LAK tutorials 1

Martin Černý

October 14, 2022

To pass the tutorials, you have to attend all tutorials and submit (solve) at least 50% of homework assignments. There are two types of homework assignments:

- 1. A-type: You have to finish this assignment if you do not attend the tutorials,
- 2. Star-type: Throughout the semester, you have to submit (solve) at least 50% of these homework assignments.

Please, submit your solutions in PDF format to cerny@kam.mff.cuni.cz.

A-type assignment

Since these were the first tutorials, the assignment is non-mandatory even for those, who did not attend the tutorials.

Exercise 1

For $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$ show the following:

- 1. $rank(AB) \leq min\{rank(A), rank(B)\},\$
- 2. $rank(A + B) \leq rank(A) + rank(B)$.

Exercise 2

Let $x_1, ..., x_k \in \{0, 1\}^n$. Show that they are linearly independent in \mathbb{R}^n over \mathbb{R} if and only if they are linearly independent in \mathbb{R}^n over \mathbb{Q} .

Star-type assignment

Exercise 3

Let $x_1, \ldots, x_k \in \{0, 1\}^n$. Prove or disprove the following:

- Linear independence of $x_1, ..., x_k$ in \mathbb{Z}_p^n over $\mathbb{Z}_p \implies$ linear independence of $x_1, ..., x_k$ in \mathbb{R}^n over \mathbb{R} .
- Linear independence of x₁,..., x_k in ℝⁿ over ℝ ⇒ linear indepedence of x₁,..., x_k in ℤⁿ_p over ℤ_p.