INTERVAL GAMES

MARTIN KUNST

APRIL 21, 2023

MOTIVATIONS AND INTRODUCTION

A **cooperative game** is an ordered pair (N, v), where N is a set of players and $v: 2^N \to \mathbb{R}$ is the characteristic function. Further, $v(\emptyset) = 0$.

 \blacksquare Γ^n ... set of *n*-person cooperative games

- \blacksquare Γ^n ... set of *n*-person cooperative games
- **S** \subseteq *N* ... coalition

- \blacksquare Γ^n ... set of *n*-person cooperative games
- **S** \subseteq *N* ... coalition
- v(S) ... values of coalition

- Γ^n ... set of *n*-person cooperative games
- **S** \subseteq *N* ... coalition
- v(S) ... values of coalition
- usually $N = \{1, \ldots, n\}$

Money first!

- **•** For cooperative game (N, v) **payoff vector** is $\mathbf{x} \in \mathbb{R}^n$
 - x_i represents payoff of player i

Money first!

- **•** For cooperative game (N, v) **payoff vector** is $\mathbf{x} \in \mathbb{R}^n$
 - x_i represents payoff of player i
- Vector $\mathbf{x} \in \mathbb{R}^n$ is **efficient**, if $\sum_{i \in N} x_i = v(N)$

► Usually, we distribute *v*(*N*)

Money first!

- For cooperative game (N, v) **payoff vector** is $\mathbf{x} \in \mathbb{R}^n$
 - x_i represents payoff of player i
- Vector $\mathbf{x} \in \mathbb{R}^n$ is **efficient**, if $\sum_{i \in N} x_i = v(N)$
 - ► Usually, we distribute *v*(*N*)
- Vector $\mathbf{x} \in \mathbb{R}^n$ is individually rational, if $x_i \ge v(i)$

players prefer x_i over v(i)

Money first!

- **•** For cooperative game (N, v) **payoff vector** is $\mathbf{x} \in \mathbb{R}^n$
 - x_i represents payoff of player i
- Vector $\mathbf{x} \in \mathbb{R}^n$ is **efficient**, if $\sum_{i \in N} x_i = v(N)$
 - ► Usually, we distribute v(N)
- Vector $\mathbf{x} \in \mathbb{R}^n$ is individually rational, if $x_i \ge v(i)$
 - players prefer x_i over v(i)

■
$$\mathcal{I}^*(v) = \{x \in \mathbb{R}^n \mid x(N) = v(N)\}$$
 ... preimputation
► $x(S) \coloneqq \sum_{i \in S} x_i$

Money first!

- **•** For cooperative game (N, v) **payoff vector** is $\mathbf{x} \in \mathbb{R}^n$
 - x_i represents payoff of player i
- Vector $\mathbf{x} \in \mathbb{R}^n$ is **efficient**, if $\sum_{i \in N} x_i = v(N)$
 - ► Usually, we distribute v(N)
- Vector $\mathbf{x} \in \mathbb{R}^n$ is individually rational, if $x_i \ge v(i)$
 - players prefer x_i over v(i)

■
$$\mathcal{I}^*(\mathbf{v}) = \{x \in \mathbb{R}^n \mid x(N) = v(N)\}$$
 ... preimputation
► $x(S) := \sum_{i \in S} x_i$
■ $\mathcal{I}(\mathbf{v}) = \{x \in \mathcal{I}^*(\mathbf{v}) \mid \forall i \in N : x_i \ge v(i)\}$... imputatio

Idea: Payoff distribution leads to cooperation...

The core

For a cooperative game (N, v), the **core** C(v) is

$$\mathcal{C}(v) = \{x \in \mathcal{I}^*(v) \mid x(S) \ge v(S), \forall S \subseteq N\}.$$

■ v(N) ... value, which is distributed among players ■ $x(S) > v(S) \implies$ coalition S does not leave N **monotonic game** ($S \subseteq T \subseteq N$)

 $v(S) \leq v(T)$

usuperadditive game ($S, T \subseteq N, S \cap T = \emptyset$ **)**

 $v(S) + v(T) \leq v(S \cup T)$

convex game ($S, T \subseteq N$)

 $v(S) + v(T) \leq v(S \cap T) + v(S \cup T)$

Definition (Interval): An interval X is a set

 $\blacktriangleright X := [\underline{X}, \overline{X}] = \{ x \in \mathbb{R} : \underline{X} \le x \le \overline{X} \}$

with \underline{X} being the lower bound and \overline{X} being the upper bound of the interval.

Definition (Interval): An interval X is a set

 $\blacktriangleright X := [\underline{X}, \overline{X}] = \{ x \in \mathbb{R} : \underline{X} \le x \le \overline{X} \}$

with <u>X</u> being the lower bound and \overline{X} being the upper bound of the interval.

By interval we mean closed interval

Definition (Interval): An interval X is a set

 $\blacktriangleright X := [\underline{X}, \overline{X}] = \{ x \in \mathbb{R} : \underline{X} \le x \le \overline{X} \}$

with <u>X</u> being the lower bound and \overline{X} being the upper bound of the interval.

- By interval we mean closed interval
- \blacksquare We denote set of real intervals by \mathbb{IR}

BACKGROUND: INTERVAL ARITHMETICS

■ **Definition** For every $X, Y, Z \in \mathbb{IR}$ and $o \notin Z$ define ► $X + Y := [\underline{X} + \underline{Y}, \overline{X} + \overline{Y}]$

■ **Definition** For every $X, Y, Z \in \mathbb{IR}$ and $o \notin Z$ define ► $X + Y := [X + Y, \overline{X} + \overline{Y}]$ ► $X - Y := [\overline{X} - \overline{Y}, \overline{X} - \overline{Y}]$

Definition For every $X, Y, Z \in \mathbb{IR}$ and $o \notin Z$ define

$$X + Y := [\underline{X} + \underline{Y}, \overline{X} + \overline{Y}]$$

$$\blacktriangleright X - Y := [\underline{X} - \underline{Y}, X - Y]$$

•
$$X * Y := [min(S), max(S)], S = \{\underline{X}\overline{Y}, \overline{X}\underline{Y}, \underline{X}\underline{Y}, \overline{X}\overline{Y}\}$$

Definition For every $X, Y, Z \in \mathbb{IR}$ and $o \notin Z$ define

$$X + Y := [\underline{X} + \underline{Y}, \overline{X} + \overline{Y}]$$

$$X - Y := [\underline{X} - \underline{Y}, X - Y]$$

$$\blacktriangleright X * Y := [min(S), max(S)], S = \{\underline{X}\underline{Y}, \underline{X}\underline{Y}, \underline{X}\underline{Y}, \underline{X}\underline{Y}, \overline{X}\overline{Y}\}$$

$$X/Z := [min(S), max(S)], S = \{ \underline{X}/Z, \underline{X}/\underline{Z}, \underline{X}/\underline{Z}, X/Z \}$$

Cooperative interval game

A Cooperative interval game is an ordered pair (N, w), where $N = \{1, 2, ..., n\}$ is a set of players and $w : 2^N \to \mathbb{IR}$ is a characteristic function of the cooperative game. We further assume that $w(\emptyset) = [0, 0]$.

Cooperative interval game

A Cooperative interval game is an ordered pair (N, w), where $N = \{1, 2, ..., n\}$ is a set of players and $w : 2^N \to \mathbb{IR}$ is a characteristic function of the cooperative game. We further assume that $w(\emptyset) = [0, 0]$.

The set of all interval cooperative games on a player set N is denoted by IG^{|N|}

COOPERATIVE INTERVAL GAMES: BASICS

border games

For every $(N, w) \in \mathbb{N}$, border games $(N, \underline{w}) \in G^N$ (lower border game) and $(N, \overline{w}) \in G^{|N|}$ (upper border game) are given by $\underline{w}(S) = w(S)$ and $\overline{w}(S) = \overline{w(S)}$ for every $S \in 2^N$

COOPERATIVE INTERVAL GAMES: 2 APPROACHES

1st approach

Weakly better operator

Interval *I* is weakly better than interval *J* ($J \succeq I$) if and only if $\underline{I} \ge \underline{J}$ and $\overline{I} \ge \overline{J}$.

1st approach

Weakly better operator

Interval *I* is weakly better than interval *J* ($J \succeq I$) if and only if $\underline{I} \ge \underline{J}$ and $\overline{I} \ge \overline{J}$.

- Set of all interval imputations of $(N, w) \in G^N$:
 - ▶ $\mathcal{I}(w) := \{(I_1, ..., I_{|N|}) \in \mathbb{IR}^{|\mathbb{N}|} | \sum_{i \in N} I_i = w(N), I_i \succeq w(i), \forall i \in N\}$

1st approach

Weakly better operator

Interval *I* is weakly better than interval *J* ($J \succeq I$) if and only if $\underline{I} \ge \underline{J}$ and $\overline{I} \ge \overline{J}$.

- Set of all interval imputations of $(N, w) \in G^N$:
 - ▶ $\mathcal{I}(w) := \{(I_1, ..., I_{|N|}) \in \mathbb{IR}^{|\mathbb{N}|} | \sum_{i \in N} I_i = w(N), I_i \succeq w(i), \forall i \in N\}$

Set of interval selection core of $(N, w) \in G^N$:

►
$$C(w) := \{(I_1, ..., I_{|N|}) \in \mathcal{I}(w) | \sum_{i \in S} I_i \succeq w(S), \forall S \in 2^N \setminus \emptyset\}$$

2nd approach

Selection

A game $(N, v) \in G^N$ is a selection of $(N, w) \in IG^N$ if for every $S \subseteq N$ we have $v(S) \in w(S)$. Set of all selections of (N, w) is denoted by Sel(w)

2nd approach

Selection

A game $(N, v) \in G^N$ is a selection of $(N, w) \in IG^N$ if for every $S \subseteq N$ we have $v(S) \in w(S)$. Set of all selections of (N, w) is denoted by Sel(w)

Set of all interval selection imputations of $(N, w) \in IG^N$:

•
$$SL(w) = \bigcup \{ I(v) | v \in Sel(w) \}$$

2nd approach

Selection

A game $(N, v) \in G^N$ is a selection of $(N, w) \in IG^N$ if for every $S \subseteq N$ we have $v(S) \in w(S)$. Set of all selections of (N, w) is denoted by Sel(w)

Set of all interval selection imputations of $(N, w) \in IG^N$:

•
$$SL(w) = \bigcup \{ I(v) | v \in Sel(w) \}$$

Set of interval selection core of $(N, w) \in IG^N$:

•
$$C\mathcal{L}(w) = \bigcup \{ C(v) | v \in Sel(w) \}$$

Selection monotonic interval game

An interval game (N, w) is selection monotonic if all its selections are monotonic games. The class of such games on set of N players is denoted by $SeMIG^N$

Selection superadditive interval game

An interval game (N, w) is selection superadditive if all its selections are superadditive games. The class of such games on set of N players is denoted by $SeSIG^N$

Selection convex interval game

An interval game (N, w) is selection convex if all its selections are convex games. The class of such games on set of N players is denoted by $SeCIG^N$

An interval game (N,w) is selection monotonic if and only if for every $S,T\in 2^N,S\subset T$

 $\overline{w}(S) \leq \underline{w}(T).$

 $\textbf{Proof:} \rightarrow:$

An interval game (N, w) is selection monotonic if and only if for every $S, T \in 2^N, S \subset T$

 $\overline{w}(S) \leq \underline{w}(T).$

 $\textbf{Proof:} \rightarrow :$

Suppose that (N, w) is selection monotonic and $\overline{w}(S) > \underline{w}(T)$ for some $S, T \subseteq N$, where $S \subset T$.

An interval game (N,w) is selection monotonic if and only if for every $S,T\in 2^N,S\subset T$

 $\overline{W}(S) \leq \underline{W}(T).$

 $\textbf{Proof:} \rightarrow :$

- Suppose that (N, w) is selection monotonic and $\overline{w}(S) > \underline{w}(T)$ for some $S, T \subseteq N$, where $S \subset T$.
- (N, v) with $v(S) = \overline{w}(S)$ and $v(T) = \overline{w}(T)$ clearly violates monotonicity

An interval game (N,w) is selection monotonic if and only if for every $S,T\in 2^N,S\subset T$

 $\overline{W}(S) \leq \underline{W}(T).$

$\textbf{Proof:} \leftarrow:$

Suppose $S, T \subseteq N$ and WLOG $S \subset T$

An interval game (N,w) is selection monotonic if and only if for every $S,T\in 2^N,S\subset T$

 $\overline{w}(S) \leq \underline{w}(T).$

$\textbf{Proof:} \leftarrow:$

- Suppose $S, T \subseteq N$ and WLOG $S \subset T$
- Monotonicity cannot be violated since $v(S) \le \overline{w}(S) \le w(T) \le v(T)$.

SELECTION BASED CLASSES OF INTERVAL GAMES

Theorem 2

An interval game (N, w) is selection superadditive if and only if for every $S, T \in 2^N, S \cap T = \emptyset, S \neq \emptyset, T \neq \emptyset$

$$\overline{w}(S) + \overline{w}(T) \leq \underline{w}(T \cup S).$$

Theorem 3

An interval game (N, w) is selection convex if and only if for every $S, T \in 2^N, S \cap T = \emptyset, S \neq \emptyset, T \neq \emptyset, S \nsubseteq T, T \nsubseteq S$

$$\overline{w}(S) + \overline{w}(T) \leq \underline{w}(T \cup S) + \underline{w}(T \cap S).$$

proof of both theorems is similar to proof of theorem 1, so I'll leave it as an excercise to the listeners

Coincidence problem

Under which conditions core of cooperative game coincides with core of the game in terms of selections of the interval game ?

The function $gen : 2^{\mathbb{IR}^N} \to 2^{\mathbb{R}^N}$ maps to every set of interval vectors a set of real vectors. It is defined as:

$$gen(S) = \bigcup_{s \in S} \{(x_1, x_2, ..., x_n) | x_i \in s_i\}$$

Reformulation of problem

What are the neccecary and sufficient conditions to satisfy gen(C(w) = SC(w))?

Theorem 5

For every interval game (M, w) we have $gen(\mathcal{C}(w)) \subseteq \mathcal{SC}(w)$

Proof:

Theorem 5

For every interval game (M, w) we have $gen(\mathcal{C}(w)) \subseteq \mathcal{SC}(w)$

Proof:

• For any $x \in gen(\mathcal{C}(w))$, the $\underline{w}(N) \leq \sum_{i \in N} x_i \leq \overline{w}(N)$ obvious.

Theorem 5

For every interval game (M, w) we have $gen(\mathcal{C}(w)) \subseteq \mathcal{SC}(w)$

Proof:

- For any $x \in gen(\mathcal{C}(w))$, the $\underline{w}(N) \leq \sum_{i \in N} x_i \leq \overline{w}(N)$ obvious.
- x is in the core fory any selection of the interval game (N, s) given by:

$$s(S) = \begin{cases} [\sum_{i \in N} x_i, \sum_{i \in N} x_i] & \text{if } S = N \\ [\underline{w}(S), \min(\sum_{i \in S} x_i, \overline{w}(S)] & \text{otherwise.} \end{cases}$$

Theorem 5

For every interval game (M, w) we have $gen(\mathcal{C}(w)) \subseteq \mathcal{SC}(w)$

Proof:

- For any $x \in gen(\mathcal{C}(w))$, the $\underline{w}(N) \leq \sum_{i \in N} x_i \leq \overline{w}(N)$ obvious.
- x is in the core fory any selection of the interval game (N, s) given by:

$$s(S) = \begin{cases} \left[\sum_{i \in N} x_i, \sum_{i \in N} x_i\right] & \text{if } S = N\\ \left[\underline{w}(S), \min(\sum_{i \in S} x_i, \overline{w}(S)\right] & \text{otherwise.} \end{cases}$$

Clearly, $Sel(s) \subseteq Sel(w)$ and $Sel(s) \neq \emptyset$. Therfore $gen(\mathcal{C}(w)) \subseteq S\mathcal{C}(w)$.

Core coincidence characterisation

For every interval game (N, w) we have $gen(\mathcal{C}(w)) = S\mathcal{C}(w)$ if and only if for every $x \in S\mathcal{C}(w)$ there exist non-negative vectors $l^{(x)}$ and $u^{(x)}$ such that:

1.
$$\sum_{i\in N}(x_i-l_i^{(x)})=\underline{w}(N),$$

2.
$$\sum_{i\in N}(x_i+u_i^{(x)})=\overline{w}(N),$$

3.
$$\sum_{i\in S}(x_i-l_i^{(x)})\geq \underline{w}(S), \forall S\in 2^N\setminus\{\emptyset\},\$$

4.
$$\sum_{i\in S} (x_i + u_i^{(x)}) \geq \overline{w}(S), \forall S \in 2^N \setminus \{\emptyset\}.$$

Proof

First, we observe that Theorem 7 taken into account, we only need to take care of $gen(\mathcal{C}(w)) \subseteq S\mathcal{C}(w)$ to obtain equality.

22

Proof $\mathcal{SC}(w) \subseteq gen(\mathcal{C}(w))$

■ suppose we have some $x \in SC(w)$

Proof $\mathcal{SC}(w) \subseteq gen(\mathcal{C}(w))$

- suppose we have some $x \in SC(w)$
- For *x*, we need to find some interval $X \in C(w)$ such that $x \in gen(X)$.

$\overline{\mathsf{Proof}\,\mathcal{SC}(\mathsf{w})}\subseteq gen(\mathcal{C}(\mathsf{w}))$

- suppose we have some $x \in SC(w)$
- For *x*, we need to find some interval $X \in C(w)$ such that $x \in gen(X)$.
- This is equivalent to the task of finding two nonnegative vectors l^(x) and u^(x) such that:

$$([x_1-l_1^{(x)}, x_1+u^{(x)}], [x_2-l_2^{(x)}, x_2+u_2^{(x)}], ..., [x_n-l_n^{(x)}, x_n+u_n^{(x)}]) \in \mathcal{C}(w)$$

Proof $\mathcal{SC}(w) \subseteq gen(\mathcal{C}(w))$

- suppose we have some $x \in SC(w)$
- For *x*, we need to find some interval $X \in C(w)$ such that $x \in gen(X)$.
- This is equivalent to the task of finding two nonnegative vectors l^(x) and u^(x) such that:

 $([x_1-l_1^{(x)},x_1+u^{(x)}],[x_2-l_2^{(x)},x_2+u_2^{(x)}],...,[x_n-l_n^{(x)},x_n+u_n^{(x)}])\in\mathcal{C}(w)$

■ From the definition of interval core, we can see that these two vectors have to satisfy exactly the mixed system 4.1 - 4.4.