Algorithmic fairness
Martin Gel, KAM MFFUK

- What is fair?
- Fair is subjective
- Activities with a sole pourpose no harm others clearly in our psychology
- We make assumptions:

Will present some introductory examples

- winter road maintenance: joint work with Fink, Pelibánorá, Tancer
- Allocation with connected bundles
- Critical distribution system :on-going work with large Ream
- Mechian of Partitions (1950's) (L, Vegh, Seremi)

Arc-rouling for winter road maintenance (2)
MaintenancePlan Given $G=(V, E), D \subseteq V$
Partition $E:\left(P_{1}, \ldots, P_{r}\right)$; assign $D \ni d_{i}$ ho P_{i}
$P_{i} \subseteq R_{i}$: each edge of P_{i} reached from d_{i} in R_{i}

- Design a route servicing arcs of $\overleftrightarrow{P}_{i}$ by \leftrightarrow a single vehicle: start, end in di, only $\overleftrightarrow{R_{i}}$ used.
- Several requiremonts:(1) mat length of a ronde,
(2)road prionilies: Low navy times a road serviced,
(3)capacites: after some length back ho di
(4) minimize complaint

Practically: All Awo-wags roads, $P_{i}=R_{i} \ni d_{i}$ subtrees of G
(3) Does a route exist (2) is hard

Complaints: national ass. that complete can be deduced tram the vehicle rowe and ils perceived unfainneso

Frustration of a vehide route
Added decoration: cyclic order around each vertex IV \| If no consensus then pare cars required by admin (2) $\uparrow 2$ cars

Find admissible route minimising frustration

- Necklace splitting reducible ho worm 9 om
length hand mountain conditions
- Natural Question : neckbce splitting for graphs different from path.
Discussions with Martin Tancer (lecture for REU 21, see web page of $\operatorname{CoS} P$.

Necklace Splithing

- k.in vertices-beads
 of s different coboro
- k. a; of colar i
- k-aplitting : partition into le parts, each consisting of a fimite number of disjoind intervals, each part has exactly a_{i} beads of color \dot{i}, $i=1, \ldots 10$.
Frustration: min \#euts needed
Thearem (Alen) There is alwap aplitthing of frustration $\leq(k-1)$. s.
Non-construchive, Ropological methods
Accompang fairners!
Algorithmic Complexiby
- Amallest \# cuts $N P_{c}$ evenfor $k=2, a_{i}=1$
- Find Abn's solution: extensive research,

Thsorem (F_{i} los-Radsikas, Goldberg 2019)
PPA- complete even for $k=2$.
[eryplographic hardvess]
Approtimations studied

Frustration of a route and necklace splitting
k robbers

kin beads of s different' colors ka a_{i} beads of color, $i_{i}=1, \cdots 10$

- define weights $M_{1}, \ldots, M_{\infty}$

$$
\begin{aligned}
& M_{1}:=1+m \\
& M_{n+1}:=1+w \sum_{q=n} M_{q} \| \cdot w(x, \alpha)=1
\end{aligned}
$$

- let $w\left(\times w_{i}\right)=M_{i}$ if i-th bead has war.
Want:
- Route length $\leq L=2 k\left(1+\sum a_{n} M_{n}\right)$
- $c=1 / k_{2}$
\Rightarrow the length of each
trip to dept must be exactly

$$
2\left(1+\sum_{M=1}^{0} a_{M} M_{\mu}\right) .
$$

Open Problem (Loebl, Tancer)
Necklace, t Ropes of beads, k cubers
111

$$
\text { graph } G=(V, E), c: V(G) \longrightarrow\{1, \ldots, t\}
$$

$\left|S_{v_{i}} C(v)=i l\right|$ is divisible fla.
split $V(G)$ into V_{1}, \ldots, V_{k} no that for each color: there is the same number of beads of cobra i in each V_{j}. Toul minimise edges which are cot ardubset of some V_{i}.

Non-trivial even for trees

Fair division of indivisible items
X finite set of items, Agents $1, \ldots, k$ $w_{i}: 2^{x} \rightarrow \mathbb{Q}$ utility fiction of agent \checkmark - mondone, submodular (STTI Vondrà''s)

- Allocation: partition of X to bundles of agents
- Enry-free (EF)

$$
M_{i}\left(i^{\prime} s \text { budder }\right) \geq w_{i}\left(j^{\prime} s \text { bundle }\right)
$$

- Proportional (P)

$$
w_{i}\left(i^{\prime} s \text { tunable }\right) \geqslant w_{i}(X)
$$

- Emoz-prue up ho are good (EF1)

For each i, j there is good $\sigma(i j)$ in j^{\prime} s bundle $\omega_{i}\left(i^{\prime} s b_{\text {bud }} l_{i}\right) \geqslant \omega_{i}\left(j^{\prime} s\right.$ bundle $\backslash\left\{\sigma\left(i_{j}\right)\right)$

Fair Division of a graph
$G=(v, E)$ graph; $X=V ; w_{i}: V \rightarrow Q^{+}, i=1, \ldots, k$ $U \subseteq V \Rightarrow u_{i}(U)=\sum w_{i}(v) ; v \in U$ if $G[U]$ connected Theorem (Bilöetal 2019) Ga rath
EF1 allocation exists if $k \leq 4$.
$k=4 \Rightarrow$ Server's lemma is used. vertex

- EF2albcations rise for general la boundary

Open Problem

- For the case of three or move agents and non-Hamilhonian graphs, characterise the class of graphs guaranteeing $E F_{i}, i \geqslant 1$.
- Compare Nosological methods of Bile et al with the necklace splitting methods.

A distribution asolem for crises
Motivated by chaotic distribution of critical medical supplies world-wide $K A M$, ethics

- Grant from MV (interior ministry) law
(4) Another fairness sel-up:
- X amount of good [divisible or indivisible]
- Ague i demands d_{i} crisis: $\sum d_{i} \gg|\times|$
- Solution: function (algorithm)
$f^{x}:\{1, \ldots, k\} \rightarrow \mathbb{R} ; f(i)=$ how much of $x i$ gets
Hence $\sum f(i)=x$
Fairness of a solution:
- Monotone $|x| \leq\left|x^{\prime}\right| \Rightarrow f^{x}(i) \leq f^{x^{\prime}}(i)$
- Consistent for all pairs i, j, if they divide $X(i j)=f^{x}(i)+f^{x}(j)$
by the same algorithm,
The output is $f^{x}(i), f^{x}(j)$.
- Self-dual losses distributed in the same way as gains
- Other properties make the solution unique

Clainuloo Caimioo Claim 300
vessel vessel vessel
$2 \times 50 \quad 2 \times 100 \quad 2 \times 150$

Clainutoo Cainzoo Claim 300 $\begin{array}{cc}\text { vessel vessel vessel } \\ 2 \times 50 & 2 \times 100 \\ 2 \times 150\end{array}$

Claimuo Clainioo Claim 300 $\begin{array}{cc}\text { vessel vessel vessel } \\ 2 \times 50 & 2 \times 150\end{array}$

Pouring liquid of 100
to the connected vessels of claims.

Pouring liquid of 200
to the connected vessels of claims.

Pouring liquid of 300 to the connected vessels of claims.

Median of Partitions

Find a partition M (median) with min total distance to P_{1}, \ldots, P_{k} :
$\min \sum_{i=1}^{k} \operatorname{dist}\left(M, P_{i}\right)$
$\frac{\operatorname{dish}(P, Q)}{\operatorname{des} P}$: min \# operations to get P from Q.
(1)
(2)

