COOPERATIVE GAME THEORY

Martin Černý

KAM.MFF.CUNI.CZ/~CERNY CERNY@KAM.MFF.CUNI.CZ

MARCH 23, 2023

FAIRNESS IN THE MODEL OF COOPERATIVE GAMES

What is the most fair payoff distribution?

- we revise already studied solution concepts
- we define new ones
- we learn how to compare them
- we introduce model incorporating player's individual notions of fairness

The Shapley value and the nucleolus

The Shapley value

For a cooperative game (N, v), the Shapley value $\phi(v)$ is defined

$$\phi_i(\mathbf{v}) = \sum_{S \subseteq N \setminus i} \frac{s!(n-s-1)!}{n!} \left[\mathbf{v}(S \cup i) - \mathbf{v}(S) \right]$$

- is considered as a fair solution (discussed earlier)
- often outside the core

The nucleolus

For a cooperative game (*N*, *v*), the **nucleolus** $\eta(v)$

 $\eta(\mathsf{v}) \coloneqq \{ \mathsf{x} \in \mathcal{I}(\mathsf{v}) \mid \theta(\mathsf{y}) \succeq_{\mathit{lex}} \theta(\mathsf{x}) \text{ for } \mathsf{y} \in \mathcal{I}(\mathsf{v}) \}.$

- η is *fair* core selection
- for many games: $\phi(\mathbf{v}) \neq \eta(\mathbf{v})$

as

RESTRICTIONS TO PLAYER'S DEMANDS

1. *b^v* ... **Utopia vector**

- $\blacktriangleright b_i^{\mathsf{v}} := \mathsf{v}(\mathsf{N}) \mathsf{v}(\mathsf{N} \setminus i)$
- Higher demand is not taken seriously...
 - \lor $v(N \setminus i) > v(N) b_i^v$
 - **coalition** $N \setminus i$ forms

2. a^{v} ... Minimal right vector

• the world is not utopia: $\sum_{j \in N} b_j^v > v(N)$

•
$$a_i^{\mathsf{v}} := \max_{S:i\in S} \mathsf{v}(S) - \sum_{j\in S\setminus i} b_j^{\mathsf{v}}$$

- 2.1 pay players from $S \setminus i$ their utopia value
- 2.2 take the rest
- ▶ find the best coalition S for you
 - your minimal right

■ for
$$x \in C(v)$$

► $a_i^v \le x_i \le b_i^v$

■ we choose efficient compromise...

The τ -value

The τ -value $\tau(v)$ for a cooperative game (N, v) is defined as a convex combination of a^v and b^v satisfying $\sum_{i \in N} \tau(v)_i = v(N)$.

■ $a^{v}(N) \le v(N) \le b^{v}(N)$ holds for quasibalanced games

The values **are** fair...:

- $\blacksquare \phi$ is often considered as a fair solution (discussed earlier)
- η is fair core selection
- τ is a **fair** compromise between utopia vector and minimal right vector

...or are they?

- $\blacksquare \ \phi \ {\rm and} \ \tau$ are often **not** contained in the core
- often: $\phi(\mathbf{v}) \neq \mathbf{n}(\mathbf{v}) \neq \tau(\mathbf{v})$
- Which value should we choose?

"I will share if I can..."

Bilateral transfer

Tuple (i, j, α, x) is **bilateral transfer**, if

$$\mathbf{x}_i - \alpha \ge \mathbf{x}_j + \alpha.$$

- *i*,*j* ... me and you
- $x \in I(v)$... what we get
- $\blacksquare \ \alpha \geq$ 0 ... what I share with you

EGALITARIAN CORE

"... but it has to be a stable transfer."

Egalitarian core

Imputation $x \in C(v)$ is **egalitarian** if there does not exist $y \in C(v)$, which would be a result of a bilateral transfer (i, j, α, x) .

"Whatever you do, this is the best possible outcome..."

Strong egalitarian core

Imputation $x \in C(v)$ is **strongly egalitarian** if there does not exist $y \in C(v)$, which would be an outcome of finitely many bilateral transfers.

egalitarian core $C_E(v)$

- exists, if $C(v) \neq \emptyset$
- multi-point solution concept
- $\blacksquare \ \mathcal{C}_{SE} \subseteq \mathcal{C}_{E}$

strongly egalitarian core $\mathcal{C}_{SE}(v)$

- single-point solution concept
- solution of the least squares:
- $\blacksquare \min_{y \in \mathcal{C}(v)} \|y\|_2$

$\mathcal{C}_{\textit{E}}$ as a fair solution concept

- 1. fair thanks to bilateral transfers
- 2. rational thanks to the stability of the core

Example

Game of two players (N, v), where v(1) = 1, v(2) = 0 a v(12) = 2.

$$C_E(v) = \{(1, 1)^T\}$$
 ... why should 1 cooperate?

 $\phi(\mathbf{v}) = (1.5, 0.5)^T$... this is more fair

One could say: "We overdo the fairness..."

FAIRNESS PREDICATES

"Division of solution concepts into elementary properties..."

Definition

A **predicate on the imputation space** of a cooperative *n*-person game is a mapping \mathcal{P} that assigns every game (N, v) a subset $\mathcal{P}(v) \subseteq I(v)$.

Fairness Predicates

- subset of I(v)
- does not have to make sense on itself:
- Dummy player predicate DP
 - ► rules out x ∈ l(v) : x_i > 0 for i with contribution o
 - not much of a concept

Solution concept

- subset of I(v) (usually)
- does have to make sense on itself:
- Shapley value
 - fair distribution of payoff given by rules (EFF, ADD, DP, SYM)
 - an interesting concept

"Axioms as predicates..."

A (partial) one-point solution concept ${\mathcal P}$ satisfies

- **anonymity** if for any permutation σ of the player set *N* we have $\mathcal{P}(\mathbf{v})_i = \mathcal{P}(\sigma(\mathbf{v}))_{\sigma(\mathbf{v})}$
- **additivity** if for two cooperative *n*-person games (N, v) and (N, w) the equation $\mathcal{P}(v + w) = \mathcal{P}(v) + \mathcal{P}(w)$ holds.

• $\mathcal{P}(\mathbf{v}) \neq \emptyset$ and $\mathcal{P}(\mathbf{w}) \neq \emptyset$

A predicate \mathcal{P} on the imputation space of cooperative *n*-person games

split if for all (N, v) we have $\mathcal{P}(v_0) + s(v) = \mathcal{P}(v)$

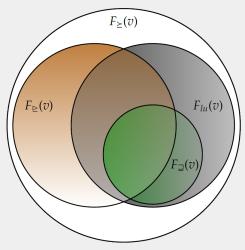
•
$$s(v)_i = v(i)$$

"We are interested if solution concepts satisfy predicates..."

FAIRNESS BASED ON DESIRABILITY

"If you work hard, you should get more."

4 desirability predicates:



DESIRABILITY OF PLAYERS $F_{\succeq}(v)$

"If you work hard, you should get more."

Definition

Player desirability relation $i \geq j$ denotes that player *i* is more desirable than *j*, i.e.

 $v(A \cup \{i\}) \ge v(A \cup \{j\})$ for $A \subseteq N \setminus i, j$.

Definition

Player desirability-fair imputation $x \in I(v)$ is such that

$$i \succeq j \implies x_i \ge x_j$$
.

The set of all such x is denoted by $F_{\succeq}(v)$.

$F_{\succeq}(v)$ and solution concepts

Theorem

For a game (N, v), following hold.

- 1. $Ker(v) \subseteq F_{\succeq}(v)$
- 2. $n(v) \in F_{\succeq}(v)$
- 3. (N, v) is quasi-balanced $\implies \tau$ -value $\tau(v) \in F_{\succeq}(v)$,
- 4. (N, v) super-additive \implies Shapley value $\phi(v) \in F_{\succeq}(v)$,

5. If
$$C(v) \neq \emptyset \implies \emptyset \neq C_E(v) \subseteq F_{\succeq}(v)$$
.

Open questions:

...

- What about other solution concepts? (bargaining set, the prekernel, ...)
- What are full characterisations of 3.,4.

"I don't know if it holds, but I feel like it does..."

desirability: $i \succeq j \implies v(A \cup \{i\}) \ge v(A \cup \{j\})$ for $A \subseteq N \setminus i, j \#$ of

conditions: $2^{|N|-2}$ Problem: infeasible to check for even a

relatively small number of players

- Solution: pick a subset of conditions
 - ▶ individual payoffs and marginal contributions to N

1. individual payoffs

► $v(i) \ge v(j)$

2. marginal contributions to the grandcoalition N

•
$$v(N) - v(N \setminus i) \ge v(N) - v(N \setminus j)$$

Definition

Player weak desirability relation $i \ge j$ denotes that player *i* is more desirable (in a weak sense) than *j*, i.e.

$$v(i) \ge v(j)$$
 and $v(N \setminus i) \le v(N \setminus j)$.

Definition

Weak player desirability-fair imputation $x \in I(v)$ is such that

$$i \ge j \implies x_i \ge x_j.$$

The set of such x is denoted by $F_{\triangleright}(v)$.

- $i \ge j$ is weaker than $i \ge j$
- therefore, it is *activated* more often
- $\blacksquare \succeq$ holds for at least as much pairs of players as \trianglerighteq
- Example:

$$\blacktriangleright \quad i_1 \trianglerighteq i_2, i_3 \trianglerighteq i_4 \implies x_{i_1} \ge x_{i_2}, x_{i_3} \ge x_{i_4}$$

$$\bullet i_3 \succeq i_4 \implies x_{i_3} \ge x_{i_4}$$

• Consequence: $F_{\geq}(v) \subseteq F_{\succeq}(v)$

$F_{\triangleright}(v)$ and solution concepts

"Is it interesting? Nobody knows yet..."

Theorem

For a game (N, v), following hold:

- 1. (N, v) is 1-convex $\implies \tau(v) \in F_{\supseteq}(v) \cap C(v)$,
- 2. (N, v) is quasi-balanced and a little condition $\implies \tau(v) \in F_{\geq}(v)$.

Open questions:

basically the rest!

Desirability relation on coalitions $F_{\supseteq}(v)$

"United we stand, divided we fall..."

Definition

Desirability relation on coalitions $A \supseteq B$ denotes coalition A is more desirable than *B*, i.e.

 $v(C \cup A) \ge v(C \cup B)$ for all $C \subseteq N \setminus (A \cup B)$.

Definition

Coalition desirability-fair imputation $x \in I(v)$ is such that

 $A \supseteq B \implies x(A) \ge x(B).$

The set of such x is denoted by $F_{\supseteq}(v)$.

"But we actually mostly fall..."

$$\blacksquare i \succeq j \iff \{i\} \sqsupseteq \{j\}$$

- $\blacksquare F_{\exists}(v) \subseteq F_{\succeq}(v)$
- exists game (N, v):
 - $\blacktriangleright \ F_{\exists}(v) \cap C(v) = \emptyset$
 - $\tau(\mathbf{v}) \notin F_{\exists}(\mathbf{v})$
 - $\phi(\mathbf{v}) \notin F_{\square}(\mathbf{v})$
 - ► $n(\mathbf{v}) \notin F_{\exists}(\mathbf{v})$

DESIRABILITY OF EQUIVALENCE CLASSES $F_{lu}(v)$

- \blacksquare same problem as for \succeq :
 - ▶ 2^N coalitions
 - many of them unlikely
- Task: select a sensible subset of condition
 - coalition of substitutes K (labor union)
 - K ⊒ {i} (factory owner i)
 - $x(K) \ge x_i$ (K: "We are not slaves!")

Definition

The labor union-fair imputation $x \in I(v)$ is such that

1.
$$K \supseteq \{i\} \implies x(K) \ge x_i$$
,

2.
$$x \in F_{\succeq}(v)$$
.

The set of such x is denoted by $F_{lu}(v)$.

DESIRABILITY OF EQUIVALENCE CLASSES $F_{lu}(v)$

"At least the egalitarian core *C*_e is fair for the workers."

Theorem

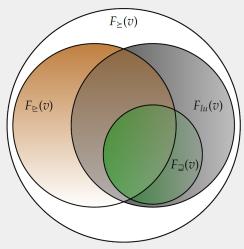
 $C_e \subseteq F_{lu}(v)$ for convex games (N, v).

Also, minor results about Shapley, τ -value and nucleolus.

FAIRNESS BASED ON DESIRABILITY

"If you work hard, you should get more."

4 desirability predicates:



"This is fair, and that is fair, so which one is more fair?"

- 1. Is the fairness predicate actually a good one?
 - In general, it might be empty for a game (N, v)
 - For a special case: Always *better* solution than other
 - $F_{\supseteq}(v)$ for banktruptcy games non-empty
 - otherwise hard to say
- 2. which fairness predicate is better?
- 3. we can find unpleasent games for the specific predicate
 - Do these games really matter?

CORE-SATISFIABILITY

"This is fair, and that is fair, so which one is more fair?"

- 1. Is the fairness predicate actually a good one?
 - In general, it is empty
 - For a special case: Always better solution than other
 - $F_{\supseteq}(v)$ for banktruptcy games non-empty
 - otherwise hard to say
- 2. which fairness predicate is better?
- 3. we can find unpleasent games for the specific concept
 - Do these games really matter?

Definition

A predicate \mathcal{P} is **satisfiable within the core** (in a class *G*) if

$$(N, v) \in G : C(v) \neq \emptyset \implies \mathcal{P}(v) \cap C(v) \neq \emptyset.$$

We say \mathcal{P} is core-satisfiable or simply satisfiable.

"It is good, at least when the game is stable."

Definition

A predicate \mathcal{P} is **satisfiable within the core** (in a class *G*) if

$$(N, v) \in \mathsf{G} : \mathsf{C}(v) \neq \emptyset \implies \mathsf{P}(v) \cap \mathsf{C}(v) \neq \emptyset.$$

- we can define different ?-satifiability
- Core-satisfiability enoforces stability of the solution

"And how does it look, from the core point-of-view?"

Theorem

- 1. $F_{\succeq}(v)$ is satisfiable for every game,
- 2. $F^{o}_{\succ}(v)$ is satisfiable for every game,
- 3. F_{\geq} is satisfiable for every convex and 1-convex game,
- 4. F_{\geq} is **not** satisfiable for every superadditive game,
- 5. *F*_{lu} is satisfiable for every convex game, but **not** every superadditive game.

Individual or Culture Specific Notions of Fairness

"This is fair to you?"

- the most natural setting
 - not only different interests
 - but also notions of fairness
- modification in the stability notion (different from Core)

"The core sounds fine, but lets keep it sensible..."

- imputation $x \in C(v)$ if
 - $\blacksquare x(S) \ge v(S)$
 - if S does not form (does not agree on fair notion)
 - 1. why should we consider this condition?
 - why shouldn't we allow for $y \notin C(v)$?
 - 2. why should we agree on x?
 - our differences might block all $x \in C(v)$
 - my fairness notion = my culture (cultural identification)
 - How does our cultural differences affect us?

"To work together, we have to find a common ground."

- *F_i* ... fairness predicate (Cultural identification of player i)
- F_i(w) ... acceptable imputations of i in (N, w)
 - imputation outside $F_i(w)$ results in **no** cooperation

31

"To work together, we have to find a common ground."

- *F_i* ... fairness predicate (**Cultural identification of player i**)
- $F_i(w)$... acceptable imputations of *i* in (N, w)
 - imputation outside F_i(w) results in **no** cooperation

A coalitions S is **culturally compatible** (in a game (N, v)) if either

1.
$$S = \{i\}$$

- **2.** exists $x \in \cap_{i \in S} F_i(v_S)$:
 - 2.1 $x(S) = v_S(S)$
 - **2.2** $x(A) \ge v_S(A)$ for every $A \subseteq S$ culturally compatible

■ *F_i* ... fairness predicate (**Cultural identification of player i**)

- $F_i(w)$... acceptable imputations of *i* in (N, w)
 - imputation outside $F_i(w)$ results in **no** cooperation

A coalitions S is **culturally compatible** (in a game (N, v)) if either

1. $S = \{i\}$ 2. exists $x \in \bigcap_{i \in S} F_i(v_S)$: 2.1 $x(S) = v_S(S)$ 2.2 $x(A) \ge v_S(A)$ for every $A \subseteq S$ culturally compatible

Culturally compatible core

Let (N, v) be a cooperative game and let CC(v) be the set of its culturally compatible coalitions. A **culturally compatible core** C_{cc} is

$$C_{cc}(v) = \{x \in \cap_{i \in N} F_i(v) | x(N) = v(N) \text{ and } x(A) \ge v(A), \forall A \in CC(v)\}.$$