadditive exten-
sions, Sn-extensions. We summarize, review, and sometimes extend the results
given by Masuya and Inuiguchi [17, 18, 19]. Some of the proofs missing in the
mentioned publications are also provided. In Section 3.1, we discuss results for
incomplete games with non-negative singletons. We extend the known results
with a characterisation of Sn(v)-extendability (since it was not considered in
mentioned publications). We also review the lower game and the upper game
of the set of Sn-extensions as well as a subset of extreme games. For the sub-
set of extreme games, we provide missing proofs. The full description of the set
of Sn-extensions, however, remains unsolved. Section 3.2 is a survey of results
concerning non-negative games with minimal information from [19].

3.1 Games with non-negative singletons
In their first publication [19], Masuya and Inuiguchi considered what they called
general case of incomplete games. However, the set of coalitions of known values
K as well as the characteristic function v were restricted. We decided to refer
to these games as incomplete games with non-negative singletons. The class is
reasonable from the point of view of boundedness of Sn(v). There would be
no upper bound on the profit of N as well as there would be no lower bound
on the profits of singletons if these coalitions were not part of the set K. The
non-negativity of profit of all singletons together with superadditivity imply non-
negativity of values of all coalitions S ⊆ N , since for any Sn-extension (N, w),

0 ≤
∑︂
i∈N

v(i) =
∑︂
i∈N

w(i) ≤ w(S).

We want to point out that by maintaining the condition of N ∈ K and non-
negativity of the Sn-extensions, one could arrive at a similar, yet more general,
result without forcing the singletons to be a part of K.

Non-negative superadditive complete games are also monotonic games. The
monotonicity of the characteristic function enforces a simpler structure of Sn(v).
We therefore believe it is interesting to study Sn-extensions on more general
classes of incomplete games.

For the rest of this section, we consider (N, K, v) to be an incomplete game
with non-negative singletons, i.e. {{i} | i ∈ N} ∪ {∅, N} ⊆ K and v(i) ≥ 0.

Sn-extendability

The Sn-extendability of (N, K, v) was never considered in the work of Masuya and
Inuiguchi because of the different approach they took in their research. Instead
of defining an incomplete game and only then studying the set of possible Sn-
extensions, they supposed they already had a superadditive complete game but
only partial information was known. This slight difference simply expels the
question of Sn-extendability. In the following theorem, we present two characte-
risations of Sn-extendability, one following immediately from the other.
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Theorem 3.1. Let (N, K, v) be an incomplete game with non-negative singletons.
It is Sn-extendable if and only if one of the following characterisations holds.

1. For all S, S1, . . . , Ss ∈ K such that ⋃︁s
i=1 Si = S and Si ∩ Sj = ∅, it holds

s∑︂
i=1

v(Si) ≤ v(S). (3.1)

2. There is Sn(v)-extension (N, v) described as

v(S) := max
S

s∑︂
i=1

v(Si), (3.2)

where S := {S1, . . . , Ss ⊆ N | ⋃︁s
i=1 Si = S and Si ∩ Sj = ∅}.

Proof. If (N, v) is Sn-extension, the incomplete game is clearly Sn-extendable.
Also, if there are S, S1, . . . , Ss ∈ K such that the inequality (3.1) does not hold,
there is no Sn-extension (N, w), since w(S) = v(S) and w(Si) = v(Si) for i ∈
{1, . . . , s}, therefore (N, w) is not superadditive. To conclude the proof, we show
the characterisations are equivalent.

First, suppose that conditions (3.1) hold. For S ∈ K, v(S) = v(S) as v(S) ≥
v(S) follows from (3.1) and v(S) ≤ v(S) follows from (3.2) (for {S} ∈ S).

To prove the superadditivity of (N, v), let A, B ⊆ N such that A ∩ B = ∅.
Define

A := {A1, . . . , Aa ⊆ N |
a⋃︂

i=1
Ai = A and Ai ∩ Aj = ∅},

B := {B1, . . . , Bb ⊆ N |
b⋃︂

i=1
Bi = B and Bi ∩ Bj = ∅}, and

C := {C1, . . . , Cc ⊆ N |
c⋃︂

i=1
Ci = A ∪ B and Ci ∩ Cj = ∅}.

For collections {A1, . . . , Aa} ∈ A and {B1, . . . , Bb} ∈ B, it holds from A ∩ B = ∅
that together, {A1, . . . , Aa, B1, . . . , Bb} ∈ C, and

v(A)+v(B) = max
A

(︄
a∑︂

i=1
v(Ai)

)︄
+max

B

(︄
b∑︂

i=1
v(Bi)

)︄
≤ max

C

(︄
c∑︂

i=1
v(Ci)

)︄
= v(A∪B).

This implies (N, v) is superadditive and concludes (N, v) ∈ Sn(v).
Second, suppose (N, v), defined by (3.2), is an Sn(v)-extension. As (N, v) is

superadditive and for S ∈ K, v(S) = v(S), the inequalities in (3.1) must hold.

The upper and the lower game

It is not a coincidence that the game (N, v) resembles the lower game from De-
finition 2.3. The next theorem introduces its counterpart, the upper game, and
states that together they bound the set of Sn(v).
Theorem 3.2. [19] Let (N, K, v) be Sn-extendable incomplete game with non-
negative singletons. Then complete game (N, v) from Theorem 3.1 and complete
game (N, v) defined as

v(S) := min
T ∈K:S⊆T

v(T ) − v(T \ S).

are the lower game and the upper game, respectively.
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For the lower game (N, v), we have already seen that it is a part of Sn(v). For
the upper game, however, this is not always truth, since it might not be super-
additive in general. Let (N, K, v) be a 4-player incomplete game with minimal
information as defined in Table 3.1.

v(1) v(2) v(3) v(4) v(1234)
8 7 3 1 30

Table 3.1: An example of non-superadditive upper game (N, v).

For S = {1, 2} and T = {3, 4}, v(S) + v(T ) = 26 + 15 ̸≤ 30 = v(S ∪ T ),
therefore the game is not superadditive.

As we have already discussed, the games of Sn(v) are monotonic and so is the
upper game.

Theorem 3.3. [19] For an Sn-extendable incomplete game (N, K, v), the upper
game (N, v) is monotonic.

A question under what circumstances (N, v) is superadditive remains unan-
swered and we leave it as an open problem.

Extreme games of the set Sn(v)

Extreme games of Sn-extendable incomplete games with non-negative singletons
were considered in [18]. All of the results in the publication are stated without
proofs. We provide proofs for a part of the results and leave out the main result
(Theorem 2 in the publication) as well as all results concerning solution concepts.
We do so after a recommendation by the author as these are only preliminary
results.

Let T = {T1, . . . , Tk} be a set of coalitions such that Ti ̸∈ K for every i and
Ti ⊈ Tj for i ̸= j. For an Sn-extendable game (N, K, v), define games (N, vT ) as

vT (S), :=

⎧⎪⎪⎨⎪⎪⎩
v(S), if S ̸∈ K and there is T ∈ T , T ⊆ S,

v(S), if S ̸∈ K and for all T ∈ T , T ⊈ S,

v(S), if S ∈ K.

(3.3)

These games are not superadditive in general, but if they are, they are extreme
games of Sn(v).

Theorem 3.4. Let (N, K, v) be an Sn-extendable incomplete game with non-ne-
gative singletons. A complete game (N, vT ) is an extreme game of Sn(v) if and
only if (N, vT ) ∈ Sn(v).

Proof. If (N, vT ) /∈ Sn(v), it cannot be considered as an extreme game. Let
(N, vT ) ∈ Sn(v) and suppose, for a contradiction, (N, vT ) is not an extreme
game of Sn(v). By Definition 1.3, there are Sn-extensions (N, x) and (N, y) such
that vT = λx+(1−λ)y for 0 < λ < 1. In other words, there is a coalition S such
that x(S) < vT (S) < y(S). If vT (S) = v(S), the first inequality leads to a con-
tradiction as v(S) is the lower bound on the profit of S among all Sn-extensions.
Similarly, if vT (S) = v(S), the second inequality leads to a contradiction as v(S)
is, in turn, the upper bound on the profit of S among all Sn-extensions. Therefore,
(N, vT ) is an extreme game of Sn(v).
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Unfortunately, in general, not all games (N, vT ) are Sn(v)-extensions. How-
ever, there is a subset of these games with a simple sufficient condition ensuring
superadditivity of (N, vT ).

Theorem 3.5. Let T = {T1, . . . , Tk} be a set of coalitions such that Ti ̸∈ K for
every i and Ti ⊈ Tj for i ̸= j and let for every Ti ∈ T , |Ti| > ⌈n

2 ⌉. Then (N, vT )
in an Sn(v)-extension.

Proof. For coalitions S, T ⊆ N such that S ∩ T = ∅, there are only three possible
forms of the vT (S)+vT (T ) ≤ vT (S ∪T ) depending on the values of vT . The first
form

v(S) + v(T ) ≤ v(S ∪ T )
holds, since (N, v)Sn(v) is superadditive. The second form

v(S) + v(T ) ≤ v(S ∪ T )

holds since v(S) + v(T ) ≤ v(S ∪ T ) ≤ v(S ∪ T ). Finally, the third form

v(S) + v(T ) ≤ v(S ∪ T ).

holds, because for (N, w) ∈ Sn(v) such that w(T ) = v(T ),

v(S) + v(T ) ≤ w(S) + w(T ) ≤ w(S ∪ T ) ≤ v(S ∪ T ).

We note such game (N, w) exists from the definition of the upper game (see
Definition 2.3).

There are two questions concerning extreme games of Sn(v) that remain unan-
swered. First, there is the characterisation of all collections T for which (N, vT )
is superadditive. Second, it is not clear if there are other extreme games different
from (N, vT ).

3.2 Non-negative incomplete games with mini-
mal information

In this section, non-negative incomplete games with minimal information are
considered. Those are incomplete games with minimal information such that
v(i) ≥ 0 for all i ∈ N . Following results by Masuya and Inuiguchi [19], in Subsec-
tion 3.2.1, a description of the set of Sn(v)-extensions is proposed. An interesting
aspect of the description is that the set is not described by its extreme games
but by extreme games of positive extensions (P n-extensions). Solution concepts
for non-negative incomplete games with minimal information are considered in
Subsection 3.2.2. Those are defined as solution concepts for special complete
Sn-extensions. Namely the Shapley value of the lower game, the upper game
and any almost symmetric game (N, s) (properly defined further in the subsec-
tion) are studied. Surprisingly, all three solution concepts coincide for the class
of non-negative incomplete games with minimal information. A similar research
was done for the nucleolus, however, all six solution concepts proved to be equal.
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3.2.1 Description of the set of Sn-extensions
Following from Theorems 3.1 and 3.2, the lower and the upper games can be
expressed as

v(S) =
⎧⎨⎩v(S), if S ∈ K,∑︁

i∈S v(i), if S /∈ K,
and v(S) =

⎧⎨⎩v(S), if S ∈ K,

v(N), if S /∈ K.

Equivalently, when we employ the total excess ∆ := v(N) −∑︁
i∈N v(i), the games

can be rewritten as

v(S) =

⎧⎪⎪⎨⎪⎪⎩
0 if S = ∅,∑︁

i∈S v(i) + ∆, if S = N,∑︁
i∈S v(i), otherwise,

and v(S) =

⎧⎪⎪⎨⎪⎪⎩
0, if S = ∅,

v(i), if S = i,∑︁
i∈S v(i) + ∆, otherwise.

For the lower game, the total excess ∆ is assigned only to the grand coalition N .
However, for the upper game, the total excess is assigned to every non-singleton
coalition S.

It was proved in [19] that the lower game (N, v) of Sn-extensions defined in
Theorem 3.1 is actually a positive game. This will help us to state a simplified
characterisations of Sn-extendability.

Theorem 3.6. Let (N, K, v) be a non-negative incomplete game with minimal
information. It is Sn-extendable if and only if ∆ ≥ 0.

Proof. For the lower game (N, v), it holds dw(i) = v(i) for any i ∈ N . Further-
more, it holds

v(N) = w(N) =
∑︂

∅≠S⊆N

dw(S) ≥
∑︂
i∈N

dw(i) =
∑︂
i∈N

v(i),

where the inequality holds from positivity of (N, v). It follows ∆ ≥ 0 is a necessary
condition for P n(v)-extension (N, v).

If ∆ ≥ 0, a game (N, w) defined by dividends

• dw(i) := v(i) for i ∈ N ,

• dw(N) := ∆, and

• dw(S) := 0 otherwise

is clearly a P n(v)-extension, thus an Sn(v)-extension.

The description of Sn(v) is based on games (N, vT ), parameterised by coali-
tions ∅ ≠ T ⊆ N , defined as

vT (S) =

⎧⎪⎪⎨⎪⎪⎩
v(S), if S ∈ K,

v(S), if S /∈ K and T ⊆ S,

v(S), if S /∈ K and T ⊊ S.

(3.4)

These games actually form the extreme games of P n-extensions (we will address
this in Section 5.2.2). When zero-normalised, these games are described as

vT
0 (S) =

⎧⎨⎩∆, if T ⊆ S,

0, otherwise.
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Any such game (N, vT
0 ) can be rewritten as vT

0 = ∆uT where (N, uT ) is a una-
nimity game. The unanimity games form a basis of cooperative games, therefore,
any zero-normalised game (N, w0) can be expressed as a linear combination of
games (N, vT

0 ) for |T | > 1 with coefficients αS = dw0 (S)
∆ . To remain in the set of

Sn-extensions, we have to enforce ∑︁S⊆N,|S|>1 αS = 1. To enforce superadditivity
of (N, w0), i.e.

w0(S1) + w0(S2) =
∑︂

S′⊆S1

dw0(S ′) +
∑︂

S′⊆S2

dw0(S ′) ≤
∑︂

S′⊆S1∪S2

dw0(S ′) = v(S1 ∪ S2),

the middle inequality must hold for every S1, S2 ⊆ N such that S1 ∩ S2 = ∅. By
subtracting the left-hand side of the inequality from the right-hand side of the
inequality, we get

0 ≤
∑︂

S′⊆S1∪S2,S′⊈S1,S′⊈S2

dw0(S ′).

We denote the set of such coalitions S ′ by E(S1, S2). It holds,

0 ≤
∑︂

S′∈E(S1,S2)
dw0(S ′) ⇐⇒ 0 ≤

∑︂
S′∈E(S1,S2)

αS
′ .

All these conditions hold for zero-normalised Sn-extensions if and only if they
holds for Sn(v)-extensions. In the theorem, we employ N1 := {T ∈ 2N | |T | > 1}
and N2 := {(S1, S2) ∈ 2N × 2N | S1 ∩ S2 = ∅}.

Theorem 3.7. [19] Let (N, K, v) be an Sn-extendable non-negative incomplete
game with minimal information and let (N, vT ) for T ∈ N1 be games from (3.4).
The set of Sn-extension can be expressed as

Sn(v) =
⎧⎨⎩ ∑︂

T ∈N1

αT vT |
∑︂

T ∈N1

αT = 1, (S1, S2) ∈ N2 :
∑︂

T ∈E(S1,S2)
αT ≥ 0

⎫⎬⎭ , (3.5)

where E(S1, S2) := {T ⊆ S1 ∪ S2 | T ⊈ S1 and T ⊈ S2}.

3.2.2 Solution concepts
There are three different solution concepts for non-negative incomplete games
with minimal information that are considered in [19]. For all of them, a special
Sn-extension is considered, namely (N, v), (N, v) and (N, s) which is an arbitrary
Sn-extension such that for all S, T ⊆ N , |S| = |T | > 1, it holds s(S) = s(T ).
Notice, game (N, s) is almost symmetric (except for values of i ∈ N) and we will
refer to such games by this name. Authors of [19] believe such games are of special
importance. It is because the only information about S, T /∈ K within (N, K, v)
is these coalitions are of the same size and without a further assumption, it would
seem unreasonable to assign higher profit to either of them. For all of these three
complete games, the Shapley value is computed, and surprisingly, for all three
games, the Shapley value coincide.

Theorem 3.8. [19] Let (N, K, v) be an Sn-extendable non-negative incomplete
game with minimal information and let (N, v), (N, v) and (N, s) be the lower
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game, the upper game and any almost symmetric Sn-extension. Then it holds
that

ϕ(v) = ϕ(v) = ϕ(s),
explicitly,

ϕi(v) = ϕi(v) = ϕi(s) = v(i) + ∆
n

.

A similar result is derived for the nucleolus. This is only thanks to the result by
Driessen [10], stating that for symmetric complete games (N, v), the Shapley value
and the nucleolus coincide. This is important, because under zero-normalisation,
games (N, v0), (N, v0) and (N, s0) are symmetric. The proof of the following
theorem is based on these two facts.

Theorem 3.9. [19] Let (N, K, v) be an Sn-extendable non-negative incomplete
game with minimal information and let (N, v), (N, v) and (N, s) be the lower
game, the upper game and any almost symmetric Sn-extension. It holds that

η(v) = η(v) = η(s),

explicitly,
ηi(v) = ηi(v) = ηi(s) = v(i) + ∆

n
.

We see that the value v(i) + ∆
n

is a good candidate for the payoff of player i
under Sn-extendable non-negative incomplete games with minimal information.
We will prove ((in Section 6.2)) the same value is a good candidate for the pay-
off of player i under Cn

1 -extendable incomplete game with minimal information.
However, we shall use a different approach.
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4. Convexity
In this chapter, we investigate Cn-extensions of (N, K, v). The condition of con-
vexity of cooperative games can be viewed from the point of view of set functions
as supermodularity. If we change the relation in the convexity condition, we
arrive to submodularity. Both super- and submodularity are properties of set
functions that are widely studied in discrete optimization as well as in other ar-
eas of mathematics [1, 2, 11, 16]. In Section 4.1, we utilize the connection between
these two worlds, arriving to characterisation of Cn-extendability, followed by an
example of an application of this characterisation. After that, in Section 4.2, we
study a set of convex extensions that is further restricted by symmetry of the
players. Even though these extensions are not interesting from the point of view
of solution concepts (as every player receives the same payoff in these games),
they serve as a good illustration and, as we believe, a good starting point for
the study of more general settings. We give a full characterisation of the lower
and the upper game of this set and a description of the set employing extreme
points. We conclude the section by yet another geometrical interpretation of the
set. Finally, in Section 4.3, we described the set of Cn-extensions of non-negative
incomplete games with minimal information. This description is inspired by a
description of Sn-extensions from Subsection 3.2.1.

4.1 Cn-extendability
As we already mentioned at the beginning of this chapter, submodularity of a
set function v : 2N → R is closely connected to convexity of the corresponding
cooperative game. This is because a characteristic function is submodular if for
every S, T ⊆ N ,

v(S) + v(T ) ≥ v(S ∪ T ) + v(S ∩ T ).
For any submodular function v, we can construct corresponding convex (or some-
times called supermodular) function −v. Therefore, results arising from the study
of one concept can be considered for the other and vice versa.

The study of extendability of submodular functions initiated by Seshadhri and
Vondrák in 2014 [24]. They introduced path certificate, a combinatorial structure
whose existence certifies that a submodular function is not extendable. They
also showed an example of a partial function defined on almost all coalitions that
is not extendable, but by removing a value for any coalition, the game becomes
extendable. Later in 2018, Bhaskar and Kumar [1] studied extendability of several
classes of set functions, including submodular functions. Inspired by the results of
Seshadhri and Vondrák, they introduced a more natural combinatorial certificate
of non-extendability — square certificate. Using this concept, they were able
to show that a submodular function is extendable on the entire domain if and
only if it is extendable on the lattice closure of the sets with defined values. In
2019, the same authors showed that the problem of extendability for a subclass
of submodular functions, so called coverage functions, is NP-complete. For more
information on coverage functions, see [2].

We present here a characterisation that employs lattice closure. The lattice
closure LC(K) of a set of points K ⊆ 2N in a partially ordered set (2N , ⊆) is
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the inclusion-minimal subset of 2N that contains K and that is closed under the
operation of union and intersection of sets.

Theorem 4.1. [1] Let f : K → R be a partial function on the power set 2N . Let
F := LC(K) ∩ {S : ∃Ti, Tj ∈ K s.t. Tj ⊆ S ⊆ Ti} be the sets obtained by an
intersection of the lattice closure of K and the sets that are also both contained
in and contained by sets in K. If the partial function f can be extended to a
submodular function on F , then it can be extended to a submodular function on
2N .

For incomplete games with special structure of K, Theorem 4.1 yields even
stronger results. We take as an example an incomplete game where the set of
known coalitions forms a chain, i.e. for every S, T ∈ K, it holds that either S ⊆ T
or T ⊆ S. This result indicates that there are structures of K for which the
Cn-extendability is independent on the values of v.

Theorem 4.2. Let (N, K, v) be an incomplete game with K forming a chain.
Then (N, K, v) is Cn-extendable.

Proof. For K forming a chain, suppose A, B ∈ K such that A ⊆ B. It holds
A ∩ B = A ∈ K and A ∪ B = B ∈ K, thus the lattice closure of K as well as F
is the set K itself. Since the function v is defined on F , we only need to show
that condition v(A) + v(B) ≤ v(A ∪ B) + v(A ∩ B) holds for any A, B ∈ K.
But we already know (for A ⊆ B) that v(A ∪ B) = v(B) and v(A ∩ B) = v(A).
Hence the conditions hold and by a result analogous to Theorem 4.1, (N, K, v) is
Cn-extendable.

4.2 Symmetric incomplete games
In this section, we restrict ourselves to the set of symmetric convex extensions
denoted by Cn

σ or, if we want to stress the connection to a game (N, K, v), we
denote it by Cn

σ (v). We exploit properties of the characteristic function of sym-
metric convex games to describe the lower and the upper game of symmetric
convex extensions. The additional property of symmetry yields compact (and by
our opinion elegant) descriptions.

The fundamental idea behind our results is based on the following characte-
risation of symmetric convex games.

Proposition 4.3. Let (N, v) be a symmetric cooperative game. Then for every
S ⊊ N \ j and i ∈ S, it holds that

v(S) ≤ v(S \ i) + v(S ∪ j)
2 (4.1)

if and only if the game is convex.

Proof. If the game is symmetric convex, we consider the characterisation from
Theorem 1.7 for coalitions S, S ∪ j and i ∈ S, obtaining

v(S) − v(S \ i) ≤ v(S ∪ j) − v(S ∪ j \ i). (4.2)
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Because |(S ∪ j) \ i| = |S|, we have v((S ∪ j) \ i) = v(S) by symmetry. By adding
v(S) to (4.2) and rearranging the inequality, we get (4.1)

v(S) ≤ v(S \ i) + v(S ∪ j)
2 .

For the opposite implication, suppose that conditions (4.1) hold and (N, v) is
not convex. Then there is a player k ∈ N and coalitions T1 ⊊ T2 ⊆ N \ k for
which the condition from Theorem 1.7 is violated, i.e.

v(T1 ∪ k) − v(T1) > v(T2 ∪ k) − v(T2). (4.3)

We choose player k and coalitions T1, T2 such that the difference |T2| − |T1| is
minimal. We distinguish two possible cases.

1. If |T2| − |T1| = 1, then by symmetry of v, we have that v(T2) = v(T1 ∪ k).
In that case, we get

v(T2) >
v(T1) + v(T2 ∪ k)

2 .

Furthermore, there exists a unique ℓ ∈ T2 \ T1 such that T1 ∪ ℓ = T2. Thus
we can write

v(T2) >
v(T2 \ ℓ) + v(T2 ∪ k)

2 ,

which leads to a contradiction with (4.1).

2. If |T2|−|T1| > 1, then there is a coalition T3 such that T1 ⊊ T3 ⊊ T2 ⊆ N \k.
By minimality of |T2| − |T1|, we know that

v(T1 ∪ k) − v(T1) ≤ v(T3 ∪ k) − v(T3) (4.4)

and
v(T3 ∪ k) − v(T3) ≤ v(T2 ∪ k) − v(T2). (4.5)

By adding (4.4) and (4.5) together, we get

v(T1 ∪ k) − v(T1) ≤ v(T2 ∪ k) − v(T2),

which is a contradiction with (4.3).

We note that the characterisation from Proposition 4.3 does not hold for
general convex games. This can be seen in the following example.
Example. (A convex game not satisfying conditions from Proposition 4.3)
The game (N, v) given in Table 4.2 is convex, as can be easily checked. However,
the inequality

v({1, 3}) ≤ v({1}) + v({1, 2, 3})
2

is not satisfied, as 6 ≰ 1+9
2 .

For symmetric games, we can denote by s(k) the value of v(S) of any S ⊆ N
such that |S| = k. This allows us to formulate the following characterisation of
symmetric convex games.
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S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v(S) 1 1 1 4 6 4 9

Table 4.1: The game (N, v) from Example 4.2 with its characteristic function
given in the table.

Theorem 4.4. A game (N, v) is symmetric convex if and only if for all k ∈
{1, . . . , n − 1},

s(k) ≤ s(k − 1) + s(k + 1)
2 . (4.6)

Hence we can associate every symmetric convex game (N, v) with a function
s : {0, . . . , n} → R having the above property. Similarly, we can apply this to
(N, K, v) with a function σ : X → R where X ⊆ {0, . . . , n} is constructed from
K. To formalise these constructions, we define reduced forms of games (N, v) and
(N, K, v).

Definition 4.1. Let (N, v) be a symmetric game and (N, K, v) a symmetric in-
complete game.

• The reduced form of a game (N, v) is an ordered pair (N, s), where the
function s : {0, . . . , n} → R is a reduced characteristic function such that
s(k) := v(S) for any S ⊆ N with |S| = k.

• The reduced form of an incomplete game (N, K, v) is a tuple (N, X , σ) where
X = {i| i ∈ {0, . . . , n} , ∃S ∈ K : |S| = i} and the function σ : X → R is
defined as σ(k) := v(S) for any S ∈ K such that |S| = k.

We also call (N, s) and (N, X , σ) the reduced game and the reduced incomplete
game, respectively.

Since ∅ always belongs to K, for every reduced incomplete game (N, X , σ), it
also holds that 0 ∈ X and σ(0) = 0. When we consider a reduced game (N, s)
of a Cn

σ (v)-extension, we often denote this, for brevity, by (N, s) ∈ Cn
σ (v). By X,

we denote the complement of X in {0, . . . , n}, i.e. X := {0, . . . , n} \ X .
Notice that a game (N, v) is symmetric convex if and only if the function s of

its reduced form (N, s) satisfies property (4.6) from Theorem 4.4.
We can visualize the reduced form (N, s) of a symmetric convex game (N, v)

by a graph in R2. On the x-axis we put the coalition sizes and on the y-axis the
values of s. The point (0, 0) is fixed for all reduced games. Now by Theorem 4.4,
the conditions for k ∈ {1, . . . , n − 1} enforce that for i ∈ {0, . . . , n}, points
(i, s(i)) lie in a convex position. More precisely, if we connect the neighbouring
pairs (i, s(i)), (i+1, s(i+1)) (where i ∈ {0, . . . , n−1}) by line segments, we obtain
a graph of a convex function. The graph is illustrated in an example in Figure 4.1.
Further in this text, we refer to this function as the line chart of (N, s). Similarly,
for (N, X , σ), the line chart is obtained by connecting consecutive elements from
X by line segments. If n ∈ X , the rightmost line segment is extended to end
at x-coordinate n. The values of s are then set to lie on the union of these line
segments.

For an incomplete game in reduced form, i.e. (N, X , σ), the first question that
arises is that of Cn

σ -extendability. For X = {0, i} with i ∈ {1, . . . , n}, the game is
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Figure 4.1: Examples of line charts of symmetric convex games in their reduced
forms. The figure on the left depicts a game (N, s) where s(1) > 0, the graph on
the right a situation where s(1) < 0. The slopes of the line segments are bounded
by convexity of the function.

always Cn
σ -extendable (a possible Cn

σ -extension is the one where the values of each
coalition size lie on the line coming through (0, σ(0)) and (i, σ(i))). Therefore, in
the following theorem, we consider |X | > 2.

Cn
σ -extendability

Theorem 4.5. Let (N, X , σ) be a reduced form of a symmetric incomplete game
(N, K, v) where |X | > 2. The game is Cn

σ -extendable if and only if

σ(k2) ≤ σ(k1) + (k2 − k1)
σ(k3) − σ(k1)

k3 − k1
,

for all consecutive elements k1 < k2 < k3 from X .

Proof. If the game is Cn
σ -extendable, let (N, s) be the reduced form of any of its

Cn
σ -extension. By Theorem 4.4, the line chart of (N, s) is a convex function that

coincides with σ on the values of X . Therefore, for any consecutive elements
k1, k2, k3 from X , the inequality must hold.

For the opposite implication, we construct a Cn
σ (v)-extension by setting the

values of s to lie on the line chart of (N, X , σ). The construction is illustrated in
Figure 4.2.

Notice that s(k) = σ(k) for k ∈ X and also, because the inequalities for
consecutive elements k1, k2, k3 from X hold, the line chart represents a convex
function. Thus for all k ∈ {1, . . . , n − 1}, it holds

s(k) ≤ s(k − 1) + s(k + 1)
2

and by Theorem 4.4, the game (N, s) ∈ Cn
σ (v).

As a direct consequence of the previous theorem, the problem of Cn
σ -extenda-

bility of symmetric incomplete games can be decided in linear time with respect
to the size of the original game (i.e. the size of the characteristic function).
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Figure 4.2: The construction of a Cn
σ -extension of (N, X , σ) where X =

{x1, x2, x3, x4}, using the line chart of (N, X , σ). The value s(k) lies on the
line segment connecting (x3, σ(x3)) and (x4, σ(x4)).

The lower game and the upper game

The following proposition addresses the boundedness of the set of Cn
σ -extensions.

The restriction to |N | ≥ 3 is without loss of generality, because for |N | ≤ 2, when
the game (N, X , σ) is not complete and is Cn

σ -extendable, the set of Cn
σ -extensions

is always unbounded.

Proposition 4.6. Let (N, X , σ) be the reduced form of a Cn
σ -extendable symmet-

ric incomplete game (N, K, v) with |N | ≥ 3. The Cn
σ (v) is bounded if and only if

|X | ≥ 3 and n ∈ X .

Proof. Let (N, X , σ) be the reduced form of a Cn
σ -extendable incomplete game.

If n ∈ X , clearly, from Theorem 4.4 there is no upper bound on the profit of
n. Let n ∈ X and suppose for a contradiction that there is k ∈ N such that
there is no upper bound on its profit. Choose a Cn

σ (v)-extension (N, s) such that
s(k) > k σ(n)

n
. The line chart of (N, s) is not a convex function (the property is

violated for (0, s(0)), (k, s(k)), (n, s(n))), therefore (N, s) ̸∈ Cn
σ (v).

If |X | ≤ 2, then X = {0, n} (otherwise the set of Cn
σ -extensions is not bounded

from above). Let ℓ be a negative value smaller than or equal to σ(n). Any game
(N, sℓ) with sℓ(k) = ℓ for k ∈ {1, . . . , n − 1} and sℓ(0) = σ(0), sℓ(n) = σ(n)
is a Cn

σ (v)-extension of (N, X , σ). Thus, there is no lower bound on values of
1, . . . , n − 1.

If |X | ≥ 3, then let i ∈ X \ {0, n}. For k ∈ {1, . . . , i − 1}, the point (k, s(k))
must lie on or above the line coming through points (i, σ(i)), (n, σ(n)), otherwise
the convexity of line chart of (N, s) is violated, leading to a contradiction. Sim-
ilarly, for any k ∈ {i + 1, . . . , n − 1} the value s(k) must lie on or above the
line coming through points (0, σ(0)), (i, σ(i)), otherwise the convexity is violated,
again. The profit of every k is therefore bounded from below.

Theorem 4.7. Let (N, X , σ) be the reduced form of a Cn
σ -extendable symmetric

incomplete game. Suppose that Cn
σ (v) is bounded. Furthermore, for every k ∈ X ,

denote by i1, i2, j1, j2 the closest distinct elements from X such that it holds
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i1 < i2 < k < j1 < j2, if they exist. Then the lower game has the following form:

s(k) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ(k), if k ∈ K,

σ(i1) + (k − i1)σ(i2)−σ(i1)
i2−i1

, if k ̸∈ K and j2 does not exist,
σ(j1) + (k − j1)σ(j2)−σ(j1)

j2−j1
, if k ̸∈ K and i1 does not exist,

max
⎧⎨⎩σ(i1) + (k − i1)σ(i2)−σ(i1)

i2−i1
,

σ(j1) + (k − j1)σ(j2)−σ(j1)
j2−j1

⎫⎬⎭ , if k ̸∈ K and i1, i2, j1, j2 exist.

The upper game has the following form:

s(k) :=
⎧⎨⎩σ(k), if k ∈ X ,

σ(i2) + (k − i2)σ(j1)−σ(i2)
j1−i2

, otherwise.

Proof. To prove that (N, s) is the lower game, we start by showing that for every
Cn

σ -extension (N, w) and every coalition size k ∈ N , it holds that s(k) ≤ w(k). If
k ∈ X , trivially s(k) = σ(k) = w(k). If k /∈ X , then since any Cn

σ -extension must
have a convex line chart, the value w(k) must lie on or above the lines coming
through pairs of points (i1, σ(i1)), (i2, σ(i2)) and (j1, σ(j1)), (j2, σ(j2)). The three
cases in the definition of the lower game capture this fact by setting the value of
s(k) so that it lies on either one of the lines (if the other one does not exist) or
on the maximum of both of them.

Now it remains to show that for every k ∈ N , the value s(k) is attained for at
least one Cn

σ -extension. We introduce a Cn
σ -extension (N, s{a,b}) for consecutive

a, b ∈ X such that a < b, described as

s{a,b}(ℓ) :=

⎧⎪⎪⎨⎪⎪⎩
σ(ℓ), if ℓ ∈ X ,

s(ℓ), if ℓ /∈ X and a < ℓ < b,

s(ℓ), if ℓ /∈ X and either ℓ < a, or b < ℓ.

Clearly the game is an extension of (N, X , σ). For i ∈ {2, . . . , n−1} such that all
three values s{a,b}(i − 1), s{a,b}(i), s{a,b}(i + 1) coincide with the respective values
of the upper game s, it holds s{a,b}(i) ≤ s{a,b}(i−1)+s{a,b}(i+1)

2 , because (N, s) is a
symmetric convex game (as we show further in this proof) so by Theorem 4.4,
the same inequality holds for values of s. In the rest of the cases, either all the
three points (i − 1, s{a,b}(i − 1)), (i, s{a,b}(i)), (i + 1, s{a,b}(i + 1)) lie on the same
line and the inequality holds with the equal sign, or the three points lie on the
maximum of two lines coming through pairs of points (a2, σ(a2)), (a, σ(a)) and
(b, σ(b)), (b2, σ(b2)) where a2 < a and b < b2 are consecutive pairs from X . If
s{a,b}(i) > s{a,b}(i−1)+s{a,b}(i+1)

2 , then either σ(a) > σ(a2) + (a − a2)σ(b)−σ(a2)
b−a2

or
σ(b) > σ(a) + (b − a)σ(b2)−σ(a)

b2−a
, both resulting, by Theorem 4.5, in a contradiction

with the Cn
σ -extendability of (N, X , σ). Now for k ∈ X , we choose (N, s{a,b})

such that a = k and for k /∈ X , we choose (N, s{a,b}) such that a < k < b are the
closest coalition sizes with defined value.

For the upper game (N, s), suppose for a contradiction that there is the re-
duced form (N, s) of a Cn

σ (v)-extension such that for k ∈ N , s(k) < s(k). As
for k ∈ X , s(k) = σ(k) = s(k), it must be that k /∈ X . But if k /∈ X and
s(k) = σ(i2)+(k − i2)σ(j1)−σ(i2)

j1−i2
< s(k), the convexity of the line chart is violated,
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Figure 4.3: An example of a reduced game (N, X , σ) with X = {0, 1, 2, 4, 6} where
the condition s(3)+s(5)

2 ≱ s(4) from Theorem 4.4 is not satisfied. This implies that
(N, s) is not a Cn

σ -extension of (N, X , σ).

because (k, s(k)) lies above the line segment between points (i2, σ(i2)),(j1, σ(j1)).
This is a contradiction.

Now we prove that (N, s) is a Cn
σ -extension of (N, X , σ). First, it is clearly an

extension. Furthermore, notice that the values of (N, s) lie on the line chart of
(N, X , σ). Since the game is Cn

σ -extendable, the line chart is a convex function,
therefore inequalities (4.6) from Theorem 4.4 hold, meaning (N, s) ∈ Cn

σ (v).

The game (N, s) is always a Cn
σ -extension, however, this is not true for (N, s)

in general, as can be seen in the example in Figure 4.3.

Extreme games

The games (N, s{a,b}) are actually even more important because they are extreme
games of Cn

σ (v).

Proposition 4.8. Let (N, X , σ) be the reduced form of a Cn
σ -extendable symmet-

ric incomplete game (N, K, v). The games (N, s{a,b}) for consecutive a, b ∈ X ,
where a < b, and (N, s), are extreme games of Cn

σ (v).

Proof. For a contradiction, suppose that for some a, b, (N, s{a,b}) is not an extreme
game of Cn

σ (v). By Definition 1.3, there are two Cn
σ (v)-extensions (N, s1) and

(N, s2) such that (N, s{a,b}) is their nontrivial convex combination and without
loss of generality, there is i ∈ {0, . . . , n} such that s1(i) < s{a,b}(i) < s2(i).
For i ∈ X , this is not possible as s1(i) = s2(i) = s{a,b}(i). Furthermore, for
i /∈ X and a < i < b, this is a contradiction with s1(i) < s{a,b}(i) = s(i) and
finally for i /∈ X and either i < a or b < i, we get again a contradiction because
s(i) = s{a,b}(i) < s2(i). Following a similar argument, we conclude that the upper
game (N, s) is also an extreme game.

In general, (N, s) and (N, s{a,b}) are not the only extreme games. In the
following theorem, we describe all the extreme games of Cn

σ (v).

Theorem 4.9. Let (N, X , σ) be the reduced form of a Cn
σ -extendable symmetric

incomplete game such that Cn
σ (v) is bounded. For k ∈ {0, . . . , n}\X and i, j ∈ X
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closest to k such that i < k < j, the games (N, sk) defined as

sk(m) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ(m), if m ∈ X ,

s(m), if m /∈ X and either m < i or j < m,

s(m), if m = k,

σ(j) + (m − j)σ(j)−s(k)
j−k

, if m /∈ X and k < m < j,

σ(i) + (m − i) s(k)−σ(i)
k−i

, if m /∈ X and i < m < k

together with (N, s) form all the extreme games of Cn
σ (v).

Proof. We divide the proof into two parts. In the first part, we show that any
Cn

σ (v)-extension (N, s) is a convex combination of games (N, s) and (N, sk) for
k ∈ X . In the second part, we show that every game (N, sk) is an extreme game,
thus (together with the upper game (N, s)) they form all the extreme games.

Before we begin, let us define a gap as an inclusion-wise maximal nonempty
sequence of consecutive coalition sizes with undefined profit. In other words, we
can say that there is a gap between i and j if i, j ∈ X , i < j, j − i > 1, and for
every i′ such that i < i′ < j, it holds i′ ∈ X . The size of the gap between i and j
is defined as j − i − 1, that is the number of coalition sizes with unknown values
in the given gap. It is immediate that the size of every gap is at least one.

We shall now prove the first part of the theorem. First, let us suppose that
there is only one gap in (N, X , σ). We shall prove this case by induction on the
size of the gap.

If the size of the gap is 1, there is only one game (N, sk) that is equal to
(N, s{k−1,k+1}). Any Cn

σ -extension (N, s) can be expressed as a convex combina-
tion of this game and the upper game (N, s) as s = αsk + (1 − α)s with

α = s(k) − s(k)
sk(k) − s(k) ∈ [0, 1].

For the induction step, suppose that the size of the gap between i and j is ℓ,
ℓ > 1. Hence there are ℓ games

(N, si+1), (N, si+2), . . . , (N, sj−1) together with (N, s).

We construct a new system of ℓ − 1 games

(N, (si+2)′), (N, (si+3)′), . . . , (N, (sj−1)′) together with (N, (si+1)′),

where (sm)′ := αsm + (1 − α)s and α = s(i + 1) − s(i + 1)
si+1(i + 1) − s(i + 1) .

These games correspond to the extreme games of an incomplete game (N, X ′, σ′)
where X ′ := X ∪ {i + 1}, and the function σ′ is defined as σ′(m) := σ(m) for
m ∈ X and σ′(i + 1) := s(i + 1). The game (N, (si+1)′) represents the upper
game of Cn

σ (v). Since the new system of ℓ games forms the extreme games of
Cn

σ′-extensions of (N, X ′, σ′), the game (N, s) (which is also a Cn
σ′-extension of

(N, X ′, σ′)) is, by induction hypothesis, their convex combination. And as each
game (N, (sm)′) is a convex combination of (N, s) and (N, sm), the game (N, s)
is also a convex combination of the former system

(N, si+1), (N, si+2), . . . , (N, sj−1) together with (N, s).
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Figure 4.4: Examples of a violation of convexity of the line chart of both (N, s1)
and (N, s2). The full lines depict the line chart of (N, s) and the dotted lines
depict the line charts of (N, s1) and (N, s2). On the left, the situation where
k < m is shown. We have values sk(i) = s1(k) and sk(k) = s1(k), yet s1(m)
is too small. Similarly, on the right, the situation where m < k is shown, with
sk(i) = s2(k), sk(k) = s2(k). However, in this case, the value s2(m) is too big.

Notice that if there is more than one gap between the coalition sizes in X ,
then we can follow a similar construction as in the situation with precisely one
gap. This is because any two extreme games parametrised by two coalition sizes
from one gap assign the same profit to any coalition size from a different gap.
Thus, we can start our construction by filling in the first gap, after that, taking
the extreme games of the extended incomplete game and so on, until there is no
gap left.

As for the second part of the proof, suppose for a contradiction that (N, sk) for
k ∈ X is not an extreme game of Cn

σ (v). By Definition 1.3, there are Cn
σ -extensions

(N, s1), (N, s2) and m ∈ N such that s1(m) < sk(m) < s2(m). Clearly, m /∈ X
(since s1(m) = sk(m) = s2(m) = σ(m)) and if m is such that sk(m) = s(k)
or sk(m) = s(m), we arrive at a contradiction. Therefore, the only case that
remains is m /∈ X together with i < m < j and m ̸= k. For any such m, the
convexity of the line chart is violated either for (i, s1(i)), (k, s1(k)), (m, s1(m)) (if
k < m), or for (i, s2(i)), (m, s2(m)), (k, s2(k)) (if m < k). Both cases are depicted
in Figure 4.4.

For a Cn
σ -extendable symmetric incomplete game in a reduced form (N, X , σ)

with Cn
σ (v) bounded and |Cn

σ (v)| > 1, the number of extreme games is always
|X | + 1 = n − |X | + 2, no matter what the values of σ are.

Algebraically, we can describe the set Cn
σ (v) as

Cn
σ (v) =

⎧⎨⎩
(︃

N, α s +
∑︂
k∈X

αksk
)︃⃓⃓⃓⃓
⃓ α +

∑︂
k∈X

αk = 1, α, αk ≥ 0, k ∈ X

⎫⎬⎭, (4.7)

namely as the set of convex combinations of extreme games s and sk for k ∈ X .
Geometrically, we can describe the set Cn

σ (v) when we restrict the game
(N, X , σ) a little. First, suppose X = {0, n} and σ(0) = σ(n) = 0. Accord-
ing to Theorem 4.4, we can describe Cn

σ (v) by a system of n − 1 inequalities with
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n − 1 unknowns, Ay ≤ 0, where

A =

⎛⎜⎜⎜⎜⎜⎝
2 −1 0

−1 . . . . . .
. . . . . . −1

0 −1 2

⎞⎟⎟⎟⎟⎟⎠ .

The matrix A is an M-matrix [14], therefore it is nonsingular and A−1 ≥ 0.
Nonsingularity of A implies that Cn

σ (v) is a pointed polyhedral cone, which is
translated such that its vertex is not necessarily in the origin of the coordi-
nate system. Furthermore, because A−1 ≥ 0, the normal cone Cn

σ (v)∗ of Cn
σ (v)

(see [5]) contains the whole nonnegative orthant. Thus, the vertex of polyhedral
cone Cn

σ (v) is the biggest element of Cn
σ (v) when restricted to each coordinate

(this corresponds with the statement that the upper game is a Cn
σ -extension).

Therefore, geometrically, the set Cn
σ (v) looks like squeezed negative orthant. For

an incomplete game (N, X ′, σ′) where {0, n} ⊆ X ′ and σ′(0) = σ(n) = 0, the set
of Cn

σ -extensions is Cn
σ (v) with some of the coordinates fixed, i.e.

Cn
σ (v) ∩k∈X ′ {s(k) = σ(k)}.

4.3 Non-negative incomplete games with mini-
mal information

For non-negative incomplete games with minimal information, the sets of Sn-ex-
tensions and P n-extensions are described in [19]. For the sake of completeness,
in this section we derive similar results for the set of Cn-extensions.
Theorem 4.10. Let (N, K, v) be a non-negative incomplete game with minimal
information. It is Cn-extendable if and only if ∆ ≥ 0.
Proof. The proof immediately follows from the proof of Theorem 3.6 and from
inclusions P n(v) ⊆ Cn(v) ⊆ Sn(v).

In [19], they showed the lower and the upper games of P n-extensions coincide
with those of Sn-extensions, thus they must coincide with the lower and the upper
games of Cn-extensions as well. Therefore (N, v) and (N, v) are defined as

v(S) :=
⎧⎨⎩v(S), if S ∈ K,∑︁

i∈S v(i), if S /∈ K,
and v(S) :=

⎧⎨⎩v(S), if S ∈ K,

v(N), if S /∈ K,
.

Further, they showed the lower game (N, v) is positive (thus also convex) and the
upper game is not, however, it is monotonic. Finally, we derive a description of
the set of Cn-extensions. We employ N1 := {T ⊆ N | |T | > 1}.
Theorem 4.11. Let (N, K, v) be a non-negative incomplete game with minimal
information, and let (N, vT ) for T ∈ N1 be games from (3.4). The set of Cn-ex-
tension can be expressed as

Cn(v) =
⎧⎨⎩ ∑︂

T ∈N1

αT vT |
∑︂

T ∈N1

αT = 1, ∀S1, S2 ⊆ N :
∑︂

T ∈E(S1,S2)
αT ≥ 0

⎫⎬⎭ , (4.8)

where E(S1, S2) := {T ⊆ S1 ∪ S2 | T ⊈ S1 and T ⊈ S2}.
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Proof. The proof follows from the proof of Theorem 3.7, which can be found
in [19]. The only difference is in the condition for coefficients αT . For the de-
scription of the set of Sn-extensions, a condition ∑︁T ∈E(S1,S2) αT ≥ 0 for every pair
of conditions S1∩S2 = ∅ is enforced (see (3.5)). This condition corresponds to the
fact that for S1, S2 ⊆ N such that S1 ∩S2 = ∅, it holds v(S1)+v(S2) ≤ v(S1 ∪S2).
In terms of Harsanyi dividends, it is equivalent to ∑︁

T ∈E(S1,S2) δv(T ) ≥ 0. For
convex games and S1, S2 ⊆ N (not necessarily disjoint coalitions), the conditions
v(S1) + v(S2) ≤ v(S1 ∩ S2) + v(S1 ∪ S2) can be equivalently expressed in terms of
Harsanyi dividends as ∑︂

T ⊆S1∪S2,T⊈S1,T⊈S2

αT ≥ 0.

Notice that coalitions T are exactly those from the set E(S1, S2).
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5. Positivity
In this chapter, we investigate P n-extensions of (N, K, v). In Section 5.1, we study
incomplete games in general. We tackle questions considering P n-extendability,
boundedness of the set of P n-extensions and show a characterisation of extreme
games. In Section 5.2, we restrict ourselves to special cases – different classes of
incomplete games. The mentioned characterisation of extreme games from the
previous section is applied in an analysis of several classes of incomplete games.
Also, P n

σ -extensions of incomplete games and P n-extensions of incomplete games
with minimal information are considered in this section.

5.1 Description of P n(v) for general case
In Subsection 5.1.1, we focus on P n-extendability. We provide a characterisation
based on duality of linear programming and give an example of its application
in a time-complexity analysis of the question of P n-extendability. After that,
in Subsection 5.1.2, we characterise the boundedness of P n(v), and in Subsec-
tion 5.1.3, we investigate extreme games of the set of P n-extensions. For the
characterisation of extreme games, we follow and modify the proof of the sharp
form of Bondareva-Shapley theorem (the theorem was introduced independently
by Bondareva in 1963 [4] and Shapley in 1967 [26]).

5.1.1 P n-extendability
To provide a certificate for non-P n-extendability of an incomplete game, we em-
ploy duality of linear systems. This approach was motivated by the aforemen-
tioned work by Seshadhri and Vondrák [24] and the so called path certificate for
non-extendability of submodular functions. Although its size is exponential in the
number of players in general, for special cases, the solvability of the dual system
is polynomial in n and therefore, the P n-extendability is polynomially decidable
in n for such cases. In the proof of the characterisation, we use the seminal result
of Farkas [12].

Lemma 5.1. (Farkas’ lemma, [12]) Let A ∈ Rm×n and b ∈ Rn. Then exactly one
of the following two statements is true.

1. There exists x ∈ Rn such that Ax = b and x ≥ 0.

2. There exists y ∈ Rm such that AT y ≥ 0 and bT y ≤ −1.

Theorem 5.2. Let (N, K, v) be an incomplete game. The game is P n-extendable
if and only if the following system of linear equations is not solvable:

1. ∀T ⊆ N, T ̸= ∅ : ∑︁S∈K,T ⊆S y(S) ≥ 0,

2. ∑︁S∈K v(S)y(S) ≤ −1.

Proof. Let M := 2n − 1 and U ′ ∈ RM×M be a matrix with characteristic vectors
of unanimity games uT as its columns. Then it holds that U ′d = w for every
game (N, w) and its vector of Harsanyi dividends d.
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For a partially defined cooperative game (N, K, v), we reduce matrix U ′ by
deleting the rows corresponding to coalitions with non-defined utility, reaching a
system Ud = v. This adjustment eliminates unknowns on the right hand side of
the equation, yet no information about the complete game is lost since the vector
of Harsanyi dividends carries full information.

The game (N, K, v) is P n-extendable if and only if the system of linear equa-
tions above is solvable for d ≥ 0. By Farkas’ lemma (Lemma 5.1) this happens if
and only if the following system has no solution,

UT y ≥ 0 and vT y ≤ −1. (5.1)
The conditions given by (5.1) correspond to those from the statement of the
theorem.

Notice that even though the number of inequalities ∑︁S∈K,T ⊆S y(S) ≥ 0 is
2n − 1 (since we have one inequality for every ∅ ̸= T ⊆ N), the actual number
of distinct inequalities is not larger than 2|K| − 1 because each inequality sums
over a subset of K. Depending on the structure of K, the actual number might
be even smaller as is shown in the following result.
Theorem 5.3. Let (N, K, v) be an incomplete game such that sizes of all S ∈ K
are bounded by a fixed constant c. Then the problem of P n-extendability is poly-
nomially-time solvable in n.
Proof. Let (N, K, v) be the incomplete game from the claim. The number of
coalitions with a defined value is at most ∑︁c

i=1

(︂
n
i

)︂
, which is a polynomial in n.

Also, if we consider the linear system from Theorem 5.2, every T ⊆ N such
that |T | > c yields an empty sum in its corresponding inequality. Therefore,
the number of unique conditions in the problem is bounded by the number of
coalitions with defined value, that is by the sum ∑︁c

i=1

(︂
n
i

)︂
. We conclude that the

linear system can be solved in polynomial time by means of linear programming.

5.1.2 Boundedness
In this subsection, we state a simple condition for the boundedness of the set of
P n-extensions. Notice, the set of P n-extensions is always bounded from below,
as for every P n-extension (N, w), w(S) = ∑︁

∅≠T ⊆S dw(T ) and dw(T ) ≥ 0 for every
∅ ≠ T ⊆ N . Therefore, 0 serves as a lower bound on the profit of any coalition
S ⊆ N . To find the lower bound that is binding the profit of every coalition as
well as the binding upper bound (hence the lower and the upper games) remains
an open problem.
Theorem 5.4. Let (N, K, v) be a P n-extendable incomplete game. The set of
positive extensions P n(v) is bounded if and only if N ∈ K.
Proof. If N ∈ K, then for any P n(v)-extension (N, w), ∑︁T ⊆N dw(T ) = v(N), and
since for all ∅ ̸= T ⊆ N , dw(T ) ≥ 0, we can deduce that dw(T ) ∈ [0, v(N)]. This
yields a bound (possibly an overestimation) for all possible values of dw(T ). Since
the dividends are bounded, the set P n(v) is also bounded.

If N /∈ K, then the value of coalition N can be arbitrarily large, since there
is no upper bound on dw(N) for a P n(v)-extension (N, w). Thus, P n(v) is not
bounded.
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5.1.3 Extreme games
Following the proof of the sharp form of Bondareva-Shapley theorem from [21],
we give an insight into the description of extreme games of P n(v). We show that
for these games, the set of coalitions with values of dividends equal to zero is
maximal with respect to the inclusion.

We know that the set of P n-extensions of (N, K, v) can be described as

P n(v) =
{︄

(N, w)
⃓⃓⃓⃓
∀S ∈ K : w(S) = v(S) and ∀T ⊆ N : dw(T ) ≥ 0

}︄
,

or equivalently in terms of dividends and M := 2n − 1 we can write

P n
d (v) :=

{︄
dw ∈ RM

⃓⃓⃓⃓
∀S ∈ K :

∑︂
T ⊆S

dw(T ) = v(S), ∀T ⊆ N : dw(T ) ≥ 0
}︄

.

Notice that P n(v) ̸= P n
d (v) since the former is a set of cooperative games and the

latter is a set of vectors of dividends.
We see that both sets are closed convex polytopes since they are formed by

intersections of closed half-spaces. If we suppose that (N, K, v) is P n-extendable,
then both sets are nonempty. Furthermore, the sets are bounded if and only if
N ∈ K. Bounded, closed and convex polytopes are convex hulls of their extreme
points.

To be able to freely neglect the distinction between the extreme points of both
sets, we introduce a basic result from linear algebra. An image of a convex set
under a linear mapping is again a convex set. Moreover, the extreme points of
the preimage set correspond to those of the image set.

Lemma 5.5. Let P be a convex subset of Rn, A ∈ Rn×n a nonsingular matrix,
and x ∈ P an extreme point of P . Then Ax is an extreme point of the convex set
A(P ) := {Au|u ∈ P}.

Proof. Suppose that x ∈ P is an extreme point of P and the image Ax is not an
extreme point of A(P ). Therefore, there are Au, Av ∈ A(P ) and α ∈ (0, 1) such
that αAu + (1 − α)Av = Ax. But then αAu + (1 − α)Av = A(αu + (1 − α)v) =
Ax, and therefore, x is not an extreme point of P , as it is a nontrivial convex
combination of u, v ∈ P . This is a contradiction.

Let U ∈ RM×M be a matrix with vectors of unanimity games uT ∈ RM as
columns. It holds that Udw = w where w ∈ RM is a characteristic vector of game
(N, w) and dw ∈ RM represents a vector of Harsanyi dividends of the game. Since
unanimity games form a basis of RM , the matrix U is nonsingular and thus, by
Lemma 5.5, the extreme points of P n(v) correspond to those of P n

d (v), allowing
us to further consider those instead of the former ones.

Our result is based on the following lemma stating a characterisation of ex-
treme points of a convex polyhedral set.

Lemma 5.6. [21] Let P be a convex polyhedral set in Rk given by

P :=
⎧⎨⎩x ∈ Rk

⃓⃓⃓ k∑︂
j=1

atjxj ≥ bt, t = 1, . . . , m

⎫⎬⎭ .

40



For x ∈ P , let S(x) :=
{︂
t ∈ {1, . . . , m}|∑︁k

j=1 atjxj = bt

}︂
. The point x ∈ P is an

extreme point of P if and only if the system of linear equations

k∑︂
j=1

aijyj = bt for all t ∈ S(x)

has x as its unique solution.

When we apply Lemma 5.6 to our situation, de is an extreme game of P n
d (v)

if and only if there is no dw ̸= de such that dw(T ) = 0 ⇐⇒ de(T ) = 0. For
any P n(v)-extension (N, w), we denote by E(w) the set of negligible coalitions
defined as E(w) := {T ⊆ N | dw(T ) = 0}. This set proves itself useful in the
following lemma. The lemma states that inclusion-maximality of E(e) across
E(x) for dx ∈ P n

d (v) is equivalent with uniqueness of E(e) across E(x) for dx ∈
P n

d (v). Together with Lemma 5.6, this connects the extremality of games with
the inclusion-maximality of sets E(e).

Lemma 5.7. Let (N, K, v) be a P n-extendable incomplete game and de ∈ P n
d (v).

Then the following are equivalent:

1. there is no dx ∈ P n
d (v) such that E(e) ⊊ E(x),

2. there is no dy ∈ P n
d (v) different from de, such that E(e) = E(y).

Proof. First, suppose that there is dx ∈ P n
d (v) such that E(e) ⊊ E(x). We

show that there is not only one, but infinitely many vectors dyα ∈ Pd(v) different
from de such that E(e) = E(yα). The idea is to take any non-trivial convex
combination dyα := αde + (1 − α)dx for 0 < α < 1. Such game is clearly positive
(a convex combination of non-negative dividends remains non-negative) as it is
also an extension of (N, K, v), because for every S ∈ K,∑︂

T ⊆S

dyα(T ) = α
∑︂
T ⊆S

de(T ) + (1 − α)
∑︂
T ⊆S

dx(T ) = αv(S) + (1 − α)v(S) = v(S).

And since dx ̸= de, there is S /∈ K such that x(S) ̸= e(S) for which

yα(S) =
∑︂
T ⊆S

dyα(T ) = α
∑︂
T ⊆S

dx(T ) + (1 − α)
∑︂
T ⊆S

de(T ) = αx(S) + (1 − α)e(S).

Therefore, any two parameters α1, α2 such that 0 < α1 < α2 < 1 yield different
values yα1(S) ̸= yα2(S), thus dyα1 ̸= dyα2 .

Now suppose that there is dy ∈ P n
d (v) different from de such that E(e) = E(y).

We take a combination dz = de − β(dy − de) with β such that for at least one
S /∈ E(e), dz(S) = 0. Thus E(e) ⊆ E(z) and still, dz ∈ P n

d (v). For such S, it
must hold

dz(S) = de(S) − β(dy(S) − de(S)) = 0,

therefore β = de(S)
dy(S)−de(S) . We have to choose S such that dy(S) ̸= de(S). Further-

more, we have to secure that for every T /∈ E(e), dz(T ) ≥ 0, or equivalently

dz(T ) = de(T ) − β(dy(T ) − de(T )) = de(T ) − de(S)
dy(S) − de(S)(dy(T ) − de(T )) ≥ 0.
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This can be done by taking minimum for S over all such coalitions T , i.e.

β := min
T /∈E(e):de(T )̸=dy(T )

de(T )
dy(T ) − de(T ) .

Then for T /∈ E(e), dz(T ) ≥ 0, since it is equal to

de(T ) − de(S)
dy(S) − de(S)(dy(T ) − de(T )) ≥ de(T ) − de(T )

dy(T ) − de(T )(dy(T ) − de(T )).

Clearly, the last expression is equal to zero. Finally, for K ∈ K,

z(K) =
∑︂

C⊆K

dz(K) =
∑︂

C⊆K

de(K) − β

⎛⎝∑︂
C⊆K

dy(K) −
∑︂

C⊆K

de(K)
⎞⎠ ,

and since all three sums in the last expression are equal to v(K), we conclude
z(K) = v(K), thus dz ∈ P n

d (v).

From a direct application of Lemma 5.6 and 5.7 follows a characterisation of
the extreme points.

Theorem 5.8. For a P n-extendable incomplete game (N, K, v), a P n-extension
(N, e) is an extreme game of P n(v) if and only if its set of negligible coalitions
E(e) is inclusion-maximal, i.e. there is no (N, w) ∈ P n(v) such that E(e) ⊊ E(w).

5.2 Description of P n(v) for special cases
This section contains an analysis of P n-extensions of several classes of incomplete
games. In subsection 5.2.1, we employ the characterisation of extreme games
from Theorem 5.8 in an analysis of three classes. Subsection 5.2.2 is focused on
the class of incomplete games with minimal information and results from [19]
connected to the class are presented.

5.2.1 Classes employing the characterisation of extreme
games

In this subsection, we show a direct application of Theorem 5.8 in the description
of the set of P n-extensions for two classes of incomplete games. We do not show
only a derivation of extreme games but also a derivation of the lower and the
upper games as well as the P n-extendability. For both cases, P n(v) is bounded,i.e.
N ∈ K. From the second case, we derive a result for P n

σ -extensions of symmetric
incomplete games.

Pairwise disjoint coalitions of known values

For the first class of incomplete games it holds that the coalitions with known
values (excluding N) are pairwise-disjoint.
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Theorem 5.9. Let (N, K, v) be a P n-extendable incomplete game, where K =
{S1, . . . , Sk−1, N} and for all i, j ∈ {1, . . . , k − 1}, it holds that Si ∩ Sj = ∅. Then
the extreme games vT , the lower game v, and the upper game v can be described
as follows:

vT (S) :=

⎧⎪⎪⎨⎪⎪⎩
0, if ∄T ∈ K : T ⊆ S,∑︁

i:Ti⊆S v(Si), if ∃T ∈ K : T ⊆ S and TN ⊈ S

v(N) −∑︁
i:Ti⊈S v(Si), if ∃T ∈ K : T ⊆ S and TN ⊆ S,

v(S) := vK(S) =

⎧⎪⎪⎨⎪⎪⎩
0, if ∄T ∈ K : T ⊆ S,∑︁

i:Si⊆S v(Si), if ∃T ∈ K : T ⊆ S and N ̸= S,

v(N), if ∃T ∈ K : T ⊆ S and N = S,

v(S) :=
⎧⎨⎩v(Si), if S ⊆ Si,

v(N) −∑︁
i:Si⊈S v(Si), otherwise,

where T := {T1, . . . , Tk−1, TN} such that Ti ⊆ Si, TN ⊆ N and TN ⊈ Sℓ for any
ℓ ∈ {1, . . . , k − 1}.
Furthermore, the P n-extendability of (N, K, v) is characterised by a condition

v(N) ≥
k−1∑︂
i=1

v(Si).

Proof. Let (N, K, v) be an incomplete game with the properties above. For any
P n(v)-extension (N, w), from the fact that the coalitions in K \ {N} are disjoint,
at least one subcoalition Ti of each coalition Si ∈ K \ {N} must have a nonzero
dividend dw(Ti), otherwise v(Si) = 0. By Theorem 5.8, there is at most one such
subcoalition if we consider an extreme game. If there were two nonzero dividends
dw(T 1

i ), dw(T 2
i ) for one Si, then the corresponding set of negligible coalitions

would not be maximal. Setting the dividend of T 1
i to dw(T 1

i ) + dw(T 2
i ) yields a

set E, such that E(w) ⊊ E. By this, for the extreme game, it holds dw(Ti) =
v(Si). We further see, since v(N) = ∑︁

T ⊆N dw(T ), that v(N) ≥ ∑︁
Si∈K\{N} v(Si)

holds. If the inequality does not hold, then that there is no extreme game of
P n(v) and hence, since the set is bounded (N ∈ K), it is not P n-extendable.
Now, if the inequality is strict, there has to be another nonzero dividend of a
coalition TN ⊆ N such that TN ⊈ Si for Si ∈ K \ {N}, otherwise Ti, TN are two
distinct subsets of Si and E(w) is not maximal. Again, since we are interested
in extreme games, by Theorem 5.8, there is only one such coalition TN , resulting
in dw(TN) = v(N) − ∑︁

Si∈K\{N} v(Si). Any game parameterised by a collection
T := {T1, . . . , Tk−1, TN} and expressed as vT from the statement of the theorem
is thus an extreme game of P n(v).

Now let us show that the game vK is the lower game. For a coalition S with no
subcoalition contained in K, vK(S) = 0 = v(S). For a coalition S such that there
is T ∈ K, T ⊆ S, the value of w(S) of any P n(v)-extension cannot be smaller than
the sum ∑︁

T :T ∈K,T ⊆S v(T ) = vK(S). And since N ∈ K, vT (N) = v(N) = v(N).
Finally, we show that each value of the upper game is achieved by a different

extreme game. If S is a proper subcoalition of Si, the value v(Si) is, thanks to the
non-negativity of dividends, an upper bound for the value of S. For any extreme
game vT such that S ∈ T , this bound is tight. If S is not a subcoalition of any Si,
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its value cannot exceed v(N)−∑︁
Ti∈T \TN

dw(Ti), otherwise the characterisation of
P n-extendability is not satisfied for the grand coalition N . By taking an extreme
game with TN = S, we see that this bound is tight.

Set of known values K closed on subsets

The second class of incomplete games satisfies that the set K \ {N} is closed on
subsets, i.e. S ∈ K, T ⊆ S =⇒ T ∈ K. The analysis of this case will help us in
the study of symmetric positive extensions (P n

σ -extensions).

Theorem 5.10. Let (N, K, v) be a P n-extendable incomplete game such that
N ∈ K and for every S ∈ K \ {N} , T ⊆ S =⇒ T ∈ K. Furthermore, for S ∈ K,
let δS be defined as δ{i} = v({i}) and δS = v(S) − ∑︁

T⊊S δT . Then the extreme
games vC, the lower game v, and the upper game v can be described as follows:

vC(S) :=
⎧⎨⎩δN +∑︁

T ∈K,T ⊆S δT , if C ⊆ S,∑︁
T ∈K,T ⊆S δT , otherwise,

for C /∈ K \ {N}, and

v(S) := vN(S) =
⎧⎨⎩δN +∑︁

T ∈K,T ⊆S δT , if S = N,∑︁
T ∈K,T ⊆S δT , otherwise,

v(S) :=
⎧⎨⎩v(S), if S ∈ K,

vS(S), otherwise.

Furthermore, (N, K, v) is P n-extendable if and only if δS ≥ 0 for all S ∈ K.

Proof. Let (N, w) ∈ P n(v). Thanks to the structure of K, the dividends dw(S)
for S ∈ K \ {N} are the same for any (N, w)P n(v)and they are equal to δS. As a
consequence, for any S such that δS = 0 it holds S ∈ E(w) and this holds for any
P n(v)-extension. Now if the uniquely defined value δN = v(N)−∑︁S∈K\{N} δS > 0,
there has to be at least one C /∈ K \ {N} such that its dividend dw(C) ̸= 0. By
Theorem 5.8, following a similar argument as in the proof of the previous theorem,
E(w) is maximal if and only if there is only one such C, otherwise if there are
C1 ̸= C2 such that dw(C1) ̸= 0 and dw(C2) ̸= 0, by taking (N, x) ∈ P n(v)
such that dx(C1) = 0, dx(C2) = dw(C1) + dw(C2) we arrive into contradiction
with maximality, since E(w) ⊊ E(x). Thus choosing (N, w) ∈ P n(v), such that
dw(C) = δn yields an extreme game vC of P n(v) for any C /∈ K \ {N}.

For any coalition S, its value in any P n(v)-extension has to be larger or equal
to ∑︁T ∈K,T ⊆S δS. Notice that vN(S) is equal to this number for any S, thus being
the lower game.

For any coalition S, its maximal value is either v(S) if S ∈ K, or at most
v(N) − ∑︁

T ∈K\{N}:T⊈S δT = δN + ∑︁
T ∈K,T ⊆S δT , which is equal to vS(S) and thus

it is the upper game.

For both studied classes of incomplete games, it holds v(S) ∈ P n(v). Also
notice that the number of extreme games vC equals the number of coalitions C
such that C /∈ K \{N}, that is 2n −|K|+1 if v(N)−∑︁

S∈K\{N} δS > 0, otherwise
P n(v) contains precisely one game (in case v(N) −∑︁

S∈K\{N} δS = 0) or no game
at all (if v(N) −∑︁

S∈K\{N} δS < 0).
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Symmetric positive extensions

We denote the set of symmetric positive extensions of (N, K, v) by P n
σ (v). Anal-

ogously to study of Cn
σ (v), we shall make use of the reduced forms (N, s) and

(N, X , σ) of games (N, v) and (N, K, v), respectively, which are defined in Defini-
tion 4.1. We can easily obtain the following result as a corollary of Theorem 5.10.

Theorem 5.11. Let (N, X , s) be the reduced form of a symmetric incomplete
game such that n ∈ X and i ∈ N, i ≤ k =⇒ i ∈ X . Then the lower game and
the upper game of P n

σ (v) can be described as

s(i) :=
⎧⎨⎩s(i), for i ∈ X ,

s(k), otherwise,
and s(i) :=

⎧⎨⎩s(i), for i ∈ K,

s(n), otherwise.

The following game illustrates that even in the symmetric scenario, there is
(N, X , σ) such that (N, s) ̸∈ P n

σ (v).
Example. (The lower game is not necessarily a P 4

σ -extension) Let (N, X , σ) be
the reduced form of a symmetric 4-person incomplete game such that X = {2, 4}.
From the properties of symmetric positive games we know that any (N, s) ∈ P 4

σ (v)
is given by 4 non-negative dividends with corresponding values d1, d2, d3, d4 such
that

• s(1) = d1,

• s(2) = 2d1 + d2,

• s(3) = d3 + 3d2 + 3d1,

• s(4) = d4 + 4d3 + 6d2 + 4d1.

By setting d1 := 0, d2 := σ(2), d3 := 0, and d4 := σ(4) − 6d2 we get a P 4
σ -extension

where s(1) = 0 (clearly the minimum) and it is achieved if and only if d1 = 0.
Setting d1 = 0 yields s(3) = 3σ(2). However, to minimize s(3), we can choose
d1 := σ(2)

2 , d2 := 0, d3 := 0, and d4 := σ(4) − 4d1, obtaining s(3) = 3d1 = 3
2σ(2).

We cannot minimize both values simultaneously and thus (N, s) /∈ P n
σ (v).

It is not difficult to generalise this example for symmetric n-person games.
For similar reasons, even the lower game of (non-symmetric) P n-extensions of
non-symmetric incomplete games is not contained in P n(v). This is contrary to
what we showed for the classes of incomplete games in Theorem 5.9 and 5.10.

5.2.2 Incomplete games with minimal information
Most of the results concerning P n-extensions for incomplete games with minimal
information are from Masuya and Inuiguchi [19]. In their work, they considered
non-negative incomplete games with minimal information. However, since v(i) =
dv(i) ≥ 0 for every (N, v) ∈ P n, these classes coincide. A characterisation of P n-
extendability, employing the total excess ∆ := v(N) −∑︁

i∈N v(i), is equivalent to
the characterisation of Sn-extendability and Cn-extendability. Its proof follows
immediately from the proof of Theorem 3.6.
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Theorem 5.12. Let (N, K, v) be a non-negative incomplete game with minimal
information. It is P n-extendable if and only if ∆ ≥ 0.

In [19], they showed the lower and the upper games coincide with the lower
and the upper games of Sn-extensions, i.e.

v(S) =
⎧⎨⎩v(S), if S ∈ K,∑︁

i∈S v(i), if S /∈ K,
and v(S) =

⎧⎨⎩v(S), if S ∈ K,

v(N), if S /∈ K.

Further, they showed that the lower game (N, v) is positive and the upper game
is not, however, it is monotonic. Finally, we state a description of the set of
P n-extensions. We employ N1 := {T ⊆ N | |T | > 1}.

Theorem 5.13. [19] Let (N, K, v) be a non-negative incomplete game with min-
imal information and let (N, vT ) for T ∈ N1 be games from (3.4). The set of
P n-extension can be expressed as

P n(v) =
⎧⎨⎩ ∑︂

T ∈N1

αT vT |
∑︂

T ∈N1

αT = 1, αT ≥ 0
⎫⎬⎭ . (5.2)
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6. 1-convexity
In this chapter, we focus on Cn

1 -extensions of incomplete games. The difficulty in
the analysis of the set of Cn

1 -extensions lies in the values of almost-grand coalitions
N \ i for i ∈ N . In Section 6.1, we investigate the set of symmetric Cn

1 -extensions
to build up our intuition.

After that, in Section 6.2, we restrict ourselves to incomplete games with
minimal information. We derive a compact description of the set of Cn

1 -extensions
(Subsection 6.2.1), and in Subsection 6.2.2, we investigate generalisations of three
solution concepts for complete games, namely the τ -value, the Shapley value
and the nucleolus. We consider two variants and we show that all the variants
coincide. We call the solution concept the average value ζ̃. The analysis of ζ̃
(Subsection 6.2.3) concludes the section.

In Section 6.3, we derive similar results for incomplete games with defined
upper vector. Subsection 6.3.1 contains a description of Cn

1 -extensions and in
Subsection 6.3.2, we show the average Shapley value does not in general coincide
with the conic Shapley value.

6.1 Symmetric incomplete games
We denote the set of symmetric 1-convex extensions of (N, K, v) by Cn

1,σ(v). Anal-
ogously to study of Cn

σ (v) and P n
σ (v), we shall make use of the reduced forms (N, s)

and (N, X , σ) of games (N, v) and (N, K, v), respectively, which are defined in
Definition 4.1.

Geometrical interpretation of 1-convex symmetric games

Let (N, s) be the reduced form of a 1-convex symmetric game. In terms of the
reduced game, 1-convexity is given by

ns(n − 1) ≤ (n − 1)s(n) (6.1)

and for i ∈ {1, n − 2},

s(i) + (n − i − 1)s(n) ≤ (n − i)s(n − 1). (6.2)

We reformulate the condition (6.1) as s(n) ≥ n
n−1s(n−1) and distinguish two cases

depending on whether the condition is binding or holds with a strict inequality.
First, suppose that s(n) = n

n−1s(n − 1). Substituting s(n) into the conditions
(6.2) for i ∈ {1, . . . , n − 2} yields

s(i) + (n − i − 1) n

n − 1s(n − 1) ≤ (n − i)s(n − 1). (6.3)

Rearranging and simplifying (6.3) leads to

s(i) ≤ i

n − 1s(n − 1). (6.4)

Equivalently, the points (i, s(i)) for i ∈ {1, . . . , n − 2} lie on or below the line
intersecting the points (0, 0) and (n − 1, s(n − 1)) (see Figure 6.1).
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Figure 6.1: The situation in which s(n) = n
n−1s(n − 1). The restriction here is

that the values of 1 to n − 2 lie below the depicted line.

Second, suppose that s(n) = n
n−1s(n − 1) + c for c > 0. It means (n, s(n)) lies

on the line coming through (0, c) and (n − 1, s(n − 1) + c). Inequality (6.2) for
s(i) differs from (6.4) (where c = 0) as

s(i) ≤ i

n − 1s(n − 1) − c(n − i − 1) = i

n − 1s(n − 1) − c(n − 1) + ci. (6.5)

In (6.5), the values of s(i) are still bounded from above. This time, there is a
different bounding line for every value. All the lines have the same slope as the
line coming through (0, 0) and (n − 1, s(n − 1)). Furthermore, smaller the i is,
further the line is moved along the vertical axis. The vertical distance between
all consecutive parallel lines is c (see Figure 6.2).

We base the results concerning Cn
1,σ-extendability and the description of the

set Cn
1,σ on this geometrical interpretation.

Analysis of the set of Cn
1,σ-extensions

In our analysis, we restricted ourselves to the case where n ∈ X . Still, we have
to distinguish between two cases depending on whether n − 1 ∈ X or n − 1 /∈ X .

Theorem 6.1. Let (N, X , σ) be the reduced form of a symmetric incomplete game
such that {n − 1, n} ⊆ X . The game is Cn

1,σ-extendable if and only if

σ(n − 1)
n − 1 ≤ σ(n)

n
(6.6)

and for every i ∈ X \ {0},

σ(i) ≤ σ(n) − (n − i) (σ(n) − σ(n − 1)) . (6.7)
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Figure 6.2: The situation in which s(n) = n
n−1s(n − 1) + c for c > 0.

Proof. Any Cn
1,σ-extension (N, e) in the reduced form must satisfy conditions (6.1)

and (6.2), namely ne(n − 1) ≤ (n − 1)e(n) and for every i ∈ {1, . . . , n − 2},
condition e(i) + (n − i − 1)e(n) ≤ (n − i)e(n − 1). The first condition can be
rewritten as e(n−1)

n−1 ≤ e(n)
n

, which is, since {n − 1, n} ⊆ X, equivalent to

σ(n − 1)
n − 1 ≤ σ(n)

n
. (6.8)

Hence, the condition (6.6) must hold. From the second-type conditions, we can
subtract (n − i − 1)e(n), arriving at

e(i) ≤ e(n) − (n − i) (e(n) − e(n − 1)) . (6.9)

For i ∈ X , it follows from (6.9) that conditions (6.7) must hold.
Now if conditions (6.8) and (6.9) holds, we define a Cn

1,σ-extension (N, s1) as

s1(i) :=
⎧⎨⎩σ(n) − (n − i) (σ(n) − σ(n − 1)) , if i ̸∈ X ,

σ(i), if i ∈ X .

The values of s1 are chosen such that conditions (6.8) and (6.9) hold therefore
(N, s1) ∈ Cn

1,σ.

Notice that the reduced game (N, s1) is actually the upper game of Cn
1,σ. This

is because the inequalities in conditions (6.8) and (6.9) are binding, meaning any
reduced game (N, x) for which there is i /∈ X such that x(i) > s1(i) violates
inequality from condition (6.9) corresponding to i. Therefore, (N, s1 + x) is not
1-convex. Also, whenever the upper game of a set of C-extensions is part of the
set, it is also its extreme game. This follows immediately from Theorem 1.2,
because no reduced game (N, s1 + x) where x(S) > 0 for any coalition S ⊆ N
can be an extension.
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Theorem 6.2. For a Cn
1,σ-extendable reduced game (N, X , σ) such that it holds

{n − 1, n} ⊆ X , the game (N, s1) is both the upper game and the only extreme
game of Cn

1,σ-extensions.

Proof. For a contradiction, let (N, e) be a reduced extreme game of Cn
1,σ different

from (N, s1). It means there is (N, x) such that x := s1 − e ̸= 0. Furthermore, it
holds that e±x = ±s1. (N, s1) is clearly a Cn

1,σ-extension and since all inequalities
(6.1) and (6.2) are binding for s1, also (N, −s1) ∈ Cn

1,σ. By Theorem 1.2, (N, e)
is not an extreme game.

Theorem 6.3. For a Cn
1,σ-extendable reduced game (N, X , σ) such that it holds

{n − 1, n} ⊆ X , the set Cn
1,σ can be described as

Cn
1,σ =

⎧⎨⎩s1 +
∑︂
i/∈X

αiei | for αi ≥ 0
⎫⎬⎭ ,

where (N, ei) is defined as

ei(j) :=
⎧⎨⎩−1, if j = i,

0, if j ̸= i.

Proof. Any game (N, s1 + αei) for any α > 0 is Cn
1,σ-extension. This is because

for i /∈ X , the 1-convexity condition (6.2) involving i holds as

s1(i) − α + (n − i − 1)s1(n) < s1(i) + (n − i − 1)s1(n) = (n − i)s1(n − 1)

The rest of the 1-convexity conditions (6.1) and (6.2) of (N, s1 + αei) is the same
as for (N, s1), thus they also hold. Since any (N, s1 +αei) is 1-convex, (N, ei) is a
part of the recession cone of Cn

1,σ. All but one conditions are binding (for j ∈ X ,
we consider condition (s1 + ei(j)) = σ(j)). By Theorem 1.4, (N, ei) is an extreme
ray of Cn

1,σ. Clearly, any Cn
1,σ-extension is of the form s1 − x where x(i) = 0 if

i ∈ X and x(i) ≥ 0 if i /∈ X . Notice, s1 − x = s1 − ∑︁
i/∈X x(i)ei, therefore there

are no more extreme rays. By Theorem 1.5, the proof is concluded.

For the case where n − 1 /∈ X , the analysis is similar. The condition for
Cn

1,σ-extendability is even simpler. However, when X ≠ {n}, there might be two
extreme games instead of just one. Also, if X = {n}, there is another extreme
ray of Cn

1,σ.

Theorem 6.4. Let (N, X , σ) be a reduced form of a symmetric incomplete game
such that n ∈ X and n − 1 /∈ X . The game is Cn

1,σ-extendable if and only if for
every k ∈ X \ {0},

σ(k)
k

≤ σ(n)
n

. (6.10)

Proof. Any reduced game (N, e) which is Cn
1,σ-extension must satisfy conditions

(6.1) and (6.2), namely ne(n − 1) ≤ (n − 1)e(n) and for every i ∈ {1, . . . , n − 2},
e(i) + (n − i − 1)e(n) ≤ (n − i)e(n − 1). The first condition can be rewritten as

e(n − 1) ≤ (n − 1)e(n)
n

. (6.11)
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For the second type conditions, we can use (6.11) to bound e(n − 1) from above,
arriving at e(i) + (n − i + 1)e(n) ≤ (n − i)(n − 1) e(n)

n
, which is equivalent to

e(i) ≤ i
e(n)

n
. (6.12)

We see conditions (6.11) and (6.12) for i ∈ X are equivalent with (6.10) and must
hold if the game is Cn

1,σ-extendable.
Now if conditions (6.10) hold, we define a Cn

1,σ-extension (N, s2) as

s2(i) :=
⎧⎨⎩iσ(n)

n
, if i ̸∈ X ,

σ(i), if i ∈ X .

The values of s2 are chosen such that conditions (6.11) and (6.12) hold, therefore
(N, s2) ∈ Cn

1,σ.

By an analogous argument as for s1, the reduced game (N, s2) is the upper
game and also an extreme game of the set of Cn

1,σ-extensions. However, if X ̸= {n}
and there is i ∈ X for which the condition is not binding, there are actually two
extreme games instead of one.

Theorem 6.5. For a Cn
1,σ-extendable reduced game (N, X , σ) such that n−1 /∈ X

and {n} ⊊ X , the game (N, s∗) defined as

s∗(i) :=

⎧⎪⎪⎨⎪⎪⎩
s2(i) − α, if i = n − 1,

s2(i) − (n − i)α, if i /∈ X , i ̸= n − 1,

σ(i), if i ∈ X ,

where α := min
i/∈X ∪{n−1}

1
n−i

(︂
i
n
σ(n) − σ(i)

)︂
is an extreme game of Cn

1,σ.

Proof. For n − 1 ∈ X , we want to find the lowest possible value. If (N, s∗) is
a Cn

1,σ-extension, then for every i ∈ X , it must hold s∗(i) + (n − i − 1)s∗(n) ≤
(n − i)s∗(n − 1). That is equivalent to σ(i) + (n − i − 1)σ(n) ≤ (n − i)s∗(n − 1),
or

σ(i) + (n − i − 1)σ(n)
n − 1 ≤ σ(n − 1).

We set s∗(n−1) := max
i∈X \{0}

σ(i)+(n−i−1)σ(n)
n−1 , which is a lower bound for the profit of

n − 1. Further, for the rest of i /∈ X different from n − 1, we want the condition
s∗(i) + (n − i − 1)s∗(n) ≤ (n − i)s∗(n − 1) to be binding and we know that for the
upper game (N, s2), the conditions are binding, i.e. s2(i) + (n − i − 1)s2(n) =
(n − i)s2(n − 1). The difference s2(n − 1) − s∗(n − 1) is equal to α, therefore, we
can rewrite the condition as

s∗(i) + (n − i − 1)s∗(n) ≤ (n − i) (s2(n − 1) − α) . (6.13)

We know s∗(n) is fixed and the right-hand side of (6.13) differs from the right-
hand side of the corresponding condition for (N, s2) by (n − i)α. Thus, setting
s∗(i) := s2(i) − (n − i)α ensures the condition is binding for (N, s∗). Since all the
conditions are binding, (N, s∗) is an extreme game.
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We see the set Cn
1,σ(v) has two different extreme games if and only if α ̸= 0.

Also, these games are the only extreme games of the set.

Theorem 6.6. For a Cn
1,σ-extendable reduced game (N, X , σ) such that n−1 /∈ X

and {n} ⊊ X , the games (N, s2) and (N, s∗) are the only extreme games.

Proof. Let (N, e) ∈ Cn
1,σ be an extreme game different from (N, s2) and (N, s∗).

It means, there is i /∈ X such that e(i) ̸= s2(i) and e(i) ̸= s∗(i). If i = n − 1, then
neither condition ne(n − 1) ≤ (n − 1)e(n), nor condition

max
i∈X \0

e(i) + (n − i − 1)e(n) ≤ (n − i)e(n − 1)

is binding, therefore (N, e) is not an extreme game. If i ̸= n − 1, and e(n − 1) =
s2(n − 1), then e(i) < (n − i)e(n − 1) − (n − i − 1)e(n), because

e(i) < s2(i) = (n− i)s2(n−1)−(n− i−1)s2(n) = (n− i)e(n−1)−(n− i−1)e(n).

Similarly for the case where e(n − 1) = s∗(n − 1). As one of the conditions is not
binding, again, the game (N, e) is not an extreme game.

Theorem 6.7. For a Cn
1,σ-extendable reduced game (N, X , σ) such that X = {n},

the set Cn
1,σ can be described as

Cn
1,σ =

⎧⎨⎩s2 +
∑︂
i/∈X

αiei | αi ≥ 0
⎫⎬⎭ ,

where for i /∈ X such that i ̸= n − 1,

ei(j) :=
⎧⎨⎩−1, if j = i,

0, if j ̸= i,
and en−1(j) :=

⎧⎨⎩−1, if j = n − 1,

−(n − i), if j ̸= i.

Proof. For X = {n}, we can derive for all i ̸∈ X , i ̸= n − 1, the extreme rays
(N, ei) similarly as in Theorem 6.3. For (N, en−1), the condition nen−1(n − 1) ≤
(n − 1)en−1e(n) is not binding. To keep the conditions for the rest of coalition
sizes binding, we have to set them such that for (N, s2 + αen−1), it holds

(s2 + αen−1)(i) = (n − i)(s2 + αen−1)(n − 1) − (n − i − 1)(s2 + αen−1)(n).

As the right-hand side differs from (n − i)s2(n − 1) − (n − i − 1)s2(n) in (n − i)α,
we have to set e(i) such that (s2 + αen−1)(i) differs from s2(i) in this value. In
other words, we set it to e(i) := −(n − i). This yields the only possible extreme
ray for unbinding condition for the coalition size n − 1. Therefore, there are no
more extreme rays and by Theorem 1.5, the proof concludes.

Theorem 6.8. For a Cn
1,σ-extendable reduced game (N, X , σ) such that n−1 /∈ X

and {n} ⊊ X , the set Cn
1,σ can be described as

Cn
1,σ =

⎧⎨⎩αs2 + (1 − α)s∗ +
∑︂

i/∈X ,i ̸=n−1
αiei | αi ≥ 0

⎫⎬⎭ ,

where

ei(j) :=
⎧⎨⎩−1, if j = i,

0, if j ̸= i.
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Proof. By Theorem 6.6, we know (N, s2) and (N, s∗) are the only extreme games,
with possibly s2 = s∗. It is a similar argument to the one in Theorem 6.3, showing
(N, ei) are rays of Cn

1,σ, binding all but one condition of Cn
1,σ. Note that (N, en−1)

defined in Theorem 6.7 is not an extreme ray of Cn
1,σ. The proof is once again

concluded by Theorem 1.5.

6.2 Games with minimal information
In this section, we restrict ourselves to incomplete games with minimal infor-
mation. We derive a compact description of the set of Cn

1 -extensions employing
its extreme games and its extreme rays (Subsection 6.2.1). Then, in Subsec-
tion 6.2.2, we investigate generalisations of three solution concepts for complete
games, namely the τ -value, the Shapley value and the nucleolus. We consider
two variants where we compute the centre of gravity of either extreme games or
of a combination of extreme games and extreme rays. We show that all of the
generalised values coincide for games with minimal information and we call the
solution concept the average value ζ̃. Finally, in Subsection 6.2.3, we provide
three different axiomatisations of the average value and outline a method to gen-
eralise several of the axiomatisations of the τ -value and the Shapley value into
an axiomatisation of the average value.

6.2.1 Description of the set of Cn
1 -extensions

For the class of incomplete games with minimal information, we define the total
excess as ∆ := v(N) −∑︁

i∈N v(i), which we will widely use in this section.
The first step towards understanding the set of Cn

1 (v)-extensions is to describe
when it is empty.

Theorem 6.9. An incomplete game with minimal information (N, K, v) is Cn
1 -

extendable if and only if ∆ ≥ 0.

Proof. Let (N, w) ∈ Cn
1 (v). Since it is 1-convex, it must hold for each i ∈ N ,

w(i) ≤ w(N) − b(N \ i).

We sum the inequalities over all n players to get∑︂
i∈N

w(i) ≤ nw(N) −
∑︂
i∈N

bw(N \ i).

We now expand expressions bw(N \ i) and rearrange the inequality into∑︂
i∈N

w(i) + n(n − 2)w(N) ≤ (n − 1)
∑︂
i∈N

w(N \ j). (6.14)

Since bw(N) ≥ w(N) is equivalent to ∑︁i∈N w(N \ i) ≤ (n − 1)w(N), we bound
the right-hand side of (6.14) by (n − 1)2w(N) and by rearranging, we conclude
that ∆ ≥ 0.
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For the opposite direction, let us consider Cn
1 -extensions (N, vi) for i ∈ N

defined as

vi(S) :=

⎧⎪⎪⎨⎪⎪⎩
v(S), if S ∈ K,

v(N) −∑︁
j ̸∈S v(j), if S ̸∈ K ∧ i ∈ S,

v(N) −∑︁
j ̸∈S v(j) − ∆, if S ̸∈ K ∧ i ̸∈ S.

(6.15)

Notice that such games coincide on values of S ∈ K. We claim that for any i, the
game vi ∈ Cn

1 (v). The condition bvi(N) ≥ vi(N) holds since

bvi(N) = nvi(N) −
∑︂
j∈N

vi(N \ j) = nv(N) − nv(N) +
∑︂
j∈N

v(j) + ∆ =
∑︂
j∈N

v(j) + ∆.

Furthermore, vi(N) = v(N) = ∑︁
j∈N v(j) + ∆ and hence the condition is clearly

satisfied.
Now to verify the condition vi(S) ≤ vi(N) − bvi(N \ S) for each S ⊆ N , we

distinguish two cases based on if i ∈ S or i /∈ S.
For i ∈ S, vi(S) = v(N) − ∑︁

j ̸∈S
v(j), which is equal to vi(N) − bvi(N \ S).

Therefore, the condition is satisfied and in fact, its upper bound is attained.
For i ̸∈ S, vi(S) = v(N) − ∑︁

j ̸∈S
v(j) − ∆ and vi(N) − bvi(N \ S) = v(N) −∑︁

j ̸∈S
v(j) − ∆. Again, the condition holds and the upper bound is attained.

We note that if ∆ = 0, the set of Cn
1 -extensions is rather simple and consists

only of (N, v) (the upper game defined in Theorem 6.10). Therefore, we are
naturally more interested in situations when ∆ > 0.

The set of Cn
1 -extensions is not bounded from below. For a Cn

1 -extendable
incomplete game (N, K, v) and its Cn

1 (v)-extension (N, w), we can construct yet
another Cn

1 (v)-extension (N, wS) dependent on a coalition S ⊆ N such that
1 < |S| < n − 1. We set the characteristic functions of the two games to differ
only in values of S, so that wS(S) < w(S). The 1-convexity of (N, wS) is easy
to check from 1-convexity of (N, w) and it can be immediately seen that any
arbitrarily small number ε satisfying ε < v(S) could be chosen for the worth of
coalition S in (N, wS). Even though not bounded from below, the set of Cn

1 -
extensions is bounded from above.

Theorem 6.10. Let (N, K, v) be a Cn
1 -extendable game with minimal informa-

tion. Then the upper game (N, v) has the following form:

v(S) :=
⎧⎨⎩v(S), if S ∈ K,

v(N) −∑︁
i ̸∈S v(i), if S ̸∈ K.

Proof. To show that this is an upper bound for the value of each coalition T ⊆ N ,
we formulate the following optimization problem:

max
(N,w)∈Cn

1 (v)
w(T )

s.t. w(N) ≤ bw(N),
w(S) ≤ w(N) − bw(N \ S) for S ⊆ N, S ̸= ∅.

(6.16)
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Clearly, the optimal value of the optimization problem (if it exists) is the value
v(T ). Also notice that from the condition for T , i.e. w(T ) ≤ w(N) − bw(N \ T ),
that the upper bound of w(T ) is dependent only on value w(N) (which is a
constant since N ∈ K) and n values w(N \ i) for i ∈ N (which are variables).
The sum of these variables is bounded from above by (n − 1)v(N) (since w(N) ≤
bw(N) ⇐⇒ ∑︁

i∈N v(N \ i) ≤ (n − 1)v(N)). From below, we have to consider
only conditions w(i) ≤ w(N) − bw(N \ i), because for S ̸∈ K, we can always
choose a Cn

1 -extension such that the value w(S) is small enough to satisfy w(S) ≤
w(N) − bw(N \ S).

Therefore, we can simplify the optimization problem by:

1. removing conditions for S ̸∈ K,

2. removing variables w(S) for S ̸∈ K, and

3. substituting objective function w(T ) for w(N) − bw(N \ T ).

By these simplifications, we get an optimization problem

max w(N) − bw(N \ T )

s. t. w(i) ≤ w(N) − bw(N \ i)
i = 1, . . . , n.

(6.17)

The set of feasible solutions is now w ∈ Rn where wi = w(N \ i) and w(N)
together with w(i) (for i ∈ N) are constants. A feasible solution w ∈ Rn of
problem (6.17) is equivalent to a feasible solution of problem (6.16) by setting
w(S) := −(n − s − 1)w(N) + ∑︁

k∈N\S wk = w(N) − bw(N \ S). Notice that the
optimal values for both problems with corresponding feasible solutions equal.

We restate the problem in terms of the characteristic function w and we
substitute w(N \ i) for wi, arriving at

max
w∈Rn

∑︂
i∈N\S

wi − (n − s − 1)w(N)

s.t.
∑︂
j∈N

wj ≤ (n − 1)w(N)

w(k) ≤
∑︂
j ̸=i

wj − (n − 2)w(N)

k = 1, . . . , n.

(6.18)

Problem (6.18) is an instance of linear programming. Therefore, we can con-
struct its dual program:

min
y∈Rn+1

∑︂
i∈N

[(−(n − 2)w(N) − w(i))yi] + (n − 1)w(N)yn+1 − (n − s − 1)w(N)

s.t. −
∑︂
j ̸=i

yj + yn+1 = 1 for i ̸∈ T

−
∑︂
j ̸=i

yj + yn+1 = 0 for i ∈ T

yi ≥ 0 i = 1, . . . , n + 1.
(6.19)
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Let us define the vector y∗ ∈ Rn+1 as

y∗
j =

⎧⎪⎪⎨⎪⎪⎩
0, if j ∈ T,

1, if j ̸∈ T,

n − t, if j = n + 1.

We deduce that

• y∗
j ≥ 0 for all j ∈ N ,

• −∑︁
j ̸=i y∗

j + y∗
n+1 = −(n − t − 1)1 + (n − t) = 1 for i ̸∈ T ,

• −∑︁
j ̸=i y∗

j + y∗
n+1 = −(n − t)1 + (n − t) = 0 for i ∈ T .

Hence y∗ is a feasible solution of (6.19). Further, the value of the objective
function for y∗ equals w(N) −∑︁

i ̸∈T w(i) = v(N) −∑︁
i ̸∈T v(i). This means (from

the duality of linear programming) that the primal program is feasible and the
value of its objective function is bounded from above by this value.

To see that this upper bound is attained, take a game (N, vi) (from the proof
of Theorem 6.9) such that i ̸∈ T .

It is important (and by our opinion interesting) that the upper game of the
set of Sn-extensions of non-negative incomplete games with minimal information
coincide with the upper game of Cn

1 -extensions from Theorem 6.10.
The upper game v is not 1-convex in general. For example, a 3-person incom-

plete game (N, K, v) with minimal information such that, v(N) = 1 and v(i) = 0
for all i ∈ N , is Cn

1 -extendable because ∆ = 1, but 1 = v(N) ≰ bv(N) = 0. From
the condition v(N) ≤ bv(N) we can derive that v(N) ≤ ∑︁

i∈N v(i), therefore
∆ = 0. For ∅ ≠ S ⊊ N and conditions v(S) ≤ v(N) − bv(N \ S) we can easily
derive from the definition of the upper game (N, v) that

v(N) ≤ min
∅≠S⊊N

{︄
2

n − s

∑︂
i∈N\S

v(i)
}︄

.

Theorem 6.11. Let (N, K, v) be an incomplete game with minimal information.
Then it holds that the upper game (N, v) ∈ Cn

1 (v) if and only if

∆ = 0 and v(N) ≤ min
∅̸=S⊊N

⎧⎨⎩ 2
n − s

∑︂
i∈N\S

v(i)
⎫⎬⎭.

So far, we showed that the set Cn
1 (v) is a convex polyhedron, since it can

be described by a set of inequalities. It is bounded from above by (N, v) and
unbounded from below. Such polyhedrons (if having at least one vertex) can
be characterised by the set of extreme points and the cone of extreme rays (see
Theorem 1.5).

We initiate the derivation of the full description of the set of Cn
1 -extensions by

proving that games (N, vi) (defined as (6.15)) are actually extreme points of the
set. To prove this, we use a characterisation of extreme points from Theorem 1.2.

Theorem 6.12. For Cn
1 -extendable game (N, K, v) with minimal information,

the games (N, vi) are extreme games of Cn
1 (v).
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Proof. Let x ∈ R2|N| be a vector such that both (N, vi ± x) ∈ Cn
1 (v). We will

show that in such case, inevitably x(S) = 0 for all S ⊆ N , thus by Theorem 1.2
(N, vi) is an extreme game.

Define f+ := vi + x and f− := vi − x. For S ∈ K, clearly x(S) = 0. It remains
to show that for S /∈ K, x(S) = 0.

For S ̸∈ K and i ̸∈ S, for the sake of contradiction, suppose w.l.o.g. that
x(S) > 0. Then f+(S) = vi(S)+x(S) = v(S)+x(S) > v(S), therefore (N, f+) ̸∈
Cn

1 (v), a contradiction.
For S ̸∈ K and i ∈ S, again, suppose x(S) = δ > 0. Because (N, f+) and

(N, f−) are both 1-convex, conditions

f+(S) + (n − s − 1)f+(N) ≤
∑︂
j ̸∈S

f+(N \ j)

and
f−(S) + (n − s − 1)f−(N) ≤

∑︂
j ̸∈S

f−(N \ j)

must hold. We can rewrite both of the inequalities (and aggregate them by ±)
as

vi(S) + (n − s − 1)v(N) ± x(S) ± (n − s − 1)x(N) ≤
∑︂
j ̸∈S

vi(N \ j) ±
∑︂
j ̸∈S

x(N \ j),

which is equivalent to

v(N)−
∑︂
j ̸∈S

v(j)−c+(n−s−1)v(N)±x(S) ≤ (n−s)v(N)−
∑︂
j ̸∈S

v(j)−c±
∑︂
j ̸∈S

x(N \j)

or
±x(S) ≤ ±

∑︂
j ̸∈S

x(N \ j).

Since both inequalities hold, we conclude x(S) = ∑︁
j ̸∈S x(N \ j). We already

showed that x(N \ j) = 0 if i ∈ N \ j if and only if j ̸= i. But since i ̸∈ S we
conclude 0 < δ = x(S) = ∑︁

j ̸∈S x(N \ j) = 0, which is a contradiction.
We proved that x is necessarily a vector of zeroes and thus we conclude the

proof by taking Theorem 1.2 into account.

Not only are games (N, vi) for i ∈ N the extreme games of Cn
1 (v), they are

also the only extreme games.

Theorem 6.13. For a Cn
1 -extendable game (N, K, v) with minimal information,

the games (N, vi) are the only extreme games of Cn
1 (v).

Proof. We will prove this theorem by showing that any extreme game (N, e) has
the form of one of the (N, vi) games. Since there are n different games, we have
to enforce that the game coincides with (N, vi) for a specific i.

To do so, realise there is i such that e(N \ i) < v(N \ i). If there was no such
i, then ∀k : e(N \ k) ≥ v(N \ k). The sum of these conditions leads to∑︂
k∈N

e(N \k) >
∑︂
k∈N

v(N \k) = nv(N)−
∑︂
k∈N

v(k) = (n−1)v(N)+∆ ≥ (n−1)v(N).

But this is a contradiction, because the opposite inequality holds. Now we proceed
to prove that e = vi.
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First, we show i is the unique coalition of size n − 1 with its coalition value
e(N \i) different from v(N \i), i.e. there is no j ̸= i such that e(N \j) < v(N \j).
For a contradiction, if there is such j, denote εi = v(N \ i) − e(N \ i), εj =
v(N \ j) − e(N \ j) and ε = min{εi, εj}. We define a non-trivial game (N, x)
such that both (N, e + x) ∈ Cn

1 (v) and (N, e − x) ∈ Cn
1 (v), contradicting (by

Theorem 1.2) that (N, e) is an extreme game. The game (N, x) can be described
as

x(S) =

⎧⎪⎪⎨⎪⎪⎩
ε, if S = N \ i or S /∈ K ∧ i ̸∈ S ∧ j ∈ S,

−ε, if S = N \ j or S /∈ K ∧ i ∈ S ∧ j ̸∈ S,

0, otherwise.

The condition (1.3) from Definition 1.14 for both (N, e + x) and (N, e − x) now
reads as ∑︂

k∈N

e(N \ k) ± x(N \ i) ± x(N \ i) ≤ (n − 1)e(N)

or equivalently ∑︂
k∈N

e(N \ k) ± ε ∓ ε ≤ (n − 1)e(N)

is equivalent to the respective condition of (N, e). Furthermore, for any nonempty
coalition S such that i ̸∈ S and j ∈ S, the condition (1.4) from Definition 1.14
for both games is

e(S) ± x(S) − (n − s − 1)e(N) ≤
∑︂

k∈N\S

v(N \ k) ± x(N \ i).

Since x(S) = x(N \ i), it is equivalent to the respective condition of (N, e). The
rest of the cases for non-empty S can be dealt with in a similar manner, therefore
both games (N, e ± x) ∈ Cn

1 . But this leads to a contradiction, because (N, e) is
an extreme game.

Second, we show that e(N \ i) = v(N) − v(i) − ∆. Clearly, for α > 0,

(n − 1)e(N) =
∑︂
k∈N

e(N \ k) = nv(N) −
∑︂
k∈N

v(k) − α.

We note the first equality holds, otherwise there is a game (N, x) where x(N\j) :=
β and for S, i ̸∈ S : x(S) := −β that leads to a contradiction with (N, e) being
an extreme game. Therefore α = v(N) −∑︁

k∈N v(k) = ∆.
Finally, it is elementary to prove that e(S) = e(N) − b(N \ S) = vi(S). If this

was not true, yet another game (N, x) with x(S) = e(N)−b(N \S) and x(T ) = 0
would lead to a contradiction with extremality of (N, e).

Now let us proceed with the investigation of the extreme rays. For a game
(N, vi + λe) to be 1-convex (thus being in the recession cone of Cn

1 (v)), the
following conditions must hold for every nonempty S ⊆ N :

• bvi(N) + bλe(N) ≥ vi(N) + λe(N),

• vi(S) + λe(S) ≤ vi(N) + λe(N) − bvi(N \ S) − bλe(N \ S).

Notice from the proof of Theorem 6.9 that

• bvi(N) = vi(N) ,
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• vi(S) = vi(N) − bvi(N \ S).
We can therefore simplify the conditions, arriving at

• bλe(N) ≥ λe(N),

• λe(S) ≤ λe(N) − bλe(N \ S).
Furthermore, we can factor out λ since it is non-negative. Notice that for each
j ∈ N , e(j) = e(N) = 0, otherwise (N, vi + λe) ̸∈ Cn

1 (v). Taking all this
into consideration, we obtain the following conditions for (N, e), representing an
unbounded direction in Cn

1 :
1. be(N) ≥ e(N) ⇐⇒ ∑︁

j∈N e(N \ j) ≤ 0,

2. ∀S ⊆ N, S ̸= ∅ : e(S) ≤ e(N) − be(N \ S) ⇐⇒ e(S) ≤ ∑︁
j∈N\S e(N \ j),

3. ∀k ∈ N : 0 ≤ ∑︁
j∈N\k e(N \ k),

4. ∀j ∈ N : e(j) = 0,

5. e(N) = 0.
Conditions 1 and 2 show that (N, e) has to be 1-convex game, itself. Moreover,
if it is 1-convex, for any λ ≥ 0, the game (N, λe) is also 1-convex. Therefore, the
game (N, e) is (not necessarily an extreme) ray of the recession cone of the set of
Cn

1 -extensions. It is a zero-normalised game with e(N) = 0 (thanks to conditions
4 and 5). Observe that condition 3 is a special case of condition 2 (take S = {k}
for k ∈ N). We state it separately, since it will come in handy to refer just to
this special case in further text. Notice an interesting fact: values of the game
(N, e) do not depend on the value of (N, K, v). Therefore, the recession cone is
the same for every incomplete game with minimal information.

Further, to simplify conditions 1 to 5, suppose that there is a Cn
1 -extension

(N, vi + e) such that ∑︁j∈N e(N \ j) < 0. Then there is k ∈ N such that∑︁
j∈N\k e(N\j) < 0. But this is a contradiction with 0 ≤ ∑︁

j∈N\k e(N\j). Further,
suppose that ∑︁j∈N e(N \ j) = 0 and there is k such that e(N \ k) ̸= 0. We distin-
guish two cases. If e(N \ k) > 0, then e(N \ k) = −∑︁

j∈N\k e(N \ j) > 0, which
is a contradiction because both 0 ≤ ∑︁

j∈N\k e(N \ j) and ∑︁j∈N\k e(N \ j) < 0. If
e(N \ k) < 0, there is ℓ ∈ N such that e(N \ ℓ) > 0 and we arrive into a similar
contradiction. Hence it must hold for every i ∈ N , that e(N \ i) = 0. We can
now rewrite the conditions as

1. ∀S ⊆ N, S ̸= ∅ : e(S) ≤ 0,

2. ∀i ∈ N : e(i) = e(N) = e(N \ i) = 0.
Let us now select the extreme rays. From Definition 1.4, all but one of conditions
1 or 2 have to be satisfied with equality for game (N, vi +e) to be an extreme ray.
We see that the extreme rays are given by 1-convex games (N, eT ) for coalitions
T ∈ E = 2N \ ({0, N} ∪ {N \ i | i ∈ N} ∪ {{i} | i ∈ N}), where

eT (S) :=
⎧⎨⎩−1, if S = T,

0, if S ̸= T.
(6.20)

With such knowledge, we are ready to fully describe the set of Cn
1 -extensions

of games with minimal information.
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Theorem 6.14. For a Cn
1 -extendable game (N, K, v) with minimal information,

the set of Cn
1 -extensions can be described as

Cn
1 (v) =

{︄∑︂
i∈N

αiv
i +

∑︂
T ∈E

βT eT |
∑︂
i∈N

αi = 1 and αi, βT ≥ 0
}︄

.

Proof. We have already proved that games (N, vi) for i ∈ N from (6.15) are the
extreme games of Cn

1 (v) and games (N, eT ) for T ∈ E from (6.20) are the extreme
rays of Cn

1 (v). The rest of the proof follows from Theorem 1.5.

6.2.2 Solution concepts
In this subsection, we present generalisations of the τ -value and the Shapley value
based on two ideas. The first idea is to consider solely the vertices of the set of Cn

1 -
extensions, compute their centre of gravity and for the resulting game, compute
its τ -value (see Definition 6.1) or its Shapley value (Definition 6.4). The second
idea considers also the recession cone, which is completely neglected in the first
approach (Definitions 6.3, 6.5). We show that from the symmetry of recession
cone, both approaches for both generalisations of the τ -value and the Shapley
value lead to the same solution concept for games with minimal information. We
call it the average value.

The average τ-value

The first solution concept considers the centre of gravity of the extreme games,
that is

ṽ =
∑︂
i∈N

vi

N
.

Note that (N, ṽ) is 1-convex if (N, vi) are 1-convex for all i ∈ N . Since the
additivity does not hold for the τ -value in general, τ(ṽ) ̸= ∑︁

i∈N
τ(vi)

N
in general.

We consider both variants in the next definition.

Definition 6.1.

1. The average τ -value τ̃ : Cn
1 (Kmin) → Rn is defined as

τ̃(v) := τ(ṽ), and

2. the solidarity τ -value τ s : Cn
1 (Kmin) → Rn is defined as

τ s(v) :=
∑︂
i∈N

τ(vi)
n

,

where (N, ṽ) and (N, vi) for i ∈ N are the centre of gravity and the extreme games
of Cn

1 (v), respectively.

The justification for the name of the solidarity τ -value is given in the following
theorem.
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Theorem 6.15. The average τ -value τ̃ : Cn
1 (Kmin) → Rn and the solidarity τ -va-

lue τ s : Cn
1 (Kmin) → Rn can be expressed as follows:

1. ∀i ∈ N : τ̃ j(v) = v(j) + ∆
n

,

2. ∀i ∈ N : τ s
j (v) = v(N)

n
.

Proof. Both expressions can be easily derived from the definition of τ̃ , τ s and
(N, vi). First of all, the game (N, ṽ) can be expressed as

ṽ(S) =

⎧⎪⎪⎨⎪⎪⎩
v(S), if S ∈ K,

v(N) −
(︄ ∑︁

j∈N\S
v(j)

)︄
− n−s

n
∆, if S ̸∈ K.

The values of its utopia vector are bṽ
j = v(j) + n−1

n
∆, and by summing them, we

arrive at bṽ(N) = ∑︁
j∈N v(j) + (n − 1)∆ = v(N) + (n − 2)∆. The gap function

for N is gṽ(N) = (n − 2)∆ and finally (by Theorem 1.9), from the definition of
τ̃(v), using τ̃(v) = τ(ṽ), we get

τj(ṽ) = bṽ
j − gṽ(N)

n
= v(j) + n − 1

n
∆ − n − 2

n
∆ = v(j) + ∆

n
.

The main reason behind the formula for the solidarity τ -value is the fact that
τ(vi) = bvi , which immediately follows from gvi(N) = 0, and from the form of bvi

which is

bvi

j =
⎧⎨⎩v(j), if j = i,

v(j) + ∆, if j ̸= i.

By summing the values of vector bvi , we get that bvi(N) = ∑︁
j∈N v(j)+∆ = v(N).

Therefore, gvi(N) = v(N) − bvi(N) = 0. Finally, if we take

τ s
j =

∑︂
i∈N

τj(vi)
n

=
∑︂
i∈N

bvi

j

n
=
∑︁

i∈N bvi

j

n
,

we arrive at the formula stated above, since ∑︁i∈N bvi

j = ∑︁
i∈N v(i)+∆ = v(N).

We immediately see that the solidarity τ -value is not a very reasonable solution
concept if we consider that under such value, every player should get an equal
share of v(N)

n
no matter his contribution.

The conic τ-value

It might seem that the main downside of the previous two solution concepts is
that we do not consider the recession cone of the set of Cn

1 -extensions. Here we
provide an argument showing that with no further assumptions, this is not the
case for games with minimal information. We define a solution concept dependent
on the recession cone, which will serve as a foundation for the study of incomplete
games with more general sets K.

Let (N, vi) for i ∈ N be the extreme games of Cn
1 (v) and (N, eT ) for T ∈ E be

the extreme rays of Cn
1 (v). (N, ṽ) denotes again the centre of gravity of extreme

games and (N, ẽ) the centre of gravity of extreme rays, i.e.

ẽ =
∑︂
T ∈E

eT

|E|
=
∑︂
T ∈E

eT

|2n − 2n − 2|
.
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The conic τ -value τ<, introduced in the following definition, is computed on
the sum of these games. It considers the extreme games as well as extreme rays,
thus the information from the shape of the conic cone is also included.

Definition 6.2. The conic τ -value τ< : Cn
1 (Kmin) → Rn is defined as

τ<(v) := τ(ṽ + ẽ),

where the games (N, ṽ) and (N, ẽ) are the centres of gravity of extreme points and
of extreme rays of Cn

1 (v).

Surprisingly, the average τ -value and conic τ -value are the same function
for incomplete games with minimal information. The reason is hidden in the
symmetry of (N, ẽ).

Theorem 6.16. The conic τ -value τ< : Cn
1 (Kmin) → Rn can be expressed as

follows:
∀i ∈ N : τ<

i (v) = v(i) + ∆
n

.

Proof. The proof is a straightforward derivation from the definitions. First, we
already know the description of (N, ṽ) from the proof of Theorem 6.15. The
description of (N, ẽ) is

ẽ(S) =
⎧⎨⎩−1

ε
, if S ∈ K ∨ S = N \ j for j ∈ N,

0, otherwise,

where ε = 2n−2n−2. From this description we derive that bṽ+ẽ
i = v(i)+ n−1

n
∆− 1

ε

as bṽ+ẽ
i is equal to

(ṽ + ẽ)(N) − (ṽ + ẽ)(N \ j) = v(N) − ṽ(N \ i) − ẽ(N \ i)

and the right-hand side can be rewritten as v(N) −
(︂
v(N) − v(i) − n−1

n
∆
)︂

+ 1
ε
.

Further, b(ṽ+ẽ)(N) = ∑︁
i∈N

v(i) + (n − 1)∆ + n
ε

= v(N) + (n − 2)∆ + n
ε
. The last

equality follows by using the fact that ∑︁
i∈N

v(i) + ∆ = v(N). The gap function

g(ṽ+ẽ)(N) = b(ṽ+ẽ)(N) − v(N) = (n − 2)∆ + n
ε
.

Finally, by Theorem 1.9, τ<
i (v) = b

(ṽ+ẽ)
i − g(ṽ+ẽ)

n
= v(i)+ n−1

n
∆+ 1

ε
− (n−2)∆+ n

ε

n
.

Since (n−2)∆+ n
ε

n
= n−2

n
∆ + 1

ε
, we have

τ<
i (v) = v(i) + n − 1

n
∆ + 1

ε
− n − 2

n
∆ − 1

ε
= v(i) + ∆

n
.

As mentioned before, the reason for this (one might say) surprising result is
the symmetry of (N, ẽ). Actually, consider a more general setting, where we take
the expression

1
γ

(︄
β
∑︂
i∈N

vi + α
∑︂
T ∈E

eT

)︄
. (6.21)

This is a generalization of ṽ + ẽ (for β = 1
n
, α = 1

ε
, and γ = 1, we get ṽ + ẽ).

Also, if β ̸= γ, it can be shown that the game from ( 6.21) does not lie in Cn
1 (v).

Fixing β = γ, the τ -value of this expression equals τ̃ for any α ∈ R.
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On the other hand, if (N, ẽ) would not be symmetric or would depend on values
of v ∈ Cn

1 (Kmin), the information about the cone might matter and τ<(v) ̸= τ̃(v).
This motivates the definition for games (N, K, v) with a more general structure
of K.

Definition 6.3. Let K ⊆ 2N and suppose that ∀v ∈ Cn
1 (K), the set Cn

1 (v) is a
polyhedron described by its extreme points and extreme rays. Then the α-conic
τ -value τα : Cn

1 (K) → Rn is defined as

τα(v) := τ(ṽ + αẽ),

where (N, ṽ), (N, ẽ) are the centres of gravity of extreme points and of extreme
rays of Cn

1 (K), respectively.

As mentioned before, for games with minimal information, τ̃(v) = τα(v).
However, for more general sets K, this definition might yield a different solution.
This is supported by the investigation of incomplete games with defined upper
vector in Section 6.3. In there, we show that a similar solution concept, the α-
conic Shapley value, does not coincide with the average Shapley value. The idea
behind these solution concepts is the same as behind the average and the conic
τ -value.

Once more, the fact that additivity does not hold for the τ -value in general
leads to a question whether τ(ṽ+ ẽ) and τ(ṽ)+τ(ẽ) yield a different function. For
games with minimal information, this is not the case since τ(ẽ) = 0. Therefore,
τ(ṽ) + τ(ẽ) = τ(ṽ) = τ̃(v).

The average Shapley value

The average Shapley value ϕ̃ was already studied by Masuya and Inuiguchi in [19]
for the set of Sn-extensions of non-negative incomplete games with minimal in-
formation. We show that in the context of 1-convexity, the average Shapley value
coincides with their definition, which is also equal to the average τ -value. Yet
again, the consideration of the recession cone (thanks to its symmetry) does not
come to fruition.

Definition 6.4. The average Shapley value ϕ̃ : Cn
1 (Kmin) → Rn, is defined as

ϕ̃(v) := ϕ(ṽ),

where (N, ṽ) is the centre of gravity of extreme games of Cn
1 (v).

Theorem 6.17. The average Shapley value ϕ̃ : Cn
1 (Kmin) → Rn can be expressed

as follows:
∀i ∈ N : ϕ̃i(v) = v(i) + ∆

n
.

Proof. The proof is based on the characterisation of the Shapley value from The-
orem 1.13 and the fact that for every S ⊆ N \ i, ṽ(S ∪ i) − ṽ(S) = v(i) + ∆

n
. This

holds as ṽ(S ∪ i) − ṽ(S) is from the definition of (N, ṽ) equal to

v(N) −
∑︂

j∈N\(S∪i)
v(j) − (n − (s + 1))

n
∆ −

⎛⎝v(N) −
∑︂

j∈N\S

v(j) − (n − s)
n

∆
⎞⎠ ,
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which can be rewritten to v(i) + ∆
n

. Observe that v(i) + ∆
n

is independent of
coalition S. We know that ϕ̃i(v) = ϕi(ṽ) and substituting into the expression
from Theorem 1.13, we get

ϕi(ṽ) = 1
n

∑︂
S⊆N\i

(︄
n − 1

s

)︄−1 (︄
v(i) + ∆

n

)︄
=
(︄

v(i) + ∆
n

)︄
1
n

∑︂
S⊆N\i

(︄
n − 1

s

)︄−1

.

Modifying the sum is a mere exercise, using the following identity:

∑︂
S⊆N\i

(︄
n − 1

s

)︄−1

=
n−1∑︂
j=0

(︄
n − 1

j

)︄(︄
n − 1

j

)︄−1

= n.

Combining together, we arrive at the desired formula.

Similarly to the investigation of the conic τ -value, we arrive to a conclusion
that any sensible integration of the recession cone in the definition of the gener-
alised Shapley value does not yield a different result. This is since ϕ(ṽ + αẽ) =
ϕ(ṽ) + ϕ(αẽ) = ϕ(ṽ) as for symmetric game (N, αẽ), the Shapley value for any
player i equals ϕi(αẽ) = 0. Nonetheless, similar argument for the definition of ϕα

for games with general K holds. For the conic Shapley value of incomplete games
with defined upper vector, we show in Section 6.3 that the two concepts do not
coincide in general.

Definition 6.5. Let K ⊆ 2N and suppose that ∀v ∈ Cn
1 (K), the set Cn

1 (v) is a
polyhedron described by its extreme points and extreme rays. Then the α-conic
Shapley-value ϕα : Cn

1 (K) → Rn is defined as

ϕα(v) := ϕ(ṽ + αẽ),

where (N, ṽ), (N, ẽ) are the centres of gravity of extreme points and of extreme
rays, respectively.

To sum it up, we considered generalisation of three values τ, n, ϕ of complete
cooperative games in two variants (including/excluding the information from the
recession of Cn

1 -extensions) and showed that actually all of them coincide thanks
to 1-convexity and symmetry of the recession cone of Cn

1 (v). From now on, we
will refer to this solution concept of incomplete games with minimal information
as the average value ζ̃.

6.2.3 Axiomatisation of the average value ζ̃

In this subsection, we focus on axiomatisation of the average value. In the first
part, we consider known characterisations of the τ -value and the Shapley value
of complete games. We show how to generalise these characterisation for the
average value. This is done through the fact that the average value is both the
τ -value and Shapley value of a specific complete game (N, ṽ). In the second part,
we offer three axiomatisations where the axioms are defined in the context of
values of v ∈ Cn

1 (Kmin).
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Generalisations of known axiomatisations

The idea behind generalisations of known axiomatisations is based on the fact
that the average value is defined as either the τ -value or the Shapley value of the
centre of gravity (N, ṽ). Since these solution concepts satisfy certain axioms, also
the average value satisfies these axioms when restricted to ṽ. The uniqueness of
the average value is then given by the uniqueness of ζ̃(v) for each v ∈ Cn

1 (Kmin).
If we had a function f satisfying the restricted axioms different from ζ̃, we would
have a game v ∈ Cn

1 (Kmin) such that ζ̃(v) = τ(ṽ) ̸= f(v). But this means that for
(N, ṽ), we have two solution concepts for complete games satisfying the axioms
of the τ -value (or the Shapley value) that differ in the imputation assigned to
(N, ṽ). This is a contradiction with the uniqueness of these values.

We demonstrate this proof method on two examples, generalising both an
axiomatisation of the τ -value and the Shapley value.

Theorem 6.18. The average value ζ̃ is the only function f : Cn
1 (Kmin) → Rn

such that the following properties hold for every v ∈ Cn
1 (Kmin):

1. (efficiency) ∑︁i∈N fi(v) = v(N),

2. (restricted proportionality property of ṽ) f(v0) = αbṽ0,

3. (minimal right property of ṽ) f(v) = aṽ + f(v − aṽ),

where α ∈ R and (v − aṽ)(S) := v(S) −∑︁
i∈S aṽ

i for every S ⊆ N .

Proof. To prove that the average value satisfies the mentioned properties, remem-
ber the definition ζ̃(v) = τ(ṽ) and Theorem 1.10. Since ṽ(S) = v(S) for S ∈ K,
all three properties hold.

As for the uniqueness, suppose there is a function g : Cn
1 (Kmin) → Rn such

that the properties hold and there is a game v ∈ Cn
1 (Kmin), ζ̃(v) ̸= g(v). We

can construct a function γ : Cn
1 → Rn such that γ(w) := τ(w) for every w ∈ Cn

1 ,
w ̸= ṽ and γ(ṽ) := g(v). Clearly, γ satisfies all axioms from Theorem 1.10, which
leads (together with γ(ṽ) = g(v) ̸= τ(ṽ)) to a contradiction with the uniqueness
of the τ -value.

It can be showed that in the context of incomplete games the second axiom
is equivalent to restricted proportionality property of ṽ where α = 1.

The alternative characterisation of the τ -value was proposed in [6] and it can
be generalised in a similar manner. Let us proceed with yet another example,
generalising axiomatisation of the Shapley value.

Theorem 6.19. The average value ζ̃ is the only function f : Cn
1 (Kmin) → Rn

such that the following properties hold for every v, w ∈ Cn
1 (Kmin):

1. (efficiency) ∑︁i∈N fi(v) = v(N),

2. (symmetry of ṽ) ∀i, j ∈ N and ∀S ⊆ N \ {i, j} : v(S ∪ i) = v(S ∪ j) =⇒
fi(v) = fj(v),

3. (null player of ṽ) ∀i ∈ N and ∀S ⊆ N \ i : ṽ(S) = ṽ(S + i) =⇒ fi(v) = 0,

4. (additivity of ṽ) if v + w ∈ Cn
1 (Kmin) : f(ṽ + w̃) = f(ṽ) + f(w̃).
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Proof. Since the average value of v ∈ Cn
1 (Kmin) acts as the Shapley value of

ṽ ∈ Cn
1 , the axioms are satisfied. We note that considering efficiency, ∑︁i∈N fi(v) =

v(N) = ṽ(N), therefore it is equivalent with ϕ(ṽ) = ṽ(N) and for additivity,
(ṽ + w̃) = ṽ + w̃, where (ṽ + w̃) is the centre of gravity of vertices of v + w and
ṽ + w̃ is the sum of centres of gravity of v and w. The uniqueness of ζ̃ is given
by the uniqueness of the Shapley value.

From the alternative characterisations of the Shapley value, we generalised
[32, 35]. To do the same for the one by Roth in [23] is more challenging and we
leave it as an open problem.

Axiomatisations in the context of values of (N, K, v)

The previously mentioned characterisations do not tell us anything new about the
average value that we do not already know from its definition ζ̃(v) := τ(ṽ) = ϕ(ṽ).
In this subsection, we derive three axiomatisations in the context of values of
(N, K, v).

Theorem 6.20. The average value ζ̃ is the only function f : Cn
1 (Kmin) → Rn

such that the following properties hold for every v ∈ Cn
1 (Kmin):

1. (efficiency) ∑︁i∈N fi(v) = v(N),

2. (elementary symmetry) ∀i, j ∈ N : i ̸= j ∧ v(i) = v(j) =⇒ fi(v) = fj(v),

3. (zero-normalisation invariance) ∀i ∈ N : fi(v) = v(i) + fi(v0).

Proof. Let us prove that ζ̃ satisfies all three properties. First,

∑︂
i∈N

ζ̃ i(v) =
∑︂
i∈N

v(i) + n
∆
n

= v(N).

Furthermore, for v(i) = v(j), it holds ζ̃ i(v) = v(i) + ∆
n

= v(j) + ∆
n

= ζ̃j(v). For
the third property, as v(i) + ∆

n
= ζ̃ i(v) = v(i) + ζ̃ i(v0) holds for every player i, it

suffices to show that ζ̃ i(v0) = ∆
n

. For any v ∈ Cn
1 (Kmin), the zero-normalisation

v0 can be described as

v0(S) =
⎧⎨⎩v(N) −∑︁

i∈N v(i), if S = N,

0, if S ̸= N.

The total excess ∆0 of (N, K, v0) is equal to v(N) − ∑︁
i∈N v(i) = ∆. Therefore

ζ̃ i(v0) = v0(i) + ∆0
n

= ∆
n

, thus the third property also holds.
Now, let us prove that f : Cn

1 (Kmin) → Rn satisfying the three properties must
be ζ̃. First, from zero-normalisation invariance, it holds ∀i : fi(v) = v(i) + fi(v0).
Because ζ̃ i(v) = v(i) + ∆

n
for all i ∈ N , it suffices to prove that fi(v0) = ∆

n
for

any zero-normalisation v0 of v ∈ Cn
1 (Kmin). From the first property, we have∑︁

i∈N fi(v0) = ∆ = v0(N). Also, v0(i) = v0(j) for all pairs of players i, j implies
fi(v0) = fj(v0). Combining both together, we get fi(v0) =

∑︁
j∈N

fi(v0)
n

= ∆
n

.
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Another characterisation can be obtained by substituting the axiom of zero-
normalisation invariance for additivity axiom. Such replacement has to be com-
pensated by adding yet another axiom, because without it, they do not char-
acterise the function uniquely (for example, the solidarity τ -value τ s also satis-
fies these three axioms). We deal with this by providing two different axioms:
zero-excess axiom (employing the total excess ∆) and a more familiar axiom of
individual rationality.

Theorem 6.21. The average value ζ̃ is the only function f : Cn
1 (Kmin) → Rn

such that the following properties hold for every v, w ∈ Cn
1 (Kmin):

1. (efficiency) ∑︁i∈N fi(v) = v(N),

2. (elementary symmetry) ∀i, j ∈ N : i ̸= j ∧ v(i) = v(j) =⇒ fi(v) = fj(v),

3. (elementary additivity) if v + w ∈ Cn
1 (Kmin) : f(v + w) = f(v) + f(w),

4. (zero-excess axiom) if ∆v = 0 =⇒ ∀i : fi(v) = v(i),

5. (individual rationality) ∀i ∈ N : fi(v) ≥ v(i).

Proof. We have already proved in Theorem 6.20 that the first two axioms are
satisfied by ζ̃. To prove additivity, we have ζ̃ i(v + w) = v(i) + w(i) + ∆v+w

n
and

ζ̃ i(v) + ζ̃ i(w) = v(i) + ∆v

n
+ w(i) + ∆w

n
= v(i) + w(i) + ∆v

n
+ ∆w

n
.

for any player i. Clearly, if ∆v+w = ∆v + ∆w, elementary additivity is satisfied.
However,

∆v+w = v(N) + w(N) −
∑︂
i∈N

(v(i) + w(i)) = v(N) −
∑︂
i∈N

v(i) + w(N) −
∑︂
i∈N

w(i)

and
∆v + ∆w = v(N) −

∑︂
i∈N

v(i) + w(N) −
∑︂
i∈N

w(i).

Zero-excess axiom is satisfied because for ∆v = 0 and any player i, ζ̃ i(v) =
v(i) + ∆v

n
= v(i). Individual rationality is also satisfied as for any player i:

ζ̃ i(v) = v(i) + ∆v

n
≥ v(i).

To substitute elementary additivity for zero-normalisation in our proof of
uniqueness, we define a game with minimal information (N, K, Σ) such that v =
v0 + Σ. We do so by setting Σ(i) := v(i) and Σ(N) := ∑︁

i∈N v(i). Notice that
∆Σ = 0 and thus, Σ ∈ Cn

1 (Kmin). Now, from elementary additivity fi(v) =
fi(v0) + fi(Σ). We already proved, that fi(v0) = ∆

n
, thus all that remains is to

prove that for every player i, fi(Σ) = v(i).
From zero-excess axiom, this already holds as ∆Σ = 0. Without zero-excess

axiom, by efficiency ∑︁
i∈N fi(Σ) = Σ(N) = 0 and individual rationality, each

summand fi(Σ) ≥ 0, which leads together to the desired fi(Σ) = v(i).

We conclude this section with further axioms, which are connected with dif-
ferent definitions of the Shapley value [32, 35].

Both of the following properties can be easily derived from the definition of
the average value ζ̃.
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Theorem 6.22. For the average value ζ̃ : Cn
1 (Kmin) → Rn, the following proper-

ties hold for every v, w ∈ Cn
1 (Kmin):

(elementary triviality) ζ̃(v∅) = 0, where v∅(S) := 0 for S ∈ K,
(elementary fairness) ζ̃ i(v + w) − ζ̃ i(v) = ζ̃j(v + w) − ζ̃j(v) if w(i) = w(j).

Notice that a property similar to null player cannot hold when ∆ > 0. that is
because if v(i) = 0 for a player i, then ζ̃ i = ∆

n
> 0. This might seem a surprising

result as in the characterisation of the Shapley value, the axiom of null player is
satisfied. This corresponds with the idea that even though it might seem from
the known information given by K that the player does not have any worth in
the game, since we cannot be sure, we act as if he has some.

6.3 Games with defined upper vector
In this section, we study the class of incomplete games with defined upper vector,
i.e. (N, K, v) such that {∅, N} ∪ {N \ i | i ∈ N} ⊆ K. We derive the description
of the set Cn

1 (v) in Subsection 6.3.1 and in Subsection 6.3.2, we prove that the
average τ -value and the average Shapley value do not coincide for games with at
least four players.

6.3.1 Description of the set of Cn
1 -extensions

Theorem 6.23. Let (N, K, v) be an incomplete game with defined upper vector.
It is Cn

1 -extendable if and only if

∀S ∈ K : v(S) ≤ v(N) − b(N \ S) (6.22)

and
b(N) ≥ v(N). (6.23)

Proof. If the conditions hold, we can define a complete game (N, v) such that

v(S) =
⎧⎨⎩v(S), if S ∈ K,

v(N) − b(N \ S), if S ̸∈ K.

The game is 1-convex, because v(S) ≤ v(N) − b(N \ S) for S ̸∈ K holds since the
left-hand side is actually equal to the right-hand side. For S ∈ K the conditions
hold from the assumption as well as the condition b(N) ≥ v(N). Therefore, it is
a Cn

1 -extension of (N, K, v)
If one of the conditions (6.22) or (6.23) fails, the condition does not hold for

any extension, therefore the extension is not 1-convex.

We denoted the Cn
1 -extension using the line over v. This is not a coincidence,

as the game is really the upper game of the set of Cn
1 (v)-extensions. On the top

of that, it is also the only extreme game of the set.

Theorem 6.24. Let (N, v) be a Cn
1 -extendable incomplete game with defined

upper vector. Then the game (N, v) is the only extreme game of Cn
1 (v).
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Proof. First, let us prove it is an extreme game. Following Theorem 1.2, let
us consider (N, x) such that both v + x and v − x are Cn

1 (v)-extensions. If for
any S, the value x(S) > 0, then either v + x is not a Cn

1 -extension (if S ∈ K,
then v(S) ̸= (v + x)(S)) or the complete game is not 1-convex (if S ̸∈ K, then
(v + x)(S) = v(S) + x(S) = v(N) − b(N \ S) + x(S) > v(N) − b(N \ S).

Further, suppose there is an extreme game (N, y) different from (N, v). It
means there is a coalition S ̸∈ K such that y(S) < v(S). If we take (N, x) such
that x(S) = v(S) − y(S) and x(T ) = 0 otherwise, we immediately conclude that
both y + x and y − x are in Cn

1 (v), and since x ̸= 0, we conclude by Theorem 1.2
that (N, y) is not an extreme game.

We further define games (N, eT ) for T ̸∈ K as

eT (S) :=
⎧⎨⎩−1, if S = T,

0, otherwise.

It is not hard to see that games (N, v + αeT ) are Cn
1 (v)-extensions for any α ≥ 0,

therefore (N, eT ) are rays of Cn
1 (v). Moreover, all but one conditions are satisfied

for (N, v + eT ) with equality, therefore they are even the extreme rays. The
following theorem shows they are the only extreme rays.

Theorem 6.25. Let (N, v) be a Cn
1 -extendable incomplete game with defined

upper vector. Then the set of Cn
1 (v)-extensions can be described as

Cn
1 (v) =

⎧⎨⎩v +
∑︂
T ̸∈K

αT eT | αT ≥ 0
⎫⎬⎭ .

Proof. For a Cn
1 -extension (N, w), we show it can we expressed as a combination

of the upper game and games (N, eT ) for T ̸∈ K. Since (N, w) ∈ Cn
1 (v), it holds

for every T ̸∈ K that w(T ) ≤ v(T ). Therefore, we define αT := w(T ) − v(T ).
Immediately, it follows that

(w + αT eT )(T ) = w(T ) − w(T ) + v(T ) = v(T ).

Setting αT for every T ̸∈ K in this manner concludes the proof.

6.3.2 Solution concepts
From the point of view of the τ -value, a game with defined upper vector is equiv-
alent with any of its Cn

1 -extensions. This is because, for a complete game v,
τ(v) = bv − gv(N)

n
and both bv and gv(N) depend only on values v(N) and v(N \ i)

for i ∈ N .
Incomplete games with defined upper vector are a good example for showing

that in general, ϕ̃(v) ̸= ϕα(v). From the definition of the conic Shapley value,
additivity and S-equivalence axiom, we have

ϕα(v) = ϕ(ṽ + αẽ) = ϕ(ṽ) + αϕ(ẽ).

Therefore, ϕα(v) = ϕ̃(v) for α > 0 if and only if αϕ(ẽ) = 0, which is equivalent to
ϕ(ẽ) = 0. In order to compute the Shapley value, we need to obtain the marginal
contributions of player i to all coalitions S, i.e. ẽ(S ∪ i) − ẽ(S) for i ∈ N and
S ⊆ N \ i.
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Lemma 6.26. Let (N, K, v) be a Cn
1 -extendable incomplete game with defined

upper vector and for Cn
1 (v), let the game (N, ẽ) be the centre of gravity of its

extreme rays. Then we have

ẽ(S ∪ i) − ẽ(S) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if S ∈ K and S ∪ i ∈ K,

0, if S ̸∈ K and S ∪ i ̸∈ K,
1

|E| , if S ̸∈ K and S ∪ i ∈ K,

− 1
|E| , if S ∈ K and S ∪ i ̸∈ K,

where E = {T ⊆ N | T ∈ 2N \ K} and thus |E| = 2|N | − |K|.

Proof. We denote by K the coalitions with unknown values, that is K := 2N \ K.
From the definition of (N, ẽ), we have

ẽ(S ∪ i) − ẽ(S) = 1
|E|

⎛⎝∑︂
T ∈K

eT (S ∪ i) −
∑︂
T ∈K

v(S)
⎞⎠ .

Remember, that eT (S) = −1 if and only if T = S, otherwise eT (S) = 0. It means
that if S ∈ K, the sum ∑︁

T ∈K eT (S) is equal to zero and similarly for S ∪ i. Let
us now distinguish the following cases.

• If S ∈ K and S ∪ i ∈ K, we have⎛⎝∑︂
T ∈K

eT (S ∪ i) −
∑︂
T ∈K

v(S)
⎞⎠ = 0 − 0 = 0.

• If S ∈ K and S ∪ i ∈ K, we have⎛⎝∑︂
T ∈K

eT (S ∪ i) −
∑︂
T ∈K

v(S)
⎞⎠ = −1 − (−1) = 0.

• If S ∈ K and S ∪ i ∈ K, we have⎛⎝∑︂
T ∈K

eT (S ∪ i) −
∑︂
T ∈K

v(S)
⎞⎠ = 0 − (−1) = 1.

• If S ∈ K and S ∪ i ∈ K, then⎛⎝∑︂
T ∈K

eT (S ∪ i) −
∑︂
T ∈K

v(S)
⎞⎠ = −1 − 0 = −1.

This case analysis concludes the proof.
Lemma 6.27. Let (N, K, v) be Cn

1 -extendable incomplete game with defined upper
vector and for Cn

1 (v), game (N, ẽ) the centre of gravity of its extreme rays. Then
it holds

ϕi(ẽ) = 1
|E|n!

⎛⎜⎜⎜⎜⎜⎝
∑︂

S⊆N\i
S∈K

S∪i∈K

s!(n − s − 1)! −
∑︂

S⊆N\i

S∈K
S∪i∈K

s!(n − s − 1)!

⎞⎟⎟⎟⎟⎟⎠ .
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Proof. The result immediately follows from the definition of the Shapley value
(Definition 1.20) and Lemma 6.26, since ϕi(ẽ) = 1

|E|n!
∑︁

S⊆N\i(. . . ) and substi-
tuting corresponding marginal contributions and dividing the sum into 4 sums
according to presence of S and S ∪ i in K yields the formula above.

From Lemma 6.27, we can conclude that for cooperative games with at most
3 players, ϕ̃ and ϕα always coincide. However, if we consider games with more
players, the two solution concepts differ.

Theorem 6.28. Let (N, K, v) be a Cn
1 -extendable incomplete game with defined

upper vector.

1. If |N | ≤ 3, then ϕ̃(v) = ϕα(v),

2. If |N | ≥ 4 and K = 2N \ {{i} | i ∈ N}, then ϕ̃(v) ̸= ϕα(v).

Proof. If |N | ≤ 3, then if there is S ̸∈ K, it is a singleton coalition S = {j}.
This means, that in the case S ̸∈ K and S ∪ i ∈ K, the element of the sum is
s!(n−s−1)! = 0. Also, if we consider the other sum where T ∈ K and T ∪ i ̸∈ K,
the only possibility is T = ∅, therefore, again t!(n − t − 1)! = 0. Thus ϕi(ẽ) = 0
for any such game and any player i, leading to coincidence of ϕ̃ and ϕα.

For |N | ≥ 4 and K = 2N \ {i | i ∈ N}, the coalition S satisfying S ∈ K
and S ∪ i ̸∈ K is only S = ∅. for j ̸= k. Since there are

(︂
N
2

)︂
coalitions {j, k}

for every j and there are n players, we get that the second sum is equal to
n(n − 1)1!(n − 2)! = n!. Further, the coalitions S satisfying S ̸∈ K and S ∪ i ∈ K
are only those satisfying |S| = n − 2. For every such coalition s!(n − s − 1)! =
(n−2)!(n−(n−2)−1)! = (n−2)! and there are 2

(︂
N
2

)︂
= 2 n!

(n−2)!2! = n!. Therefore,
ϕ̃i(v) ̸= ϕα(v).
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Conclusion
This thesis considers the theory of partially defined cooperative games. In Chap-
ters 1 and 2, we revised necessary preliminaries and introduced basic definitions
connected to incomplete games, mostly inspired by the definitions introduced by
Masuya and Inuiguchi in [19].

In Chapter 3, we summarized results of the two authors concerning superad-
ditivity. We extended them with two characterisations of Sn-extendability (The-
orem 3.1) and provided not yet published proofs for results concerning extreme
games of the set of Sn-extensions (Theorem 3.4, Lemma 3.5). These results were
stated without proofs in [18].

In Chapter 4, we considered convexity, which has not been investigated before
in the theory of partially defined cooperative games. In Section 4.1, we presented
a connection to the research of submodular set functions and concluded a charac-
terisation of Cn-extendability (Theorem 4.1) together with an application of the
characterisation for a specific class of incomplete games (Theorem 4.2). Further,
in Section 4.2, we investigated the set of Cn

σ -extensions, namely the characterisa-
tion of Cn

σ -extendability (Theorem 4.5), a description of the lower and the upper
game (Theorem 4.7), and a description of the set Cn

σ (v), given by (4.7). In Sub-
section 4.3, we provided a description of the set of Cn-extensions for non-negative
incomplete games with minimal information.

Chapter 5 investigates positivity. In Section 5.1, we gave a characterisation
of P n-extendability for general incomplete games (Theorem 5.2) based on duality
of linear programming. Also, in Theorem 5.3 we gave an example of polyno-
mial time complexity (in n) of P n-extendability for a specific class of incomplete
games. A simple characterisation of boundedness of P n(v) (Theorem 5.4) was
also proposed. The main result of this chapter is the characterisation of extreme
games of P n(v) (Theorem 5.8) based on an idea similar to the proof of Bondareva-
Shapley theorem. This characterisation can be used as a tool to derive extreme
games for specific classes of incomplete games (we provide two examples of such
classes in Subsection 5.2.1). In Subsection 5.2.2, we considered incomplete games
with minimal information. Apart from Subsection 5.2.2, all the results in this
chapter are new.

Finally, in Chapter 6, we focused on 1-convexity, a not yet studied property
of incomplete games. In Section 6.1, we investigated symmetric extensions – a
characterisation for Cn

1,σ-extendability, the upper game and the description of the
set Cn

1,σ(v). Then, a similar analysis was done for two classes of incomplete games
– games with minimal information (Section 6.2) and games with defined upper
vector (Section 6.3). In these sections, we also study solution concepts. We in-
troduced the average τ -value (Definition 6.1), the conic τ -value (Definition 6.3),
the average Shapley value (Definition 6.4), and the conic Shapley value (Defini-
tion 6.5). For incomplete games with minimal information, we proved that all
these generalisations coincide (Theorems 6.15 and 6.17). Therefore, we called
them by a unified name – the average value. Different axiomatisations of the
average value were considered (Theorems 6.18, 6.19, 6.20, 6.21). For incomplete
games with defined upper vector with at least four players, the average Shapley
value and the conic Shapley value do not coincide (Theorem 6.28).
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Future research
In the nearest future, we want to focus on other classes of C-extensions, namely the
hierarchy of balanced, quasibalanced and semibalanced extensions. We also want
to introduce multi-point solution concepts for incomplete games based on an idea
that we can take the intersection of the solution concepts of all C-extensions. As
the resulting payoff vectors are part of the solution concept of every C-extension,
they are good candidates for a distribution of payoff in incomplete games. The
author of this thesis will focus on this research during his doctoral studies.
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List of Abbreviations
Cooperative games
(N, v) cooperative game
Γn class of n-player cooperative games
Γn(K) class of n-player partially defined cooperative games with K
Sn superadditive games of n players
Cn convex games of n players
P n positive games of n players
Cn

1 1-convex games
Qn quasibalanced games

Incomplete games
(N, K, v) incomplete game
Cn(K) convex extendable incomplete games with K
Cn(X ) symmetric-convex extendable incomplete games with X
Cn

1 (K) 1-convex extendable incomplete games with K
Qn(K) quasibalanced extendable incomplete games with K

Extensions
Sn(v) superadditive extensions of (N, K, v)
Cn(v) convex extensions of (N, K, v)
Cn

σ (v) symmetric convex extensions of (N, K, v)
P n(v) positive extensions of (N, K, v)
P n

σ (v) symmetric positive extensions of (N, K, v)
Cn

1 (v) 1-convex extensions of (N, K, v)
Cn

1,σ(v) symmetric 1-convex extensions of (N, K, v)

Solution concepts
Payoff vectors

av minimal right vector of game (N, v) (lower vector)
bv utopia vector of game (N, v) (upper vector)
λv concession vector

Complete games

τ(v) the τ -value
η(v) the nucleolus
ϕ(v) the Shapley value

Incomplete games

τ̃(v) the average τ -value
ϕ̃(v) the average Shapley value
ζ̃(v) the average value

77


	Introduction
	Preliminaries
	Convex sets
	Cooperative games
	Main definitions and notation
	Classes of cooperative games
	Solution concepts


	Incomplete cooperative games
	Definitions and notation
	Classes of incomplete games

	Superadditivity
	Games with non-negative singletons
	Non-negative incomplete games with minimal information
	Description of the set of Sn-extensions
	Solution concepts


	Convexity
	Cn-extendability
	Symmetric incomplete games
	Non-negative incomplete games with minimal information

	Positivity
	Description of Pn(v) for general case
	Pn(v)-extendability
	Boundedness
	Extreme games

	Description of Pn(v) for special cases
	Classes employing the characterisation of extreme games
	Incomplete games with minimal information


	1-convexity
	Symmetric incomplete games
	Games with minimal information
	Description of the set of C1n-extensions
	Solution concepts
	Axiomatisation of the average value 

	Games with defined upper vector
	Description of the set of C1n-extensions
	Solution concepts


	Conclusion
	Bibliography
	List of Abbreviations

