INTERVAL GAMES

MARTIN KUNST

APRIL 21, 2023

MOTIVATIONS AND INTRODUCTION

BACKGROUND: COOPERATIVE GAME

Cooperative game

A cooperative game is an ordered pair (N, v), where N is a set of players and $v: 2^{N} \rightarrow \mathbb{R}$ is the characteristic function. Further, $v(\emptyset)=0$.

BACKGROUND: COOPERATIVE GAME

Cooperative game

A cooperative game is an ordered pair (N, v), where N is a set of players and $v: 2^{N} \rightarrow \mathbb{R}$ is the characteristic function. Further, $v(\emptyset)=0$.

■ Γ^{n}... set of n-person cooperative games

BACKGROUND: COOPERATIVE GAME

Cooperative game

A cooperative game is an ordered pair (N, v), where N is a set of players and $v: 2^{N} \rightarrow \mathbb{R}$ is the characteristic function. Further, $v(\emptyset)=0$.

■ Γ^{n}... set of n-person cooperative games
■ $S \subseteq N$... coalition

BACKGROUND: COOPERATIVE GAME

Cooperative game

A cooperative game is an ordered pair (N, v), where N is a set of players and $v: 2^{N} \rightarrow \mathbb{R}$ is the characteristic function. Further, $v(\emptyset)=0$.

■ Γ^{n}... set of n-person cooperative games
■ $S \subseteq N$... coalition
■ $v(S)$... values of coalition

BACKGROUND: COOPERATIVE GAME

Cooperative game

A cooperative game is an ordered pair (N, v), where N is a set of players and $v: 2^{N} \rightarrow \mathbb{R}$ is the characteristic function. Further, $v(\emptyset)=0$.

■ Γ^{n}... set of n-person cooperative games
■ $S \subseteq N$... coalition
■ $v(S)$... values of coalition
■ usually $N=\{1, \ldots, n\}$

BACKGROUND: COOPERATIVE GAMES

Money first!

■ For cooperative game (N, v) payoff vector is $\mathbf{x} \in \mathbb{R}^{n}$

- x_{i} represents payoff of player i

BACKGROUND: COOPERATIVE GAMES

Money first!
\square For cooperative game (N, v) payoff vector is $\mathbf{x} \in \mathbb{R}^{n}$

- x_{i} represents payoff of player i
\square Vector $\mathbf{x} \in \mathbb{R}^{n}$ is efficient, if $\sum_{i \in N} x_{i}=v(N)$
- Usually, we distribute $v(N)$

BACKGROUND: COOPERATIVE GAMES

Money first!

■ For cooperative game (N, v) payoff vector is $\mathbf{x} \in \mathbb{R}^{n}$

- x_{i} represents payoff of player i
$■$ Vector $\mathbf{x} \in \mathbb{R}^{n}$ is efficient, if $\sum_{i \in N} x_{i}=v(N)$
- Usually, we distribute $v(N)$
\square Vector $\mathbf{x} \in \mathbb{R}^{n}$ is individually rational, if $x_{i} \geq v(i)$
- players prefer x_{i} over $v(i)$

BACKGROUND: COOPERATIVE GAMES

Money first!

■ For cooperative game (N, v) payoff vector is $\mathbf{x} \in \mathbb{R}^{n}$

- x_{i} represents payoff of player i
$■$ Vector $\mathbf{x} \in \mathbb{R}^{n}$ is efficient, if $\sum_{i \in N} x_{i}=v(N)$
- Usually, we distribute $v(N)$
\square Vector $\mathbf{x} \in \mathbb{R}^{n}$ is individually rational, if $x_{i} \geq v(i)$
- players prefer x_{i} over $v(i)$

■ $\mathcal{I}^{*}(v)=\left\{x \in \mathbb{R}^{n} \mid x(N)=v(N)\right\}$... preimputation - $x(S):=\sum_{i \in S} x_{i}$

BACKGROUND: COOPERATIVE GAMES

Money first!

■ For cooperative game (N, v) payoff vector is $\mathbf{x} \in \mathbb{R}^{n}$

- x_{i} represents payoff of player i
- Vector $\mathbf{x} \in \mathbb{R}^{n}$ is efficient, if $\sum_{i \in N} x_{i}=v(N)$
- Usually, we distribute $v(N)$
\square Vector $\mathbf{x} \in \mathbb{R}^{n}$ is individually rational, if $x_{i} \geq v(i)$
- players prefer x_{i} over $v(i)$

■ $\mathcal{I}^{*}(v)=\left\{x \in \mathbb{R}^{n} \mid x(N)=v(N)\right\}$... preimputation - $x(S):=\sum_{i \in S} x_{i}$

■ $\mathcal{I}(v)=\left\{x \in \mathcal{I}^{*}(v) \mid \forall i \in N: x_{i} \geq v(i)\right\} \ldots$ imputation

Background: The core

Idea: Payoff distribution leads to cooperation...

The core

For a cooperative game (N, v), the core $\mathcal{C}(v)$ is

$$
\mathcal{C}(v)=\left\{x \in \mathcal{I}^{*}(v) \mid x(S) \geq v(S), \forall S \subseteq N\right\}
$$

■ $v(N)$... value, which is distributed among players
$\square x(S)>v(S) \Longrightarrow$ coalition S does not leave N

BACKGROUND: CLASSES OF GAMES

- monotonic game $(S \subseteq T \subseteq N$)

$$
v(S) \leq v(T)
$$

■ superadditive game $(S, T \subseteq N, S \cap T=\emptyset)$

$$
v(S)+v(T) \leq v(S \cup T)
$$

- convex game $(S, T \subseteq N$)

$$
v(S)+v(T) \leq v(S \cap T)+v(S \cup T)
$$

Definition (Interval): An interval X is a set

- $X:=[\underline{X}, \bar{X}]=\{x \in \mathbb{R}: \underline{X} \leq x \leq \bar{X}\}$
with \underline{X} being the lower bound and \bar{X} being the upper bound of the interval.

BACKGROUND: INTERVAL ANALYSIS

- Definition (Interval): An interval X is a set
- $X:=[\underline{x}, \bar{x}]=\{x \in \mathbb{R}: \underline{X} \leq x \leq \bar{X}\}$
with \underline{X} being the lower bound and \bar{X} being the upper bound of the interval.
- By interval we mean closed interval

BACKGROUND: INTERVAL ANALYSIS

- Definition (Interval): An interval X is a set
- $X:=[\underline{x}, \bar{x}]=\{x \in \mathbb{R}: \underline{X} \leq x \leq \bar{X}\}$
with \underline{X} being the lower bound and \bar{X} being the upper bound of the interval.
- By interval we mean closed interval
- We denote set of real intervals by \mathbb{R}

BACKGROUND: INTERVAL ARITHMETICS

■ Definition For every $X, Y, Z \in \mathbb{R}$ and $o \notin Z$ define

- $X+Y:=[\underline{X}+\underline{Y}, \bar{X}+\bar{Y}]$

BACKGROUND: INTERVAL ARITHMETICS

■ Definition For every $X, Y, Z \in \mathbb{R}$ and $o \notin Z$ define

- $X+Y:=[\underline{X}+\underline{Y}, \bar{X}+\bar{Y}]$
- $X-Y:=[\underline{X}-\underline{Y}, \bar{X}-\bar{Y}]$

BACKGROUND: INTERVAL ARITHMETICS

■ Definition For every $X, Y, Z \in \mathbb{R}$ and $0 \notin Z$ define

- $X+Y:=[\underline{X}+\underline{Y}, \bar{X}+\bar{Y}]$
- $X-Y:=[\underline{X}-\underline{Y}, \bar{X}-\bar{Y}]$
- $X * Y:=[\min (S), \max (S)], S=\{\underline{X} \bar{Y}, \bar{X} \underline{Y}, \underline{X} \underline{Y}, \bar{X} \bar{Y}\}$

BACKGROUND: INTERVAL ARITHMETICS

■ Definition For every $X, Y, Z \in \mathbb{R}$ and $\mathrm{o} \notin Z$ define

- $X+Y:=[\underline{X}+\underline{Y}, \bar{X}+\bar{Y}]$
- $X-Y:=[\underline{X}-\underline{Y}, \bar{X}-\bar{Y}]$
- $X * Y:=[\min (S), \max (S)], S=\{\underline{X} \bar{Y}, \bar{X} \underline{Y}, \underline{X} \underline{Y}, \bar{X} \bar{Y}\}$
- $X / Z:=[\min (S), \max (S)], S=\{\underline{X} / \bar{Z}, \bar{X} / \underline{Z}, \underline{X} / \underline{Z}, \bar{X} / \bar{Z}\}$

COOPERATIVE INTERVAL GAMES

Cooperative interval game

A Cooperative interval game is an ordered pair (N, w), where $N=\{1,2, \ldots, n\}$ is a set of players and $w: 2^{N} \rightarrow \mathbb{R} \mathbb{R}$ a characteristic function of the cooperative game. We further assume that $w(\emptyset)=[0,0]$.

COOPERATIVE INTERVAL GAMES

Cooperative interval game

A Cooperative interval game is an ordered pair (N, w), where $N=\{1,2, \ldots, n\}$ is a set of players and $w: 2^{N} \rightarrow \mathbb{R}$ is a characteristic function of the cooperative game. We further assume that $w(\emptyset)=[0,0]$.

- The set of all interval cooperative games on a player set N is denoted by $I G^{|N|}$

COOPERATIVE INTERVAL GAMES: BASICS

border games

For every $(N, w) \in \mathbb{N}$, border games $(N, \underline{w}) \in G^{N}$ (lower border game) and $(N, \bar{w}) \in G^{|N|}$ (upper border game) are given by $\underline{w}(S)=\underline{w(S)}$ and $\bar{w}(S)=\overline{w(S)}$ for every $S \in 2^{N}$

COOPERATIVE INTERVAL GAMES: 2 APPROACHES

1st approach

Weakly better operator
Interval I is weakly better than interval $J(J \succeq I)$ if and only if $\underline{I} \geq \Omega$ and $\bar{I} \geq \bar{J}$.

COOPERATIVE INTERVAL GAMES: 2 APPROACHES

1st approach

Weakly better operator

Interval I is weakly better than interval $J(J \succeq I)$ if and only if $I \geq J$ and $\bar{I} \geq \bar{J}$.

■ Set of all interval imputations of $(N, w) \in G^{N}$:

- $\mathcal{I}(w):=\left\{\left(I_{1}, \ldots, I_{|N|}\right) \in \mathbb{R}^{|\mathbb{N}|} \mid \sum_{i \in N} I_{i}=w(N), I_{i} \succeq w(i), \forall i \in N\right\}$

COOPERATIVE INTERVAL GAMES: 2 APPROACHES

1st approach

Weakly better operator

Interval I is weakly better than interval $J(J \succeq I)$ if and only if $\underline{I} \geq \Omega$ and $\bar{I} \geq \bar{J}$.

■ Set of all interval imputations of $(N, w) \in G^{N}$:

- $\mathcal{I}(w):=\left\{\left(I_{1}, \ldots, l_{|N|}\right) \in \mathbb{R}^{|\mathbb{N}|} \mid \sum_{i \in N} I_{i}=w(N), I_{i} \succeq w(i), \forall i \in N\right\}$
- Set of interval selection core of $(N, w) \in G^{N}$:
- $\mathcal{C}(w):=\left\{\left(I_{1}, \ldots, l_{|N|}\right) \in \mathcal{I}(w) \mid \sum_{i \in S} I_{i} \succeq w(S), \forall S \in 2^{N} \backslash \emptyset\right\}$

COOPERATIVE INTERVAL GAMES: 2 APPROACHES

2nd approach

Selection

A game $(N, v) \in G^{N}$ is a selection of $(N, w) \in I G^{N}$ if for every $S \subseteq N$ we have $v(S) \in w(S)$. Set of all selections of (N, w) is denoted by Sel(w)

COOPERATIVE INTERVAL GAMES: 2 APPROACHES

2nd approach

Selection

A game $(N, v) \in G^{N}$ is a selection of $(N, w) \in I G^{N}$ if for every $S \subseteq N$ we have $v(S) \in w(S)$. Set of all selections of (N, w) is denoted by Sel(w)

■ Set of all interval selection imputations of $(N, w) \in I G^{N}$:

- $\mathcal{S L}(w)=\bigcup\{\mathcal{I}(v) \mid v \in \operatorname{Sel}(w)\}$

COOPERATIVE INTERVAL GAMES: 2 APPROACHES

2nd approach

Selection

A game $(N, v) \in G^{N}$ is a selection of $(N, w) \in I G^{N}$ if for every $S \subseteq N$ we have $v(S) \in w(S)$. Set of all selections of (N, w) is denoted by Sel(w)

■ Set of all interval selection imputations of $(N, w) \in I G^{N}$:

- $\mathcal{S L}(w)=\bigcup\{\mathcal{I}(v) \mid v \in \operatorname{Sel}(w)\}$

■ Set of interval selection core of $(N, w) \in I G^{N}$:

- $\mathcal{C L}(w)=\bigcup\{\mathcal{C}(v) \mid v \in \operatorname{Sel}(w)\}$

Selection based classes of interval games

Selection monotonic interval game

An interval game (N, w) is selection monotonic if all its selections are monotonic games. The class of such games on set of N players is denoted by SeMIG ${ }^{N}$

Selection based classes of interval games

Selection superadditive interval game

An interval game (N, w) is selection superadditive if all its selections are superadditive games. The class of such games on set of N players is denoted by SeSIG ${ }^{N}$

Selection based classes of interval games

Selection convex interval game

An interval game (N, w) is selection convex if all its selections are convex games. The class of such games on set of N players is denoted by SeCIG ${ }^{N}$

Selection based classes of interval games

Theorem 1.

An interval game (N, w) is selection monotonic if and only if for every $S, T \in 2^{N}, S \subset T$

$$
\bar{w}(S) \leq w(T)
$$

Proof: \rightarrow :

Selection based classes of interval games

Theorem 1.

An interval game (N, w) is selection monotonic if and only if for every $S, T \in 2^{N}, S \subset T$

$$
\bar{w}(S) \leq w(T)
$$

Proof: \rightarrow :

- Suppose that (N, w) is selection monotonic and $\bar{w}(S)>\underline{w}(T)$ for some $S, T \subseteq N$, where $S \subset T$.

Selection based classes of interval games

Theorem 1.

An interval game (N, w) is selection monotonic if and only if for every $S, T \in 2^{N}, S \subset T$

$$
\bar{w}(S) \leq w(T)
$$

Proof: \rightarrow :

- Suppose that (N, w) is selection monotonic and $\bar{w}(S)>w(T)$ for some $S, T \subseteq N$, where $S \subset T$.
■ (N, v) with $v(S)=\bar{w}(S)$ and $v(T)=\bar{w}(T)$ clearly violates monotonicity

Selection based classes of interval games

Theorem 1.

An interval game (N, w) is selection monotonic if and only if for every $S, T \in 2^{N}, S \subset T$

$$
\bar{w}(S) \leq w(T) .
$$

Proof: \leftarrow :

- Suppose $S, T \subseteq N$ and $W L O G S \subset T$

Selection based classes of interval games

Theorem 1.

An interval game (N, w) is selection monotonic if and only if for every $S, T \in 2^{N}, S \subset T$

$$
\bar{w}(S) \leq w(T) .
$$

Proof: \leftarrow :

- Suppose $S, T \subseteq N$ and $W L O G S \subset T$

■ Monotonicity cannot be violated since

$$
v(S) \leq \bar{w}(S) \leq \underline{w}(T) \leq v(T)
$$

Selection based classes of interval games

Theorem 2

An interval game (N, w) is selection superadditive if and only if for every $S, T \in 2^{N}, S \cap T=\emptyset, S \neq \emptyset, T \neq \emptyset$

$$
\bar{w}(S)+\bar{w}(T) \leq \underline{w}(T \cup S)
$$

Theorem 3

An interval game (N, w) is selection convex if and only if for every $S, T \in 2^{N}, S \cap T=\emptyset, S \neq \emptyset, T \neq \emptyset, S \nsubseteq T, T \nsubseteq S$

$$
\bar{w}(S)+\bar{w}(T) \leq \underline{w}(T \cup S)+\underline{w}(T \cap S) .
$$

proof of both theorems is similar to proof of theorem 1, so l'll leave it as an excercise to the listeners

CORE COINCIDENCE

Coincidence problem

Under which conditions core of cooperative game coincides with core of the game in terms of selections of the interval game?

CORE COINCIDENCE

The function gen : $2^{\mathbb{R}^{N}} \rightarrow 2^{\mathbb{R}^{N}}$ maps to every set of interval vectors a set of real vectors. It is defined as:

$$
\operatorname{gen}(S)=\bigcup_{s \in S}\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i} \in s_{i}\right\}
$$

Reformulation of problem

What are the neccecary and sufficient conditions to satisfy $\operatorname{gen}(\mathcal{C}(w)=\mathcal{S C}(w))$?

CORE COINCIDENCE

Theorem 5
For every interval game (M, w) we have gen $(\mathcal{C}(w)) \subseteq \mathcal{S C}(w)$
Proof:

CORE COINCIDENCE

Theorem 5

For every interval game (M, w) we have gen $(\mathcal{C}(w)) \subseteq \mathcal{S C}(w)$
Proof:
■ For any $x \in \operatorname{gen}(\mathcal{C}(w))$, the $\underline{w}(N) \leq \sum_{i \in N} x_{i} \leq \bar{w}(N)$ obvious.

CORE COINCIDENCE

Theorem 5

For every interval game (M, w) we have gen $(\mathcal{C}(w)) \subseteq \mathcal{S C}(w)$

Proof:

\square For any $x \in \operatorname{gen}(\mathcal{C}(w))$, the $\underline{w}(N) \leq \sum_{i \in N} x_{i} \leq \bar{w}(N)$ obvious.
■ x is in the core fory any selection of the interval game (N, s) given by:

$$
s(S)= \begin{cases}{\left[\sum_{i \in N} x_{i}, \sum_{i \in N} x_{i}\right]} & \text { if } S=N \\ {\left[\underline{w}(S), \min \left(\sum_{i \in S} x_{i}, \bar{w}(S)\right]\right.} & \text { otherwise }\end{cases}
$$

CORE COINCIDENCE

Theorem 5

For every interval game (M, w) we have $\operatorname{gen}(\mathcal{C}(w)) \subseteq \mathcal{S C}(w)$

Proof:

■ For any $x \in \operatorname{gen}(\mathcal{C}(w))$, the $\underline{w}(N) \leq \sum_{i \in N} x_{i} \leq \bar{w}(N)$ obvious.
■ x is in the core fory any selection of the interval game (N, s) given by:

$$
s(S)= \begin{cases}{\left[\sum_{i \in N} x_{i}, \sum_{i \in N} x_{i}\right]} & \text { if } S=N \\ {\left[\underline{w}(S), \min \left(\sum_{i \in S} x_{i}, \bar{w}(S)\right]\right.} & \text { otherwise. }\end{cases}
$$

■ Clearly, $\operatorname{Sel}(s) \subseteq \operatorname{Sel}(w)$ and $\operatorname{Sel}(s) \neq \emptyset$. Therfore gen $(\mathcal{C}(w)) \subseteq \mathcal{S C}(w)$.

CORE COINCIDENCE

Core coincidence characterisation

For every interval game (N, w) we have $\operatorname{gen}(\mathcal{C}(w))=\mathcal{S C}(w)$ if and only if for every $x \in \mathcal{S C}(w)$ there exist non-negative vectors $l(x)$ and $u^{(x)}$ such that:

1. $\sum_{i \in N}\left(x_{i}-l_{i}^{(x)}\right)=\underline{w}(N)$,
2. $\sum_{i \in N}\left(x_{i}+u_{i}^{(x)}\right)=\bar{w}(N)$,
3. $\sum_{i \in S}\left(x_{i}-l_{i}^{(x)}\right) \geq \underline{w}(S), \forall S \in 2^{N} \backslash\{\emptyset\}$,
4. $\sum_{i \in S}\left(x_{i}+u_{i}^{(x)}\right) \geq \bar{w}(S), \forall S \in 2^{N} \backslash\{\emptyset\}$.

CORE COINCIDENCE

Proof

First, we observe that Theorem 7 taken into account, we only need to take care of $\operatorname{gen}(\mathcal{C}(w)) \subseteq \mathcal{S C}(w)$ to obtain equality.

CORE COINCIDENCE

Proof $\mathcal{S C}(w) \subseteq \operatorname{gen}(\mathcal{C}(w))$

- suppose we have some $x \in \mathcal{S C}(w)$

Core coincidence

Proof $\mathcal{S C}(w) \subseteq \operatorname{gen}(\mathcal{C}(w))$

- suppose we have some $x \in \mathcal{S C}(w)$

■ For x, we need to find some interval $X \in \mathcal{C}(w)$ such that $x \in \operatorname{gen}(X)$.

CORE COINCIDENCE

Proof $\mathcal{S C}(w) \subseteq \operatorname{gen}(\mathcal{C}(w))$

- suppose we have some $x \in \mathcal{S C}(w)$

■ For x, we need to find some interval $X \in \mathcal{C}(w)$ such that $x \in \operatorname{gen}(X)$.

- This is equivalent to the task of finding two nonnegative vectors $l^{(x)}$ and $u^{(x)}$ such that:

$$
\left(\left[x_{1}-l_{1}^{(x)}, x_{1}+u^{(x)}\right],\left[x_{2}-l_{2}^{(x)}, x_{2}+u_{2}^{(x)}\right], \ldots,\left[x_{n}-l_{n}^{(x)}, x_{n}+u_{n}^{(x)}\right]\right) \in \mathcal{C}(w)
$$

Core coincidence

Proof $\mathcal{S C}(w) \subseteq \operatorname{gen}(\mathcal{C}(w))$

- suppose we have some $x \in \mathcal{S C}(w)$

■ For x, we need to find some interval $X \in \mathcal{C}(w)$ such that $x \in \operatorname{gen}(X)$.
■ This is equivalent to the task of finding two nonnegative vectors $l^{(x)}$ and $u^{(x)}$ such that:

$$
\left(\left[x_{1}-l_{1}^{(x)}, x_{1}+u^{(x)}\right],\left[x_{2}-l_{2}^{(x)}, x_{2}+u_{2}^{(x)}\right], \ldots,\left[x_{n}-l_{n}^{(x)}, x_{n}+u_{n}^{(x)}\right]\right) \in \mathcal{C}(w)
$$

■ From the definition of interval core, we can see that these two vectors have to satisfy exactly the mixed system 4.1-4.4.

