COOPERATIVE GAME THEORY

Martin Černý

KAM.MFF.CUNI.CZ/~CERNY CERNY@KAM.MFF.CUNI.CZ

MARCH 15, 2023

THE BARGAINING SET AND THE KERNEL

• What if we desire the *stability* the core offers, but $C(v) = \emptyset$?

- What if we desire the *stability* the core offers, but $C(v) = \emptyset$?
- 1. we have the nucleolus $\eta(\mathbf{v})$

- What if we desire the *stability* the core offers, but $C(v) = \emptyset$?
- 1. we have the nucleolus $\eta(\mathbf{v})$
- 2. What if we want more options?

- What if we desire the *stability* the core offers, but $C(v) = \emptyset$?
- 1. we have the nucleolus $\eta(\mathbf{v})$
- 2. What if we want more options?
 - We need to relax the stability requirements

THE BARGAINING PROCESS

■ An argument of player *i* against payoff *x*

- An argument of player *i* against payoff *x*
 - I get too little in the imputation x, and agent j gets too much! I can form a coalition that excludes j in which some members benefit and all members are at least as well-off as in x.

THE BARGAINING PROCESS

■ An argument of player *i* against payoff *x*

I get too little in the imputation x, and agent j gets too much! I can form a coalition that excludes j in which some members benefit and all members are at least as well-off as in x.

Objection

An objection of i against j to x is a pair (S, y) where

- $\blacksquare S \subseteq N, i \in S, j \notin S,$
- $y \in \mathbb{R}^{s}$, $y(S) \leq v(S)$ (y is feasible for S)
- $\forall k \in S, y_k \ge x_k$ and $y_i > x_i$ (nobody is worse off and *i* gains)

■ An argument of player *i* against payoff *x*

I get too little in the imputation x, and agent j gets too much! I can form a coalition that excludes j in which some members benefit and all members are at least as well-off as in x.

Objection

An objection of i against j to x is a pair (S, y) where

- $\blacksquare S \subseteq N, i \in S, j \notin S,$
- $y \in \mathbb{R}^{s}$, $y(S) \leq v(S)$ (y is feasible for S)
- $\forall k \in S, y_k \ge x_k$ and $y_i > x_i$ (nobody is worse off and *i* gains)

Goal: To obtain a side payment from *j* to *i*

THE BARGAINING PROCESS

Answer to an argument

Answer to an argument

I can form a coalition that excludes agent i in which all agents are at least as well off as in x, and as well off as in the payoff proposed by i for those who were offered to join i in the argument.

Answer to an argument

I can form a coalition that excludes agent i in which all agents are at least as well off as in x, and as well off as in the payoff proposed by i for those who were offered to join i in the argument.

Counter-objection

A <u>counter-objection to (S, y) is a pair (T, z) where</u>

- $\blacksquare T \subseteq N, j \in T, i \notin T,$
- $z \in \mathbb{R}^{s}$, $z(T) \leq v(T)$ (*z* is feasible for *T*)
- $\forall k \in T, z_k \ge x_k$ (nobody is worse off)
- $\forall k \in T \cap S, z_k \ge y_k \ (k \in Q \cap P \text{ get at least as much as in } (S, y))$

Answer to an argument

I can form a coalition that excludes agent i in which all agents are at least as well off as in x, and as well off as in the payoff proposed by i for those who were offered to join i in the argument.

Counter-objection

A counter-objection to (S, y) is a pair (T, z) where

- $\blacksquare T \subseteq N, j \in T, i \notin T,$
- $z \in \mathbb{R}^{s}$, $z(T) \leq v(T)$ (*z* is feasible for *T*)
- $\forall k \in T, z_k \ge x_k$ (nobody is worse off)
- $\forall k \in T \cap S, z_k \ge y_k \ (k \in Q \cap P \text{ get at least as much as in } (S, y))$

Goal: To show *j* can protect *x_j* from the objection of *i*

Stability

For a cooperative game (N, v), vector $x \in \mathbb{R}^n$ is <u>stable</u> if for each objection at x there is a counter-objection.

Stability

For a cooperative game (N, v), vector $x \in \mathbb{R}^n$ is <u>stable</u> if for each objection at x there is a counter-objection.

The bargaining set

For a cooperative game (N, v), the bargaining set $\mathcal{BS}(v)$ is defined as

$$\mathcal{BS}(\mathsf{v}) \coloneqq \{\mathsf{x} \in \mathcal{I}(\mathsf{v}) \mid \mathsf{x} \text{ is stable}\}.$$

Core is a subset of the bargaining set

For a cooperative game (N, v), it holds

 $\mathcal{C}(\mathbf{v}) \subseteq \mathcal{BS}(\mathbf{v}).$

Core is a subset of the bargaining set

For a cooperative game (N, v), it holds

 $\mathcal{C}(\mathbf{v}) \subseteq \mathcal{BS}(\mathbf{v}).$

Proof: There are no objections for $x \in \mathcal{C}(v)$!

Core is a subset of the bargaining set

For a cooperative game (N, v), it holds

 $\mathcal{C}(\mathsf{v}) \subseteq \mathcal{BS}(\mathsf{v}).$

Proof: There are no objections for $x \in C(v)$!

 $\blacksquare x(S) \ge v(S)$

Core is a subset of the bargaining set

For a cooperative game (N, v), it holds

 $\mathcal{C}(\mathsf{v}) \subseteq \mathcal{BS}(\mathsf{v}).$

Proof: There are no objections for $x \in C(v)$!

$$\blacksquare x(S) \ge v(S)$$

• objection (S, y) satisfies y(S) > x(S) and $y(S) \le v(S)$

Core is a subset of the bargaining set

For a cooperative game (N, v), it holds

 $\mathcal{C}(\mathsf{v}) \subseteq \mathcal{BS}(\mathsf{v}).$

Proof: There are no objections for $x \in C(v)$!

$$\blacksquare x(S) \ge v(S)$$

• objection (S, y) satisfies y(S) > x(S) and $y(S) \le v(S)$

•
$$v(S) \ge y(S) > x(S) \ge v(S)$$

Idea: Players pretend to care about the welfare of coalitions.

Idea: Players pretend to care about the welfare of coalitions.

 S is a coalition that contains i, excludes j and which sacrifices too much (or gains too little).

Idea: Players pretend to care about the welfare of coalitions.

S is a coalition that contains i, excludes j and which sacrifices too much (or gains too little).

Objection

A coalition $S \subseteq N$ is an <u>objection of *i* against *j* to *x*</u> if $i \in S$, $j \notin S$ and $x_j > v(j)$.

Idea: Players pretend to care about the welfare of coalitions.

 S is a coalition that contains i, excludes j and which sacrifices too much (or gains too little).

Objection

A coalition $S \subseteq N$ is an <u>objection of *i* against *j* to *x*</u> if $i \in S$, $j \notin S$ and $x_j > v(j)$.

 Player i's demand is not justified: T is a coalition that contains j and excludes i and that sacrifices even more (or gains even less)

Idea: Players pretend to care about the welfare of coalitions.

 S is a coalition that contains i, excludes j and which sacrifices too much (or gains too little).

Objection

A coalition $S \subseteq N$ is an <u>objection of *i* against *j* to *x*</u> if $i \in S$, $j \notin S$ and $x_j > v(j)$.

 Player i's demand is not justified: T is a coalition that contains j and excludes i and that sacrifices even more (or gains even less)

Counter-Objection

A coalition $T \subseteq N$ is a <u>counter-objection to the objection P of i</u> against j if $j \in T$, $i \notin T$ and $e(T, x) \ge e(S, x)$.

The kernel

$$\mathcal{K}(\mathbf{v}) = \left\{ x \in \mathcal{I}(\mathbf{v}) \middle| \begin{array}{l} \forall S \text{ objection of } i \text{ over } j \text{ to } x, \\ \exists T \text{ a counter-objection of } j \text{ to } S. \end{array} \right\}$$

The kernel

For a cooperative game (N, v), the kernel $\mathcal{K}(v)$ is defined as

$$\mathcal{K}(\mathbf{v}) = \left\{ x \in \mathcal{I}(\mathbf{v}) \middle| \begin{array}{l} \forall S \text{ objection of } i \text{ over } j \text{ to } x, \\ \exists T \text{ a counter-objection of } j \text{ to } S \end{array} \right\}$$

• denote $S_{ij} \subseteq N$ such that $i \in S_{ij}$ and $j \notin S_{ij}$

The kernel

For a cooperative game (N, v), the kernel $\mathcal{K}(v)$ is defined as

$$\mathcal{K}(\mathbf{v}) = \left\{ x \in \mathcal{I}(\mathbf{v}) \middle| \begin{array}{l} \forall S \text{ objection of } i \text{ over } j \text{ to } x, \\ \exists T \text{ a counter-objection of } j \text{ to } S \end{array} \right\}$$

■ denote S_{ij} ⊆ N such that i ∈ S_{ij} and j ∉ S_{ij}
 1. x_j = v(j) ... i does not have an objection against j

The kernel

For a cooperative game (N, v), the kernel $\mathcal{K}(v)$ is defined as

$$\mathcal{K}(\mathbf{v}) = \left\{ x \in \mathcal{I}(\mathbf{v}) \middle| \begin{array}{l} \forall S \text{ objection of } i \text{ over } j \text{ to } x, \\ \exists T \text{ a counter-objection of } j \text{ to } S \end{array} \right\}$$

■ denote $S_{ij} \subseteq N$ such that $i \in S_{ij}$ and $j \notin S_{ij}$ 1. $x_j = v(j) \dots i$ does not have an objection against j2. $x_j > v(j) \dots$ every $S_{ij} \subseteq N$ is an objection

The kernel

$$\mathcal{K}(\mathbf{v}) = \left\{ x \in \mathcal{I}(\mathbf{v}) \middle| \begin{array}{l} \forall S \text{ objection of } i \text{ over } j \text{ to } x, \\ \exists T \text{ a counter-objection of } j \text{ to } S \end{array} \right\}$$

- denote $S_{ij} \subseteq N$ such that $i \in S_{ij}$ and $j \notin S_{ij}$
- 1. $x_j = v(j) \dots i$ does not have an objection against j
- 2. $x_j > v(j)$... every $S_{ij} \subseteq N$ is an objection
 - every S_{ji} satisfying $e(S_{ji}, x) \ge e(S_{ij}, x)$ is a counter-objection

The kernel

$$\mathcal{K}(\mathbf{v}) = \left\{ x \in \mathcal{I}(\mathbf{v}) \middle| \begin{array}{l} \forall S \text{ objection of } i \text{ over } j \text{ to } x, \\ \exists T \text{ a counter-objection of } j \text{ to } S \end{array} \right\}$$

- denote $S_{ij} \subseteq N$ such that $i \in S_{ij}$ and $j \notin S_{ij}$
- 1. $x_j = v(j) \dots i$ does not have an objection against j
- **2.** $x_j > v(j)$... every $S_{ij} \subseteq N$ is an objection
 - every S_{ji} satisfying $e(S_{ji}, x) \ge e(S_{ij}, x)$ is a counter-objection
- player *i* is *safe* against *j* if

The kernel

$$\mathcal{K}(\mathbf{v}) = \left\{ x \in \mathcal{I}(\mathbf{v}) \middle| \begin{array}{l} \forall S \text{ objection of } i \text{ over } j \text{ to } x, \\ \exists T \text{ a counter-objection of } j \text{ to } S \end{array} \right\}$$

- denote $S_{ij} \subseteq N$ such that $i \in S_{ij}$ and $j \notin S_{ij}$
- 1. $x_j = v(j) \dots i$ does not have an objection against j
- **2.** $x_j > v(j)$... every $S_{ij} \subseteq N$ is an objection
 - every S_{ji} satisfying $e(S_{ji}, x) \ge e(S_{ij}, x)$ is a counter-objection
- player *i* is *safe* against *j* if

1.
$$x_j = v(j)$$
, or

The kernel

$$\mathcal{K}(\mathbf{v}) = \left\{ x \in \mathcal{I}(\mathbf{v}) \middle| \begin{array}{l} \forall S \text{ objection of } i \text{ over } j \text{ to } x, \\ \exists T \text{ a counter-objection of } j \text{ to } S \end{array} \right\}$$

- denote $S_{ij} \subseteq N$ such that $i \in S_{ij}$ and $j \notin S_{ij}$
- 1. $x_j = v(j) \dots i$ does not have an objection against j
- **2.** $x_j > v(j)$... every $S_{ij} \subseteq N$ is an objection
 - every S_{ji} satisfying $e(S_{ji}, x) \ge e(S_{ij}, x)$ is a counter-objection
- player *i* is *safe* against *j* if

1.
$$x_j = v(j)$$
, or
2. $x_j > v(j)$ and $\max_{S_{ji} \subseteq N} e(S_{ji}, x) \ge \max_{S_{ij} \subseteq N} e(S, x)$

ALTERNATIVE DEFINITION OF THE KERNEL

The kernel

For a cooperative game (N, v), the kernel $\mathcal{K}(v)$ is defined as

$$\mathcal{K}(\mathbf{v}) = \left\{ x \in \mathcal{I}(\mathbf{v}) \middle| \begin{array}{l} \forall S \text{ objection of } i \text{ over } j \text{ to } x, \\ \exists T \text{ a counter-objection of } j \text{ to } S \end{array} \right\}$$

- denote $S_{ij} \subseteq N$ such that $i \in S_{ij}$ and $j \notin S_{ij}$
- 1. $x_j = v(j) \dots i$ does not have an objection against j
- 2. $x_j > v(j)$... every $S_{ij} \subseteq N$ is an objection
 - every S_{ji} satisfying $e(S_{ji}, x) \ge e(S_{ij}, x)$ is a counter-objection
- player *i* is *safe* against *j* if

1.
$$x_j = v(j)$$
, or
2. $x_j > v(j)$ and $\max_{S_{ij} \subseteq N} e(S_{ji}, x) \ge \max_{S_{ij} \subseteq N} e(S, x)$
s_{ij}(x) := $\max_{S_{ij} \subseteq N} e(S_{ij}, x)$

ALTERNATIVE DEFINITION OF THE KERNEL

The kernel

For a cooperative game (N, v), the kernel $\mathcal{K}(v)$ is defined as $\mathcal{K}(v) = \{x \in \mathcal{I}(v) \mid \forall i \neq j : s_{ij}(x) \ge s_{ji}(x) \text{ or } x_j = v(j)\}.$

- denote $S_{ij} \subseteq N$ such that $i \in S_{ij}$ and $j \notin S_{ij}$
- 1. $x_i = v(j) \dots i$ does not have an objection against j
- 2. $x_j > v(j)$... every $S_{ij} \subseteq N$ is an objection
 - every S_{ji} satisfying $e(S_{ji}, x) \ge e(S_{ij}, x)$ is a counter-objection
- player *i* is *safe* against *j* if

1.
$$x_j = v(j)$$
, or
2. $x_j > v(j)$ and $\max_{S_{ij} \subseteq N} e(S_{ji}, x) \ge \max_{S_{ij} \subseteq N} e(S, x)$
 $S_{ij}(x) \coloneqq \max_{S_{ij} \subseteq N} e(S_{ij}, x)$

The kernel is a subset of the bargaining set

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\mathcal{K}(v) \subseteq \mathcal{BS}(v)$.

Proof: $x \in \mathcal{K}(v) \implies x \in \mathcal{BS}(v)$

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\mathcal{K}(v) \subseteq \mathcal{BS}(v)$.

Proof: $x \in \mathcal{K}(v) \implies x \in \mathcal{BS}(v)$

- (S_{ij}, y) ... objection of *i* against *j* to *x*
 - $\blacktriangleright \ y(S_{ij}) \le v(S_{ij}), \forall k : \ y_k \ge x_k \text{ and } y_i > x_i \quad (y(S_{ij}) > x(S_{ij}))$

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\mathcal{K}(v) \subseteq \mathcal{BS}(v)$.

Proof: $x \in \mathcal{K}(v) \implies x \in \mathcal{BS}(v)$

- \blacksquare (S_{ij}, y) ... objection of *i* against *j* to x
 - ▶ $y(S_{ij}) \le v(S_{ij})$, $\forall k : y_k \ge x_k$ and $y_i > x_i$ $(y(S_{ij}) > x(S_{ij}))$

• we choose
$$y(S_{ij}) = v(S_{ij})$$

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\mathcal{K}(v) \subseteq \mathcal{BS}(v)$.

Proof: $x \in \mathcal{K}(v) \implies x \in \mathcal{BS}(v)$ **•** $(S_{ij}, y) \dots$ objection of *i* against *j* to *x* **•** $y(S_{ij}) \leq v(S_{ij}), \forall k : y_k \geq x_k \text{ and } y_i > x_i \quad (y(S_{ij}) > x(S_{ij}))$ **•** we choose $y(S_{ij}) = v(S_{ij})$ **•** we need (S_{ji}, z) s.t.

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\mathcal{K}(v) \subseteq \mathcal{BS}(v)$.

Proof: $x \in \mathcal{K}(v) \implies x \in \mathcal{BS}(v)$ **(** S_{ij}, y) ... objection of *i* against *j* to *x* **)** $y(S_{ij}) \le v(S_{ij}), \forall k : y_k \ge x_k \text{ and } y_i > x_i \quad (y(S_{ij}) > x(S_{ij}))$ **)** we choose $y(S_{ij}) = v(S_{ij})$ **(** $y(S_{ij}) \ge x(S_{ij})$) **(** $y(S_{ij}) \ge x(S_{ij})$) **(** $y(S_{ij}) \ge x(S_{ij})$, **(** $y(S_{ij}) \le v(S_{ij})$, **(** $y(K \in Q) : z_k \ge x_k$ **(** $y(K \in Q \cap P : z_k \ge y_k$)

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\mathcal{K}(v) \subseteq \mathcal{BS}(v)$.

Proof: $x \in \mathcal{K}(v) \implies x \in \mathcal{BS}(v)$ **(** S_{ij}, y) ... objection of *i* against *j* to *x* **y** $(S_{ij}) \le v(S_{ij}), \forall k : y_k \ge x_k \text{ and } y_i > x_i \quad (y(S_{ij}) > x(S_{ij}))$ **we choose** $y(S_{ij}) = v(S_{ij})$ **we need** (S_{ji}, z) s.t. **b** $z(S_{ji}) \le v(S_{ji}),$ **i** $\forall k \in Q : z_k \ge x_k$ **i** $\forall k \in Q \cap P : z_k \ge y_k$ **1.** $x_j = v(j)$

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\mathcal{K}(v) \subseteq \mathcal{BS}(v)$.

Proof: $x \in \mathcal{K}(v) \implies x \in \mathcal{BS}(v)$ \blacksquare (S_{ii}, y) ... objection of *i* against *j* to x • $y(S_{ii}) \leq v(S_{ii}), \forall k : y_k \geq x_k \text{ and } y_i > x_i \quad (y(S_{ii}) > x(S_{ii}))$ • we choose $y(S_{ii}) = v(S_{ii})$ • we need (S_{ii}, z) s.t. ► $z(S_{ii}) \leq v(S_{ii})$, $\forall k \in Q : z_k > x_k$ $\forall k \in Q \cap P : z_k > v_k$ 1. $X_i = V(j)$ • choose $S_{ii} = \{j\}$ and $y_i = v(j)$

The kernel is a subset of the bargaining set

Proof:
$$x \in \mathcal{K}(v) \implies x \in \mathcal{BS}(v)$$

a (S_{ij}, y) ... objection of *i* against *j* to *x*
b $y(S_{ij}) \leq v(S_{ij}), \forall k : y_k \geq x_k \text{ and } y_i > x_i \quad (y(S_{ij}) > x(S_{ij}))$
b we choose $y(S_{ij}) = v(S_{ij})$
a we need (S_{ji}, z) s.t.
b $z(S_{ji}) \leq v(S_{ji}),$
a $\forall k \in Q : z_k \geq x_k$
b $\forall k \in Q \cap P : z_k \geq y_k$
2. $x_i > v(j)$

The kernel is a subset of the bargaining set

$$\begin{array}{l} \text{Proof: } x \in \mathcal{K}(v) \implies x \in \mathcal{BS}(v) \\ \blacksquare \ (S_{ij}, y) \text{ ... objection of } i \text{ against } j \text{ to } x \\ & \blacktriangleright \ y(S_{ij}) \leq v(S_{ij}), \forall k : \ y_k \geq x_k \text{ and } y_i > x_i \quad (y(S_{ij}) > x(S_{ij})) \\ & \blacktriangleright \ \text{we choose } y(S_{ij}) = v(S_{ij}) \\ \blacksquare \ \text{we need } (S_{ji}, z) \text{ s.t.} \\ & \blacktriangleright \ z(S_{ji}) \leq v(S_{ji}), \\ & \blacksquare \ \forall k \in Q : \ z_k \geq x_k \\ & \blacksquare \ \forall k \in Q \cap P : \ z_k \geq y_k \\ \hline \\ \textbf{2. } x_j > v(j) \\ & \vdash \ \text{choose } S_{ji}^* \subseteq N \text{ s.t.} \\ & \vdash \ v(S_{ji}^*) - x(S_{ji}^*) = s_{ji}(x) \end{array}$$

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\mathcal{K}(v) \subseteq \mathcal{BS}(v)$.

Proof: $\mathbf{x} \in \mathcal{K}(\mathbf{v}) \implies \mathbf{x} \in \mathcal{BS}(\mathbf{v})$ (S_{ii}, y) ... objection of *i* against *j* to *x* • $y(S_{ii}) \leq v(S_{ii}), \forall k : y_k \geq x_k \text{ and } y_i > x_i \quad (y(S_{ii}) > x(S_{ii}))$ • we choose $y(S_{ii}) = v(S_{ii})$ • we need (S_{ii}, z) s.t. ► $z(S_{ii}) \leq v(S_{ii})$, $\forall k \in Q : z_k > x_k$ $\forall k \in Q \cap P : z_k > v_k$ 2. $x_i > v(j)$ • choose $S_{ii}^* \subseteq N$ s.t. ► $v(S_{ii}^*) - x(S_{ii}^*) = s_{ii}(x) \ge s_{ii}(x)$

The kernel is a subset of the bargaining set

$$\begin{array}{l} \text{Proof: } x \in \mathcal{K}(v) \implies x \in \mathcal{BS}(v) \\ \blacksquare \ (S_{ij}, y) \ ... \ objection \ of \ i \ against \ j \ to \ x \\ & \blacktriangleright \ y(S_{ij}) \leq v(S_{ij}), \ \forall k : \ y_k \geq x_k \ \text{and} \ y_i > x_i \ (y(S_{ij}) > x(S_{ij})) \\ & \blacktriangleright \ we \ choose \ y(S_{ij}) = v(S_{ij}) \\ \blacksquare \ we \ need \ (S_{ji}, z) \ s.t. \\ & \blacktriangleright \ z(S_{ji}) \leq v(S_{ji}), \\ & \blacksquare \ \forall k \in Q : \ z_k \geq x_k \\ & \blacksquare \ \forall k \in Q \cap P : \ z_k \geq y_k \\ \hline 2. \ x_j > v(j) \\ & \vdash \ choose \ S_{ji}^* \subseteq N \ s.t. \\ & \flat \ v(S_{ji}^*) - x(S_{ji}^*) = s_{ji}(x) \geq s_{ij}(x) \geq v(S_{ij}) - x(S_{ij}) \end{array}$$

The kernel is a subset of the bargaining set

$$\begin{array}{l} \text{Proof: } x \in \mathcal{K}(v) \implies x \in \mathcal{BS}(v) \\ \blacksquare \ (S_{ij}, y) \ ... \ objection \ of \ i \ against \ j \ to \ x \\ \blacktriangleright \ y(S_{ij}) \leq v(S_{ij}), \ \forall k : \ y_k \geq x_k \ \text{and} \ y_i > x_i \ (y(S_{ij}) > x(S_{ij})) \\ \vdash \ we \ choose \ y(S_{ij}) = v(S_{ij}) \\ \blacksquare \ we \ need \ (S_{ji}, z) \ s.t. \\ \vdash \ z(S_{ji}) \leq v(S_{ji}), \\ \blacksquare \ \forall k \in Q : \ z_k \geq x_k \\ \blacksquare \ \forall k \in Q \cap P : \ z_k \geq y_k \\ \hline \ 2. \ x_j > v(j) \\ \vdash \ choose \ S_{ji}^* \subseteq N \ s.t. \\ \vdash \ v(S_{ji}^*) - x(S_{ji}^*) = s_{ji}(x) \geq s_{ij}(x) \geq v(S_{ij}) - x(S_{ij}) = y(S_{ij}) - x(S_{ij}) \end{array}$$

The kernel is a subset of the bargaining set

Proof:
$$x \in \mathcal{K}(v) \implies x \in \mathcal{BS}(v)$$

a (S_{ij}, y) ... objection of *i* against *j* to x
b $y(S_{ij}) \leq v(S_{ij}), \forall k : y_k \geq x_k \text{ and } y_i > x_i \quad (y(S_{ij}) > x(S_{ij}))$
b we need (S_{ji}, z) s.t.
b $z(S_{ji}) \leq v(S_{ji}),$
c $\forall k \in Q : z_k \geq x_k, \forall k \in Q \cap P : z_k \geq y_k$
2. $x_j > v(j)$
b $v(S_{ji}^*) - x(S_{ji}^*) \geq y(S_{ij}) - x(S_{ij})$

The kernel is a subset of the bargaining set

Proof:
$$x \in \mathcal{K}(v) \implies x \in \mathcal{BS}(v)$$

$$= (S_{ij}, y) ... objection of i against j to x

$$> y(S_{ij}) \leq v(S_{ij}), \forall k : y_k \geq x_k \text{ and } y_i > x_i \quad (y(S_{ij}) > x(S_{ij}))$$

$$= we need (S_{ji}, z) \text{ s.t.}$$

$$> z(S_{ji}) \leq v(S_{ji}),$$

$$= \forall k \in Q : z_k \geq x_k, \forall k \in Q \cap P : z_k \geq y_k$$

$$2. x_j > v(j)$$

$$> v(S_{ji}^*) - x(S_{ji}^*) \geq y(S_{ij}) - x(S_{ij})$$

$$> v(S_{ji}^*) \geq y(S_{ij}) + x(S_{ji}^*) - x(S_{ij})$$$$

The kernel is a subset of the bargaining set

Proof:
$$x \in \mathcal{K}(v) \implies x \in \mathcal{BS}(v)$$

$$= (S_{ij}, y) \dots \text{ objection of } i \text{ against } j \text{ to } x$$

$$> y(S_{ij}) \leq v(S_{ij}), \forall k : y_k \geq x_k \text{ and } y_i > x_i \quad (y(S_{ij}) > x(S_{ij}))$$

$$= \text{we need } (S_{ji}, z) \text{ s.t.}$$

$$> z(S_{ji}) \leq v(S_{ji}),$$

$$= \forall k \in Q : z_k \geq x_k, \forall k \in Q \cap P : z_k \geq y_k$$

$$2. \ x_j > v(j)$$

$$> v(S_{ji}^*) - x(S_{ji}^*) \geq y(S_{ij}) - x(S_{ij})$$

$$> v(S_{ji}^*) \geq y(S_{ij}) + x(S_{ji}^*) - x(S_{ij})$$

$$= y(S_{ij} \cap S_{ji}^*) + y(S_{ij} \setminus S_{ji}^*) + x(S_{ji}^* \setminus S_{ij}) - x(S_{ij} \setminus S_{ji}^*)$$

The kernel is a subset of the bargaining set

Proof:
$$x \in \mathcal{K}(v) \implies x \in \mathcal{BS}(v)$$

$$= (S_{ij}, y) ... objection of i against j to x

$$> y(S_{ij}) \le v(S_{ij}), \forall k : y_k \ge x_k \text{ and } y_i > x_i \quad (y(S_{ij}) > x(S_{ij}))$$

$$= we need (S_{ji}, z) \text{ s.t.}$$

$$> z(S_{ji}) \le v(S_{ji}),$$

$$= \forall k \in Q : z_k \ge x_k, \forall k \in Q \cap P : z_k \ge y_k$$

$$2. x_j > v(j)$$

$$> v(S_{ji}^*) - x(S_{ji}^*) \ge y(S_{ij}) - x(S_{ij})$$

$$> v(S_{ji}^*) \ge y(S_{ij}) + x(S_{ji}^*) - x(S_{ij})$$

$$> v(S_{ji}^*) \ge y(S_{ij}) + x(S_{ji}^*) - x(S_{ij})$$

$$> y(S_{ij} \cap S_{ji}^*) + y(S_{ij} \setminus S_{ji}^*) + x(S_{ji}^* \setminus S_{ij}) - x(S_{ij} \setminus S_{ji}^*)$$

$$> y(S_{ij} \cap S_{ji}^*) + x(S_{ji}^* \setminus S_{ij})$$

$$= y(S_{ij} \cap S_{ji}^*) + x(S_{ji}^* \setminus S_{ij})$$

$$= y(S_{ij} \cap S_{ji}^*) + x(S_{ji}^* \setminus S_{ij})$$$$

The kernel is a subset of the bargaining set

Proof:
$$x \in \mathcal{K}(v) \implies x \in \mathcal{BS}(v)$$

a (S_{ij}, y) ... objection of *i* against *j* to *x*
b we need (S_{ji}, z) s.t.
b $z(S_{ji}) \leq v(S_{ji}),$
a $\forall k \in Q : z_k \geq x_k,$
b $\forall k \in Q \cap P : z_k \geq y_k$
2. $x_j > v(j)$
b $v(S_{ii}^*) > y(S_{ii}^* \cap S_{ij}) + x(S_{ii}^* \setminus S_{ij})$

The kernel is a subset of the bargaining set

Proof:
$$x \in \mathcal{K}(v) \implies x \in \mathcal{BS}(v)$$

$$= (S_{ij}, y) ... objection of i against j to x
= we need (S_{ji}, z) s.t.

$$> z(S_{ji}) \leq v(S_{ji}),$$

$$= \forall k \in Q : z_k \geq x_k,$$

$$= \forall k \in Q \cap P : z_k \geq y_k$$

2. $x_j > v(j)$

$$> v(S_{ji}^*) > y(S_{ji}^* \cap S_{ij}) + x(S_{ji}^* \setminus S_{ij}) = z(S_{ji}^*)$$

$$> z_k := \begin{cases} x_k & \text{if } k \in S_{ji}^* \setminus S_{ij}, \\ y_k & \text{if } k \in S_{ji}^* \cap S_{ij} \end{cases}$$$$

The kernel is a subset of the bargaining set

Proof:
$$x \in \mathcal{K}(v) \implies x \in \mathcal{BS}(v)$$

$$= (S_{ij}, y) ... objection of i against j to x
= we need (S_{ji}, z) s.t.

$$> z(S_{ji}) \leq v(S_{ji}),$$

$$= \forall k \in Q : z_k \geq x_k,$$

$$= \forall k \in Q \cap P : z_k \geq y_k$$

2. $x_j > v(j)$

$$> v(S_{ji}^*) > y(S_{ji}^* \cap S_{ij}) + x(S_{ji}^* \setminus S_{ij}) = z(S_{ji}^*)$$

$$> z_k := \begin{cases} x_k & \text{if } k \in S_{ji}^* \setminus S_{ij}, \\ y_k & \text{if } k \in S_{ji}^* \cap S_{ij} \end{cases}$$$$

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\eta(v) \subseteq \mathcal{K}(v)$.

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\eta(v) \subseteq \mathcal{K}(v)$.

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\eta(v) \subseteq \mathcal{K}(v)$.

$$\blacksquare \exists i, j \in N: s_{ji}(x) > s_{ij}(x) \text{ and } x_i > v(i)$$

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\eta(v) \subseteq \mathcal{K}(v)$.

■
$$\exists i, j \in N$$
: $s_{ji}(x) > s_{ij}(x)$ and $x_i > v(i)$
■ $y_k = \begin{cases} x_k & k \neq i, k \neq j, \\ x_k - \varepsilon & k = i, \\ x_k + \varepsilon & k = j. \end{cases}$
► y ... reflects transfer of $\varepsilon > 0$ from i to j

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\eta(v) \subseteq \mathcal{K}(v)$.

■
$$\exists i, j \in \mathbb{N}$$
: $s_{ji}(x) > s_{ij}(x)$ and $x_i > v(i)$
■ $y_k = \begin{cases} x_k & k \neq i, k \neq j, \\ x_k - \varepsilon & k = i, \\ x_k + \varepsilon & k = j. \end{cases}$
▶ y ... reflects transfer of $\varepsilon > 0$ from i to j
▶ choose ε :
1. $x_i - \varepsilon = y_i > v(i)$
2. $s_{ji}(y) > s_{ij}(y)$

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\eta(v) \subseteq \mathcal{K}(v)$.

■
$$\exists i, j \in \mathbb{N}$$
: $s_{ji}(x) > s_{ij}(x)$ and $x_i > v(i)$
■ $y_k = \begin{cases} x_k & k \neq i, k \neq j, \\ x_k - \varepsilon & k = i, \\ x_k + \varepsilon & k = j. \end{cases}$
▶ y_{\dots} reflects transfer of $\varepsilon > 0$ from i to j
▶ choose ε :
1. $x_i - \varepsilon = y_i > v(i)$
2. $s_{ji}(y) > s_{ij}(y)$
■ Goal: Show $\theta(y) \prec_{lex} \theta(x)$
▶ $\implies x \notin \eta(v)$

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\eta(v) \subseteq \mathcal{K}(v)$.

Proof: $x \notin \mathcal{K}(v) \implies x \notin \eta(v)$

- $\blacksquare \exists i, j \in N: s_{ji}(x) > s_{ij}(x) \text{ and } x_i > v(i)$
- *y* ... reflects transfer of $\varepsilon > 0$ from *i* to *j*

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\eta(v) \subseteq \mathcal{K}(v)$.

Proof: $x \notin \mathcal{K}(v) \implies x \notin \eta(v)$

- $\blacksquare \exists i, j \in N: s_{ji}(x) > s_{ij}(x) \text{ and } x_i > v(i)$
- **u** *y* ... reflects transfer of $\varepsilon > 0$ from *i* to *j*
- $\blacksquare \ \theta(\mathbf{X}) = (\bullet, \circ, \bullet, \bullet, \circ | \bullet, \bullet, \bullet | \dots | \bullet, \circ, \bullet)$

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\eta(v) \subseteq \mathcal{K}(v)$.

Proof: $x \notin \mathcal{K}(\mathbf{v}) \implies x \notin \eta(\mathbf{v})$

- $\blacksquare \exists i, j \in N: s_{ji}(x) > s_{ij}(x) \text{ and } x_i > v(i)$
- *y* ... reflects transfer of $\varepsilon > 0$ from *i* to *j*

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\eta(v) \subseteq \mathcal{K}(v)$.

Proof: $x \notin \mathcal{K}(\mathbf{v}) \implies x \notin \eta(\mathbf{v})$

- $\blacksquare \exists i, j \in N: s_{ji}(x) > s_{ij}(x) \text{ and } x_i > v(i)$
- *y* ... reflects transfer of $\varepsilon > 0$ from *i* to *j*

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\eta(v) \subseteq \mathcal{K}(v)$.

Proof: $x \notin \mathcal{K}(\mathbf{v}) \implies x \notin \eta(\mathbf{v})$

- $\blacksquare \exists i, j \in N: s_{ji}(x) > s_{ij}(x) \text{ and } x_i > v(i)$
- *y* ... reflects transfer of $\varepsilon > 0$ from *i* to *j*
- $\blacksquare \ \theta(\mathbf{X}) = (\bullet, \circ, \bullet, \bullet, \circ | \bullet, \bullet, \bullet | \dots | \bullet, \circ, \bullet)$

$$\bullet \dots e(S_{ij}, x)$$
$$\bullet \dots e(S_{ii}, x)$$

• ...
$$e(S,x)$$
, $i,j \in S$ or $i,j \notin S$

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\eta(v) \subseteq \mathcal{K}(v)$.

Proof: $x \notin \mathcal{K}(v) \implies x \notin \eta(v)$

- $\blacksquare \exists i, j \in N: s_{ji}(x) > s_{ij}(x) \text{ and } x_i > v(i)$
- **u** *y* ... reflects transfer of $\varepsilon > 0$ from *i* to *j*
- $\blacksquare \ \theta(\mathbf{X}) = (\bullet, \circ, \bullet, \bullet, \circ | \bullet, \bullet, \bullet | \dots | \bullet, \circ, \bullet)$

• ...
$$e(S_{ij}, x)$$

• ...
$$e(S_{ji}, x)$$

- • ... $e(S, x), i, j \in S \text{ or } i, j \notin S$
- I ... divides entries with different values

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\eta(v) \subseteq \mathcal{K}(v)$.

Proof: $\mathbf{x} \notin \mathcal{K}(\mathbf{v}) \implies \mathbf{x} \notin \eta(\mathbf{v})$

- $\blacksquare \exists i, j \in N: s_{ji}(x) > s_{ij}(x) \text{ and } x_i > v(i)$
- **y** ... reflects transfer of $\varepsilon > 0$ from *i* to *j*
- $\blacksquare \ \theta(\mathbf{X}) = (\bullet, \circ, \bullet, \bullet, \circ | \bullet, \bullet, \bullet | \dots | \bullet, \circ, \bullet)$

• ...
$$e(S_{ij}, x)$$

• • ...
$$e(S, x), i, j \in S \text{ or } i, j \notin S$$

I ... divides entries with different values

$$\bullet \circ | \bullet, \bullet \dots e(S, x) > e(S_{jj}, x) = e(S_{ij}, x)$$

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\eta(v) \subseteq \mathcal{K}(v)$.

Proof: $x \notin \mathcal{K}(v) \implies x \notin \eta(v)$

- $\blacksquare \exists i, j \in N: s_{ji}(x) > s_{ij}(x) \text{ and } x_i > v(i)$
- *y* ... reflects transfer of $\varepsilon > 0$ from *i* to *j*
- $\blacksquare \ \theta(\mathbf{x}) = (\bullet, \circ, \bullet, \bullet, \circ | \bullet, \bullet, \bullet | \dots | \bullet, \circ, \bullet)$

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\eta(v) \subseteq \mathcal{K}(v)$.

Proof: $x \notin \mathcal{K}(v) \implies x \notin \eta(v)$

- $\blacksquare \exists i, j \in N: s_{ji}(x) > s_{ij}(x) \text{ and } x_i > v(i)$
- *y* ... reflects transfer of $\varepsilon > 0$ from *i* to *j*

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\eta(v) \subseteq \mathcal{K}(v)$.

Proof: $\mathbf{x} \notin \mathcal{K}(\mathbf{v}) \implies \mathbf{x} \notin \eta(\mathbf{v})$

- $\blacksquare \exists i, j \in N: s_{ji}(x) > s_{ij}(x) \text{ and } x_i > v(i)$
- *y* ... reflects transfer of $\varepsilon > 0$ from *i* to *j*
- - $\blacktriangleright e(S_{ij}, y) = v(S) x(S) + \varepsilon > e(S_{ij}, x)$

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\eta(v) \subseteq \mathcal{K}(v)$.

Proof: $x \notin \mathcal{K}(v) \implies x \notin \eta(v)$ $\blacksquare \exists i, j \in \mathbb{N}: s_{ji}(x) > s_{ij}(x) \text{ and } x_i > v(i)$ $\blacksquare y \dots \text{ reflects transfer of } \varepsilon > 0 \text{ from } i \text{ to } j$ $\blacksquare \theta(x) = (\bullet, \circ, \bullet, \bullet, \circ | \bullet, \bullet, \bullet | \dots | \bullet, \circ, \bullet)$ $\blacksquare \theta(y) = ?$ $\blacktriangleright e(S_{ij}, y) = v(S) - x(S) + \varepsilon > e(S_{ij}, x)$ $\blacktriangleright e(S_{ii}, y) = v(S) - x(S) - \varepsilon < e(S_{ij}, x)$

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\eta(v) \subseteq \mathcal{K}(v)$.

Proof: $x \notin \mathcal{K}(v) \implies x \notin \eta(v)$ $\blacksquare \exists i, j \in \mathbb{N}: s_{ji}(x) > s_{ij}(x) \text{ and } x_i > v(i)$ $\blacksquare y \dots \text{ reflects transfer of } \varepsilon > 0 \text{ from } i \text{ to } j$ $\blacksquare \theta(x) = (\bullet, \circ, \bullet, \bullet, \circ | \bullet, \bullet, \bullet | \dots | \bullet, \circ, \bullet)$ $\blacksquare \theta(y) = ?$ $\blacktriangleright e(S_{ij}, y) = v(S) - x(S) + \varepsilon > e(S_{ij}, x)$ $\blacktriangleright e(S_{ii}, y) = v(S) - x(S) - \varepsilon < e(S_{ij}, x)$

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\eta(v) \subseteq \mathcal{K}(v)$.

Proof: $x \notin \mathcal{K}(v) \implies x \notin \eta(v)$ $\exists i, j \in N: s_{ji}(x) > s_{ij}(x) \text{ and } x_i > v(i)$ $y \dots \text{ reflects transfer of } \varepsilon > 0 \text{ from } i \text{ to } j$ $\theta(x) = (\bullet, \circ, \bullet, \bullet, \circ | \bullet, \bullet, \bullet | \dots | \bullet, \circ, \bullet)$ $\theta(y) = ?$ $\flat e(S_{ij}, y) = v(S) - x(S) + \varepsilon > e(S_{ij}, x)$ $\flat e(S_{ji}, y) = v(S) - x(S) - \varepsilon < e(S_{ij}, x)$ $\flat \theta(x) = (\bullet, \bullet, \circ, \circ, \bullet | \bullet, \bullet, \bullet | \dots | \bullet, \circ, \bullet)$ $\flat \text{ rearranging inside } \dots | \text{ does not changes anything}$

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\eta(v) \subseteq \mathcal{K}(v)$.

Proof: $x \notin \mathcal{K}(v) \implies x \notin \eta(v)$ $\exists i, j \in N: s_{ji}(x) > s_{ij}(x) \text{ and } x_i > v(i)$ $y \dots \text{ reflects transfer of } \varepsilon > 0 \text{ from } i \text{ to } j$ $\theta(x) = (\bullet, \circ, \bullet, \bullet, \circ | \bullet, \bullet, \bullet | \dots | \bullet, \circ, \bullet)$ $\theta(y) = ?$ $\flat e(S_{ij}, y) = v(S) - x(S) + \varepsilon > e(S_{ij}, x)$ $\flat e(S_{ji}, y) = v(S) - x(S) - \varepsilon < e(S_{ij}, x)$ $\flat \theta(x) = (\bullet, \bullet, \circ, \circ, \bullet | \bullet, \bullet, \bullet | \dots | \bullet, \circ, \bullet)$ $\flat \text{ rearranging inside } \dots | \text{ does not changes anything}$

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\eta(v) \subseteq \mathcal{K}(v)$.

Proof: $\mathbf{x} \notin \mathcal{K}(\mathbf{v}) \implies \mathbf{x} \notin \eta(\mathbf{v})$ $\blacksquare \exists i, j \in N: s_{ii}(x) > s_{ii}(x) \text{ and } x_i > v(i)$ \blacksquare y ... reflects transfer of $\varepsilon > 0$ from *i* to *j* $\blacksquare \ \theta(\mathbf{X}) = (\bullet, \circ, \bullet, \bullet, \circ | \bullet, \bullet, \bullet | \dots | \bullet, \circ, \bullet)$ $\blacksquare \theta(\mathbf{v}) = ?$ • $e(S_{ii}, y) = v(S) - x(S) + \varepsilon > e(S_{ii}, x)$ • $e(S_{ii}, y) = v(S) - x(S) - \varepsilon < e(S_{ii}, x)$ $\blacksquare \ \theta(\mathbf{X}) = (\bullet, \bullet, \circ, \circ, \bullet | \bullet, \bullet, \bullet | \dots | \bullet, \circ, \bullet)$ rearranging inside ... does not changes anything $\blacksquare \ \theta(\mathbf{X}) = (\circ, \circ, \circ, \circ, \bullet | \bullet, \bullet, \bullet | \dots | \bullet, \circ, \bullet)$ $\blacktriangleright \quad s_{ji}(x) > s_{ij}(x) \iff \max_{S_{ii} \subset N} e(S_{ji}, x) > \max_{S_{ii} \subset N} e(S_{ij}, x)$

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\eta(v) \subseteq \mathcal{K}(v)$.

Proof: $x \notin \mathcal{K}(v) \implies x \notin \eta(v)$

- $\blacksquare \exists i, j \in N: s_{ji}(x) > s_{ij}(x) \text{ and } x_i > v(i)$
- **y** ... reflects transfer of $\varepsilon > 0$ from *i* to *j*

$$\blacksquare \ \theta(\mathbf{X}) = (\circ, \circ, \circ, \circ, \bullet | \bullet, \bullet, \bullet | \dots | \bullet, \circ, \bullet)$$

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\eta(v) \subseteq \mathcal{K}(v)$.

Proof: $x \notin \mathcal{K}(v) \implies x \notin \eta(v)$ $\exists i, j \in N: s_{ji}(x) > s_{ij}(x) \text{ and } x_i > v(i)$ $\exists y \dots \text{ reflects transfer of } \varepsilon > 0 \text{ from } i \text{ to } j$ $\exists \theta(x) = (\circ, \circ, \circ, \circ, \circ | \bullet, \bullet, \bullet | \dots | \bullet, \circ, \bullet)$ $(\circ, \circ, \circ, \circ, \circ | \bullet, \bullet, \bullet | \dots | \bullet, \circ, \bullet)$ $(\circ, \circ, \circ, \circ, \circ | \bullet, \bullet, \bullet | \dots | \bullet, \circ, \bullet)$ $= \theta(y) = (\circ, \circ, \circ, \circ, \circ | \bullet, \bullet, \bullet | \dots | \bullet, \circ, \bullet)$

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\eta(v) \subseteq \mathcal{K}(v)$.

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\eta(v) \subseteq \mathcal{K}(v)$.

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\eta(v) \subseteq \mathcal{K}(v)$.

Proof: $\mathbf{x} \notin \mathcal{K}(\mathbf{v}) \implies \mathbf{x} \notin \eta(\mathbf{v})$ $\blacksquare \exists i, j \in N: s_{ii}(x) > s_{ii}(x) \text{ and } x_i > v(i)$ \blacksquare y ... reflects transfer of $\varepsilon > 0$ from *i* to *j* $\blacksquare \ \theta(\mathbf{X}) = (\circ, \circ, \circ, \circ, \bullet | \bullet, \bullet, \bullet | \dots | \bullet, \circ, \bullet)$ $\blacksquare \theta(\mathbf{y}) =$ • key: we set ε : $s_{ii}(y) > s_{ii}(y) \iff \max e(S_{ii}, y) > \max e(S_{ii}, y)$ \blacktriangleright \Rightarrow the order of first \bullet , \bullet does not change $\blacksquare \ \theta(\mathbf{X}) = (\circ, \circ, \circ, \circ, \bullet | \bullet, \ldots)$ $\blacksquare \ \theta(\mathbf{y}) = (\circ, \circ, \circ, \circ, \bullet | \bullet | \bullet, \dots)$

The kernel is a subset of the bargaining set

For a cooperative game (N, v), it holds $\eta(v) \subseteq \mathcal{K}(v)$.

Proof: $\mathbf{x} \notin \mathcal{K}(\mathbf{v}) \implies \mathbf{x} \notin \eta(\mathbf{v})$ $\blacksquare \exists i, j \in N: s_{ii}(x) > s_{ii}(x) \text{ and } x_i > v(i)$ \blacksquare y ... reflects transfer of $\varepsilon > 0$ from *i* to *j* $\blacksquare \ \theta(\mathbf{X}) = (\circ, \circ, \circ, \circ, \bullet | \bullet, \bullet, \bullet | \dots | \bullet, \circ, \bullet)$ $\blacksquare \theta(\mathbf{y}) =$ • key: we set ε : $s_{ii}(y) > s_{ii}(y) \iff \max e(S_{ii}, y) > \max e(S_{ii}, y)$ \blacktriangleright \Rightarrow the order of first \bullet , \bullet does not change $\blacksquare \ \theta(\mathbf{X}) = (\circ, \circ, \circ, \circ, \bullet | \bullet, \dots)$ $\blacksquare \ \theta(\mathbf{y}) = (\circ, \circ, \circ, \circ, \bullet | \bullet | \bullet, \dots)$ $\blacksquare \ \theta(\mathbf{y}) \prec_{lex} \theta(\mathbf{x}) \implies \mathbf{x} \notin \eta(\mathbf{v})$

Non-emptyness of $\mathcal{K}(\mathbf{v})$ and $\mathcal{BS}(\mathbf{v})$

Relation of solution concepts

For a cooperative game (N, v), it holds

$$\eta(\mathbf{v}) \subseteq \mathcal{C}(\mathbf{v}) \subseteq \mathcal{K}(\mathbf{v}) \subseteq \mathcal{BS}(\mathbf{v}).$$

Non-emptyness of $\mathcal{K}(\mathbf{v})$ and $\mathcal{BS}(\mathbf{v})$

Relation of solution concepts

For a cooperative game (N, v), it holds

$$\eta(\mathbf{v}) \subseteq \mathcal{C}(\mathbf{v}) \subseteq \mathcal{K}(\mathbf{v}) \subseteq \mathcal{BS}(\mathbf{v}).$$

Following theorem is immediate.

Non-emptyness of $\mathcal{K}(\mathbf{v})$ and $\mathcal{BS}(\mathbf{v})$

Relation of solution concepts

For a cooperative game (N, v), it holds

$$\eta(\mathbf{v}) \subseteq \mathcal{C}(\mathbf{v}) \subseteq \mathcal{K}(\mathbf{v}) \subseteq \mathcal{BS}(\mathbf{v}).$$

Following theorem is immediate.

Non-emptyness of $\mathcal{K}(\mathbf{v})$ and $\mathcal{BS}(\mathbf{v})$

For a cooperative game (N, v), if it holds $\mathcal{I}(v) \neq \emptyset$, then we have $\mathcal{K}(v) \neq \emptyset$ and $\mathcal{BS}(v) \neq \emptyset$.

Idea: Objections made by coalitions instead of players.

Idea: Objections made by coalitions instead of players.

• Our excess for coalition P is too large at x, payoff y reduces it.

Idea: Objections made by coalitions instead of players.

• Our excess for coalition P is too large at x, payoff y reduces it.

Objection

A pair (P, y), in which $P \subseteq N$ and $y \in \mathcal{I}(v)$ is an objection to x if e(P, x) > e(P, y).

Idea: Objections made by coalitions instead of players.

• Our excess for coalition P is too large at x, payoff y reduces it.

Objection

A pair (P, y), in which $P \subseteq N$ and $y \in \mathcal{I}(v)$ is an objection to x if e(P, x) > e(P, y).

Our excess under y is larger than it was under x for coalition Q! Furthermore, our excess at y is larger than what your excess was at x!

Idea: Objections made by coalitions instead of players.

• Our excess for coalition P is too large at x, payoff y reduces it.

Objection

A pair (P, y), in which $P \subseteq N$ and $y \in \mathcal{I}(v)$ is an objection to x if e(P, x) > e(P, y).

Our excess under y is larger than it was under x for coalition Q! Furthermore, our excess at y is larger than what your excess was at x!

Counter-objection

Objection

A pair (P, y), in which $P \subseteq N$ and $y \in \mathcal{I}(v)$ is an objection to x if e(P, x) > e(P, y).

Counter-objection

A coalition (Q, y) is a counter-objection to the objection (P, y)when e(Q, y) > e(Q, x) and e(Q, y) > e(P, x).

• $x \in \eta(v)$ is not stable

19

Objection

A pair (P, y), in which $P \subseteq N$ and $y \in \mathcal{I}(v)$ is an objection to x if e(P, x) > e(P, y).

Counter-objection

- $x \in \eta(v)$ is not stable
 - there is y: e(P, x) > e(P, y)

Objection

A pair (P, y), in which $P \subseteq N$ and $y \in \mathcal{I}(v)$ is an objection to x if e(P, x) > e(P, y).

Counter-objection

- $x \in \eta(v)$ is not stable
 - there is y: e(P, x) > e(P, y)
 - and for every $S \subseteq N$: $e(Q, y) \leq e(Q, x)$ or $e(Q, y) \leq e(P, x)$

Objection

A pair (P, y), in which $P \subseteq N$ and $y \in \mathcal{I}(v)$ is an objection to x if e(P, x) > e(P, y).

Counter-objection

- $x \in \eta(v)$ is not stable
 - there is y: e(P, x) > e(P, y)
 - and for every $S \subseteq N$: $e(Q, y) \leq e(Q, x)$ or $e(Q, y) \leq e(P, x)$
 - $\blacktriangleright \implies \theta(\mathbf{y}) \preceq_{lex} \theta(\mathbf{x}) \implies \mathbf{x} \notin \eta(\mathbf{v})$

Objection

A pair (P, y), in which $P \subseteq N$ and $y \in \mathcal{I}(v)$ is an objection to x if e(P, x) > e(P, y).

Counter-objection

A coalition (Q, y) is a counter-objection to the objection (P, y)when e(Q, y) > e(Q, x) and e(Q, y) > e(P, x).

21

Objection

A pair (P, y), in which $P \subseteq N$ and $y \in \mathcal{I}(v)$ is an objection to x if e(P, x) > e(P, y).

Counter-objection

A coalition (Q, y) is a counter-objection to the objection (P, y)when e(Q, y) > e(Q, x) and e(Q, y) > e(P, x).

Nucleolus

For a cooperative game (N, v), the nucleolus $\eta(v)$ is defined as

$$\eta(\mathbf{v}) = \{ \mathbf{x} \in \mathcal{I}(\mathbf{v}) \mid \mathbf{x} \text{ is stable.} \}.$$

20

The bargaining set and the kernel

The bargaining set and the kernel are solution concepts, which relax the notion of **core stability**. The stability for both of these sets is defined through a bargaining process consisting of objections and counter-objections to payoff vectors. If each objection is covered by a counter-objection, the payoff vector is proclaimed **stable**. Both sets are generalisations of the nucleolus and when the core is non-empty, all the mentioned solution concepts together with the core form a hierarchy of stable solutions.