COOPERATIVE GAME THEORY

MARTIN ČERNÝ
KAM.MFF.CUNI.CZ/~CERNY
CERNY@KAM.MFF.CUNI.CZ
MARCH 14, 2023

THE BARGAINING SET AND THE KERNEL

MOTIVATION

■ What if we desire the stability the core offers, but $\mathcal{C}(v)=\emptyset$?

1. we have the nucleolus $\eta(v)$
2. What if we want more options?

- We need to relax the stability requirements

The bargaining process

■ An argument of player i against payoff x

- I get too little in the imputation x, and agent j gets too much! I can form a coalition that excludes j in which some members benefit and all members are at least as well-off as in x.

Objection

An objection of i against j to x is a pair (S, y) where
■ $S \subseteq N, i \in S, j \notin S$,
■ $y \in \mathbb{R}^{S}, y(S) \leq v(S)$ (y is feasible for S)

- $\forall k \in S, y_{k} \geq x_{k}$ and $y_{i}>x_{i}$ (nobody is worse off and i gains)

■ Goal: To obtain a side payment from j to i

The bargaining process

■ Answer to an argument

- I can form a coalition that excludes agent i in which all agents are at least as well off as in x, and as well off as in the payoff proposed by i for those who were offered to join i in the argument.

Counter-objection

A counter-objection to (S, y) is a pair (T, z) where
■ $T \subseteq N, j \in T, i \notin T$,
$\square z \in \mathbb{R}^{s}, z(T) \leq v(T)(z$ is feasible for $T)$

- $\forall k \in T, z_{k} \geq x_{k}$ (nobody is worse off)

■ $\forall k \in T \cap S, z_{k} \geq y_{k}(k \in Q \cap P$ get at least as much as in $(S, y))$

- Goal: To show j can protect x_{j} from the objection of i

Stability of the pre-bargaining set

Stability

For a cooperative game (N, v), vector $x \in \mathbb{R}^{n}$ is stable if for each objection at x there is a counter-objection.

The bargaining set

For a cooperative game (N, v), the bargaining set $\mathcal{B S}(v)$ is defined as

$$
\mathcal{B S}(v):=\{x \in \mathcal{I}(v) \mid x \text { is stable }\} .
$$

ReLATION BETWEEN THE STABILITY AND THE CORE

 STABILITY
Core is a subset of the bargaining set

For a cooperative game (N, v), it holds

$$
\mathcal{C}(v) \subseteq \mathcal{B S}(v) .
$$

Proof: There are no objections for $x \in \mathcal{C}(v)$!

- $x(S) \geq v(S)$
- objection (S, y) satisfies $y(S)>x(S)$ and $y(S) \leq v(S)$
- $v(S) \geq y(S)>x(S) \geq v(S)$

OBJECTIONS HIDDEN BEHIND COALITIONS

Idea: Players pretend to care about the welfare of coalitions.
■ S is a coalition that contains i, excludes j and which sacrifices too much (or gains too little).

Objection

A coalition $S \subseteq N$ is an objection of i against j to x if $i \in S, j \notin S$ and $x_{j}>v(j)$.

- Player i's demand is not justified: T is a coalition that contains j and excludes i and that sacrifices even more (or gains even less)

Counter-Objection

A coalition $T \subseteq N$ is a counter-objection to the objection P of i against j if $j \in T, i \notin T$ and $e(T, x) \geq e(S, x)$.

The kernel

The kernel

For a cooperative game (N, v), the kernel $\mathcal{K}(v)$ is defined as

$$
\mathcal{K}(v)=\left\{x \in \mathcal{I}(v) \left\lvert\, \begin{array}{l}
\forall S \text { objection of } i \text { over } j \text { to } x, \\
\exists T \text { a counter-objection of } j \text { to } S .
\end{array}\right.\right\}
$$

Alternative definition of the kernel

The kernel

For a cooperative game (N, v), the kernel $\mathcal{K}(v)$ is defined as

$$
\mathcal{K}(v)=\left\{x \in \mathcal{I}(v) \left\lvert\, \begin{array}{l}
\forall S \text { objection of } i \text { over } j \text { to } x, \\
\exists T \text { a counter-objection of } j \text { to } S
\end{array}\right.\right\} .
$$

■ denote $S_{i j} \subseteq N$ such that $i \in S_{i j}$ and $j \notin S_{i j}$

1. $x_{j}=v(j)$... i does not have an objection against j
2. $x_{j}>v(j)$... every $S_{i j} \subseteq N$ is an objection

- every $S_{j i}$ satisfying $e\left(S_{j i}, x\right) \geq e\left(S_{i j}, x\right)$ is a counter-objection
- player i is safe against j if

1. $x_{j}=v(j)$, or
2. $x_{j}>v(j)$ and $\max _{S_{j i} \subseteq N} e\left(S_{j i}, x\right) \geq \max _{S_{i j} \subseteq N} e(S, x)$

- $s_{i j}(x):=\max _{S_{i j} \subseteq N} e\left(S_{i j}, x\right)$

ReLation between the kernel and the bargaining

 SET
The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\mathcal{K}(v) \subseteq \mathcal{B S}(v)$.
Proof: $x \in \mathcal{K}(v) \Longrightarrow x \in \mathcal{B S}(v)$
■ ($S_{i j}, y$) ... objection of i against j to x

- $y\left(S_{i j}\right) \leq v\left(S_{i j}\right), \forall k: y_{k} \geq x_{k}$ and $y_{i}>x_{i} \quad\left(y\left(S_{i j}\right)>x\left(S_{i j}\right)\right)$
- we choose $y\left(S_{i j}\right)=v\left(S_{i j}\right)$

■ we need ($S_{j i}, z$ s.t.

- $z\left(S_{j i}\right) \leq v\left(S_{j i}\right)$,
$\square \forall k \in Q: z_{k} \geq x_{k}$
■ $\forall k \in Q \cap P: z_{k} \geq y_{k}$

1. $x_{j}=v(j)$

- choose $S_{j i}=\{j\}$ and $y_{j}=v(j)$

ReLation between the kernel and the bargaining

 SETThe kernel is a subset of the bargaining set
For a cooperative game (N, v), it holds $\mathcal{K}(v) \subseteq \mathcal{B S}(v)$.
Proof: $x \in \mathcal{K}(v) \Longrightarrow x \in \mathcal{B S}(v)$

- ($S_{i j}, y$) ... objection of i against j to x
- $y\left(S_{i j}\right) \leq v\left(S_{i j}\right), \forall k: y_{k} \geq x_{k}$ and $y_{i}>x_{i} \quad\left(y\left(S_{i j}\right)>x\left(S_{i j}\right)\right)$
- we choose $y\left(S_{i j}\right)=v\left(S_{i j}\right)$
- we need ($S_{j i}, z$ s.t.
- $z\left(S_{j i}\right) \leq v\left(S_{j i}\right)$,
- $\forall k \in Q: z_{k} \geq x_{k}$
- $\forall k \in Q \cap P: z_{k} \geq y_{k}$

2. $x_{j}>v(j)$

- choose $S_{j i}^{*} \subseteq N$ s.t.
- $v\left(S_{j i}^{*}\right)-x\left(S_{j i}^{*}\right)=s_{j i}(x)$

ReLATION BETWEEN THE KERNEL AND THE BARGAINING

 SETThe kernel is a subset of the bargaining set
For a cooperative game (N, v), it holds $\mathcal{K}(v) \subseteq \mathcal{B S}(v)$.
Proof: $x \in \mathcal{K}(v) \Longrightarrow x \in \mathcal{B S}(v)$

- ($S_{i j}, y$) ... objection of i against j to x
- $y\left(S_{i j}\right) \leq v\left(S_{i j}\right), \forall k: y_{k} \geq x_{k}$ and $y_{i}>x_{i} \quad\left(y\left(S_{i j}\right)>x\left(S_{i j}\right)\right)$
- we need ($\left.S_{j i}, z\right)$ s.t.

> - $z\left(S_{j i}\right) \leq v\left(S_{j i}\right)$,
> - $\forall k \in Q: z_{k} \geq x_{k}, \forall k \in Q \cap P: z_{k} \geq y_{k}$
2. $x_{j}>v(j)$

- $v\left(S_{j i}^{*}\right)-x\left(S_{j i}^{*}\right) \geq y\left(S_{i j}\right)-x\left(S_{i j}\right)$
- $v\left(S_{j i}^{*}\right) \geq y\left(S_{i j}\right)+x\left(S_{j i}^{*}\right)-x\left(S_{i j}\right)$
$-y\left(S_{i j} \cap S_{j i}^{*}\right)+y\left(S_{i j} \backslash S_{j i}^{*}\right)+x\left(S_{j i}^{*} \backslash S_{i j}\right)-x\left(S_{i j} \backslash S_{j i}^{*}\right)$
- $>y\left(S_{i j} \cap S_{j i}^{*}\right)+x\left(S_{j i}^{*} \backslash S_{i j}\right)$
- $y\left(S_{i j} \backslash S_{j i}^{*}\right)>x\left(S_{i j} \backslash S_{j i}^{*}\right)$ since $i \in S_{i j} \backslash S_{j i}^{*}$

ReLation between the kernel and the bargaining

 SETThe kernel is a subset of the bargaining set
For a cooperative game (N, v), it holds $\mathcal{K}(v) \subseteq \mathcal{B S}(v)$.
Proof: $x \in \mathcal{K}(v) \Longrightarrow x \in \mathcal{B S}(v)$

- ($S_{i j}, y$) ... objection of i against j to x
- we need $\left(S_{j i}, z\right)$ s.t.
- $z\left(S_{j i}\right) \leq v\left(S_{j i}\right)$,
- $\forall k \in Q: Z_{k} \geq x_{k}$,
- $\forall k \in Q \cap P: z_{k} \geq y_{k}$

2. $x_{j}>v(j)$
$-v\left(S_{j i}^{*}\right)>y\left(S_{j i}^{*} \cap S_{i j}\right)+x\left(S_{j i}^{*} \backslash S_{i j}\right)$

- $z_{k}:= \begin{cases}x_{k} & \text { if } k \in S_{j i}^{*} \backslash S_{i j}, \\ y_{k} & \text { if } k \in S_{j i}^{*} \cap S_{i j}\end{cases}$

ReLAtion BETWEEN $\mathcal{K}(v)$ AND $\eta(v)$

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\eta(v) \subseteq \mathcal{K}(v)$.
Proof:
$\square \exists i, j \in N: s_{j i}(x)>s_{i j}(x)$ and $x_{i}>v(i)$
$y_{k}= \begin{cases}x_{k} & k \neq i, k \neq j, \\ x_{k}-\varepsilon & k=i, \\ x_{k}+\varepsilon & k=j .\end{cases}$

- y... reflects transfer of $\varepsilon>0$ from i to j
- choose ε :

1. $x_{i}-\varepsilon=y_{i}>v(i)$
2. $s_{j i}(y)>s_{i j}(y)$

■ Goal: Show $\theta(y) \prec_{\text {lex }} \theta(x)$

- $\Longrightarrow x \notin \eta(v)$

RELATION BETWEEN $\mathcal{K}(v)$ AND $\eta(v)$

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\eta(v) \subseteq \mathcal{K}(v)$.
Proof: $x \notin \mathcal{K}(v) \Longrightarrow x \notin \eta(v)$

- $\exists i, j \in N: s_{j i}(x)>s_{i j}(x)$ and $x_{i}>v(i)$
- y... reflects transfer of $\varepsilon>0$ from i to j
- $\theta(x)=(\bullet, \stackrel{\bullet}{\bullet}, \bullet, \circ|\bullet, \bullet, \bullet| \ldots \mid \bullet, \circ, \bullet)$
-...$e\left(S_{i j}, x\right)$
- •... e($\left.S_{j i}, x\right)$
- $\circ . . . e(S, x), i, j \in S$ or $i, j \notin S$
- | ... divides entries with different values
- $\circ \bullet$, $\bullet \ldots e(S, x)>e\left(S_{j i}, x\right)=e\left(S_{i j}, x\right)$

ReLATION BETWEEN $\mathcal{K}(v)$ AND $\eta(v)$

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\eta(v) \subseteq \mathcal{K}(v)$.
Proof: $x \notin \mathcal{K}(v) \Longrightarrow x \notin \eta(v)$

- $\exists i, j \in N: s_{j i}(x)>s_{i j}(x)$ and $x_{i}>v(i)$
- y... reflects transfer of $\varepsilon>0$ from i to j
- $\theta(x)=(\bullet, \stackrel{\bullet}{\bullet}, \bullet, \circ|\bullet, \bullet, \bullet| \ldots \mid \bullet, \circ, \bullet)$
- $\theta(y)=$?
- $e\left(S_{i j}, y\right)=v(S)-x(S)+\varepsilon>e\left(S_{i j}, x\right)$
- $e\left(S_{j i}, y\right)=v(S)-x(S)-\varepsilon<e\left(S_{i j}, x\right)$
- $\theta(x)=(\bullet, \bullet, \circ, 0, \bullet|\bullet, \bullet, \bullet| \ldots \mid \bullet, 0, \bullet)$
- rearranging inside $|\ldots|$ does not changes anything

■ $\theta(x)=(\stackrel{\circ}{ }, \stackrel{\circ}{ }, \circ, \bullet|\bullet, \bullet, \bullet| \ldots \mid \bullet, \circ, \bullet)$
$>S_{j i}(x)>S_{i j}(x) \Longleftrightarrow \max _{S_{j i} \subseteq N} e\left(S_{j i}, x\right)>\max _{S_{i j} \subseteq N} e\left(S_{i j}, x\right)$

ReLATION BETWEEN $\mathcal{K}(v)$ AND $\eta(v)$

The kernel is a subset of the bargaining set
For a cooperative game (N, v), it holds $\eta(v) \subseteq \mathcal{K}(v)$.
Proof: $x \notin \mathcal{K}(v) \Longrightarrow x \notin \eta(v)$

- $\exists i, j \in N: s_{j i}(x)>s_{i j}(x)$ and $x_{i}>v(i)$
- y... reflects transfer of $\varepsilon>0$ from i to j
- $\theta(x)=(\stackrel{,}{ }, \mathrm{o}, \mathrm{o}, \bullet|\bullet, \bullet, \bullet| \ldots \mid \bullet, 0, \bullet)$

- key: we set $\varepsilon: s_{j i}(y)>s_{i j}(y) \Longleftrightarrow \max e\left(S_{j i}, y\right)>\max e\left(S_{i j}, y\right)$
- \Longrightarrow the order of first $\bullet \bullet \bullet$ does not change
- $\theta(x)=(\circ, \mathrm{o}, \mathrm{o}, \mathrm{o}, \bullet \mid \boldsymbol{\bullet}, \ldots)$
- $\theta(y)=(0, o, o, o,|\bullet| \bullet, \ldots)$
- $\theta(y) \prec_{\text {lex }} \theta(x) \Longrightarrow x \notin \eta(v)$

NON-EMPTYNESS OF $\mathcal{K}(v)$ AND $\mathcal{B S}(v)$

Relation of solution concepts

For a cooperative game (N, v), it holds

$$
\eta(v) \subseteq \mathcal{C}(v) \subseteq \mathcal{K}(v) \subseteq \mathcal{B S}(v)
$$

Following theorem is immediate.
Non-emptyness of $\mathcal{K}(v)$ and $\mathcal{B S}(v)$
For a cooperative game (N, v), if it holds $\mathcal{I}(v) \neq \emptyset$, then we have $\mathcal{K}(v) \neq \emptyset$ and $\mathcal{B S}(v) \neq \emptyset$.

NUCLEOLUS IN TERMS OF (COUNTER-)OBJECTIONS

Idea: Objections made by coalitions instead of players.
■ Our excess for coalition P is too large at x, payoff y reduces it.

Objection

A pair (P, y), in which $P \subseteq N$ and $y \in \mathcal{I}(v)$ is an objection to x if $e(P, x)>e(P, y)$.

- Our excess under y is larger than it was under x for coalition Q! Furthermore, our excess at y is larger than what your excess was at x !

Counter-objection

A coalition (Q, y) is a counter-objection to the objection (P, y) when $e(Q, y)>e(Q, x)$ and $e(Q, y)>e(P, x)$.

NUCLEOLUS IN TERMS OF (COUNTER-)OBJECTIONS

Objection

A pair (P, y), in which $P \subseteq N$ and $y \in \mathcal{I}(v)$ is an objection to x if $e(P, x)>e(P, y)$.

Counter-objection

A coalition (Q, y) is a counter-objection to the objection (P, y) when $e(Q, y)>e(Q, x)$ and $e(Q, y)>e(P, x)$.
$\square x \in \eta(v)$ is not stable

- there is $y: e(P, x)>e(P, y)$
- and for every $S \subseteq N: e(Q, y) \leq e(Q, x)$ or $e(Q, y) \leq e(P, x)$
- $\Longrightarrow \theta(y) \preceq_{\text {lex }} \theta(x) \Longrightarrow x \notin \eta(v)$

NUCLEOLUS IN TERMS OF (COUNTER-)OBJECTIONS

Objection

A pair (P, y), in which $P \subseteq N$ and $y \in \mathcal{I}(v)$ is an objection to x if $e(P, x)>e(P, y)$.

Counter-objection
A coalition (Q, y) is a counter-objection to the objection (P, y) when $e(Q, y)>e(Q, x)$ and $e(Q, y)>e(P, x)$.

Nucleolus

For a cooperative game (N, v), the nucleolus $\eta(v)$ is defined as

$$
\eta(v)=\{x \in \mathcal{I}(v) \mid x \text { is stable. }\} .
$$

SUMMARY

The bargaining set and the kernel

The bargaining set and the kernel are solution concepts, which relax the notion of core stability. The stability for both of these sets is defined through a bargaining process consisting of objections and counter-objections to payoff vectors. If each objection is covered by a counter-objection, the payoff vector is proclaimed stable. Both sets are generalisations of the nucleolus and when the core is non-empty, all the mentioned solution concepts together with the core form a hierarchy of stable solutions.

