COOPERATIVE GAME THEORY

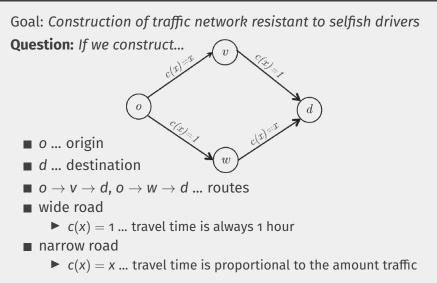
Martin Černý

KAM.MFF.CUNI.CZ/~CERNY CERNY@KAM.MFF.CUNI.CZ

APRIL 18, 2023

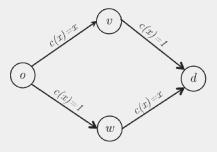
SELFISH ROUTING AND POA

MOTIVATION



...what amount of traffic to expect on each route?

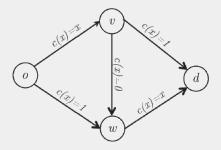
Question: What amount of traffic to expect on each route?



- both routes are identical ⇒ traffic splits equally
- Answer: Each driver's travel time is $1 + \frac{1}{2} = \frac{3}{2}$ hours

IF WE WANTED TO IMPROVE...

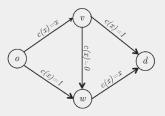
Question: What amount of traffic to expect on each route?



- new route $o \rightarrow v \rightarrow w \rightarrow d$
- it is always better than $o \rightarrow v \rightarrow d$ or $o \rightarrow w \rightarrow d$
- $\blacksquare \implies$ all drivers prefer this route
- each driver drives 1 + 1 = 2 hours!

OPTIMAL TRAVEL TIME

Question: How much worse is this?

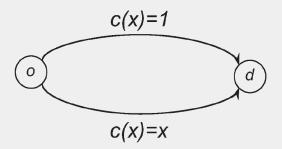


- using $v \rightarrow w$ does not lead to improvement
- \Rightarrow optimal travel time is $\frac{3}{2}$ hours for each driver
- the ratio of anarchy: $2/\frac{3}{2} = \frac{\tilde{4}}{3}$

Price of Anarchy (POA)

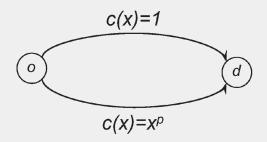
The price of anarchy of the selfish routing network is the ratio between the equilibrium and the minumum possible average travel time.

EVEN SMALLER EXAMPLE: PIGOU



- POA?
- equilibrium time:
 - lower route is always better
- optimal average time:
 - splitting the traffic equally between the routes

PIGOU - NONLINEAR VARIANT



- POA?
- equilibrium time:
 - Iower route is always better
- optimal average time:
 - ▶ with growing *p*, drivers on lower edge arrive instantaneously, if (1ε) where $\varepsilon > 0$ large enough is assigned

Question: When is the POA close to 1?

INFORMAL ANSWER: WHEN THERE ARE NON-LINEAR TRAVEL TIMES

Our model:

- \blacksquare G = (V, E) ... directed graph
 - ► o ... origin
 - d ... destination
- r units of traffic
- $c_e \colon \mathbb{R}_+ \to \mathbb{R}_+$... cost function of edge e
 - monotone and non-decreasing
 - e.g. $c_e(x) = x^p$... travel time of x on edge e is x^p

Tight POA Bounds for Selfish Routing

Among all networks with cost functions in a set C, the largest POA is achieved in a Pigou-like network.

WORST-CASE POA

Tight POA Bounds for Selfish Routing

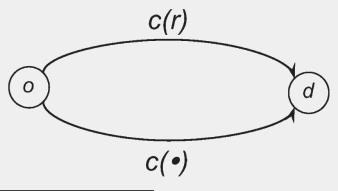
Among all networks with cost functions in a set C, the largest POA is achieved in a Pigou-like network.

- worst-case examples are always simple
 - complexity of the network does not cause high POA
- for specific \mathcal{C} , we can compute worst-case POA

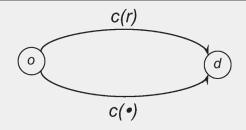
Description	Typical Representative	Price of Anarchy
Linear	ax + b	4/3
Quadratic	$ax^2 + bx + c$	$\frac{3\sqrt{3}}{3\sqrt{3}-2} \approx 1.6$
Cubic	$ax^3 + bx^2 + cx + d$	$\frac{4\sqrt[3]{4}}{4\sqrt[3]{4}-3} \approx 1.9$
Quartic	$ax^4 + bx^3 + cx^2 + dx + e$	$\frac{5\sqrt[4]{5}}{5\sqrt[4]{5}-4} \approx 2.2$
Degree $\leq p$	$\sum_{i=0}^{p} a_i x^i$	$\frac{(p+1)\sqrt[p]{p+1}}{(p+1)\sqrt[p]{p+1}-p} \approx \frac{p}{\ln p}$

PIGOU-LIKE NETWORK

- 1. Two vertices: *o*, *d*
 - ► o ... origin, d ... destination
- 2. Two edges: upper, lower
- 3. A traffic rate $r \ge 0$
- 4. A cost function $c(\bullet)$ on the lower edge
- 5. A cost function c(r) on the upper edge

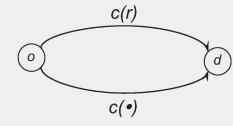


THE POA OF A PIGOU-LIKE NETWORK



- POA?
- equilibrium time:
 - Iower route is always better
- optimal time:
 - min-possible total travel time: $\inf_{r \ge x \ge 0} \{x \cdot c(x) + (r x)c(r)\}$
 - ► c(•) is non-decreasing

THE POA OF A PIGOU-LIKE NETWORK



POA:
$$\sup_{x \ge 0} \left\{ \frac{r \cdot c(r)}{x \cdot c(x) + (r - x) \cdot c(r)} \right\}$$

• $\mathcal{P}(c, r)$... Pigou-like network

Pigou bound:
$$\alpha(\mathcal{C}) = \sup_{c \in \mathcal{C}} \sup_{r \ge o} \sup_{x \ge o} \left\{ \frac{r \cdot c(r)}{x \cdot c(x) + (r-x) \cdot c(r)} \right\}$$

lacksquare the lower bound on POA of networks with $c\in \mathcal{C}$

Pigou bound:
$$\alpha(\mathcal{C}) = \sup_{c \in \mathcal{C}} \sup_{r \ge 0} \sup_{x \ge 0} \left\{ \frac{r \cdot c(r)}{x \cdot c(x) + (r - x) \cdot c(r)} \right\}$$

Tight POA bounds for selfish routing

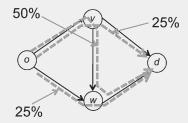
For every set C of cost functions and every selfish routing network with cost functions in C, the POA is at most $\alpha(C)$.

Proof:

- \blacksquare G = (V, E) ... selfish routing network
 - ▶ o ... origin, d ... destination
- r ... amount of traffic
- **\square** \mathcal{P} ... set of *o*-*d* paths
- $\{f_P\}_{P\in\mathcal{P}}$... flow
 - ► *f*_P ... flow on path P

•
$$\sum_{P\in\mathcal{P}}f_P=r$$

• $\overline{f_e} = \sum_{P \in \mathcal{P}: e \in P} f_P$...flow on edge e

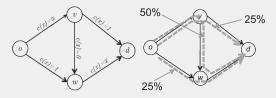


■ 1 amount of traffic
■
$$\mathcal{P} = \{(o, v, d), (o, w, d), (o, v, w, d)\}$$

► $f_{(o,v,d)} = \frac{1}{4}$
► $f_{(o,w,d)} = \frac{1}{2}$
■ $E = \{(o, v), (v, d), (o, w), (w, d), (v, w)\}$
► $f_{(o,v)} = f_{(w,d)} = \frac{3}{4}$
► $f_{(o,w)} = f_{(v,d)} = \frac{1}{4}$
► $f_{(v,w)} = \frac{1}{2}$

Equilibrium flow = "shortest path flow"

A flow f is an equilibrium if $f_{\hat{P}} > 0$ only when



Not an equilibrium flow

• $o \rightarrow v \rightarrow w \rightarrow d$... the only shortest path

■ C(f) ... total travel time in a flow f► $C(f) = \sum_{e \in E} f_e \cdot c_e(f_e) = \sum_{P \in \mathcal{P}} f_P \cdot c_P(f)$

Pigou bound:
$$\alpha(\mathcal{C}) = \sup_{c \in \mathcal{C}} \sup_{r \ge 0} \sup_{x \ge 0} \left\{ \frac{r \cdot c(r)}{x \cdot c(x) + (r - x) \cdot c(r)} \right\}$$

Tight POA bounds for selfish routing

For every set C of cost functions and every selfish routing network with cost functions in C, the POA is at most $\alpha(C)$.

Proof:

- $\blacksquare G = (V, E)$... selfish network, *r* ... traffic rate, $c \in C$
- $\blacksquare f \dots$ equilibrium flow, $f^* \dots$ optimal flow

$$\blacksquare POA = \frac{C(f)}{C(f^*)} = \frac{\sum_{e \in E} f_e \cdot c_e(f_e)}{\sum_{e \in E} f_e^* \cdot c_e(f_e^*)} \ge 1$$

• we investigate the relation between $f_e \cdot c_e(f_e)$ and $f_e^* \cdot c_e(f_e^*)$

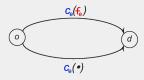
Pigou bound:
$$\alpha(\mathcal{C}) = \sup_{c \in \mathcal{C}} \sup_{r \ge o} \sup_{x \ge o} \left\{ \frac{r \cdot c(r)}{x \cdot c(x) + (r - x) \cdot c(r)} \right\}$$

Tight POA bounds for selfish routing

For every set C of cost functions and every selfish routing network with cost functions in C, the POA is at most $\alpha(C)$.

Proof:

• we investigate the relation between $f_e \cdot c_e(f_e)$ and $f_e^* \cdot c_e(f_e^*)$



■ traffic rate: f_e ■ $\alpha(C) \ge \frac{f_e \cdot c_e(f_e)}{f_e^* \cdot c_e(f_e^*) + (f_e - f_e^*) \cdot c_e(f_e)}$

Tight POA bounds for selfish routing

For every set C of cost functions and every selfish routing network with cost functions in C, the POA is at most $\alpha(C)$.

Proof:

- sum over all $e \in E$
- $\begin{aligned} & \quad \alpha(\mathcal{C})(\sum_{e \in E} f_e^* \cdot c_e(f_e^*) + \sum_{e \in E} (f_e f_e^*) \cdot c_e(f_e) \geq \sum_{e \in E} f_e \cdot c_e(f_e) \\ & \quad \sum_{e \in E} (f_e f_e^*) \cdot c_e(f_e) \leq 0 \dots \text{ we show this later} \\ & \quad \triangleright \ \alpha(\mathcal{C}) \geq 1 \end{aligned}$
- $\ \ \, \alpha(\mathcal{C})\mathbf{C}(f^*) \geq \mathbf{C}(f)$

Tight POA bounds for selfish routing

For every set C of cost functions and every selfish routing network with cost functions in C, the POA is at most $\alpha(C)$.

Proof:

■ why
$$\sum_{e \in E} (f_e - f_e^*) \cdot c_e(f_e) \le 0$$
?
► or $\sum_{e \in E} f_e \cdot c_e(f_e) \le \sum_{e \in E} f_e^* \cdot c_e(f_e)$?

$$\square \sum_{e \in E} f_e c_e(f_e)$$

 $\square \sum_{e \in E} f_e^* c_e(f_e)$

- ▶ fixed capacities c_e(f_e)
- $c_{\hat{P}}(f) = L$ for every \hat{P} from equilibrium flow
- $c_P(f) \ge L$ for every P

$$\blacktriangleright \sum_{P \in \mathcal{P}} f_P = \sum_{P \in \mathcal{P}} f_P^* = r$$

19

18

Selfish routing and POA

The price of anarchy (POA) of a selfish routing network is the ratio between the total travel time in an equilibrium flow and the minimum-possible total travel time. The POA of a selfish routing network is large only if it has *highly nonlinear* cost function.