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The search problem - general version

Input: n objects where one is special
Output: The special object

x

Questions: Is the special object in a subset S?
Answers: Yes/No.

Objective: Minimize number of questions.

Find a treasure quickly!



The search problem - general version

Input: n objects where one is special
Output: The special object

x

Questions: Is the special object in a subset S?
Answers: Yes/No.

Objective: Minimize number of questions.

Find a treasure quickly!



The search problem - general version

Input: n objects where one is special
Output: The special object

x

Questions: Is the special object in a subset S?
Answers: Yes/No.

Objective: Minimize number of questions.

Find a treasure quickly!



The search problem - general version

Input: n objects where one is special
Output: The special object

x

Questions: Is the special object in a subset S?
Answers: Yes/No.

Objective: Minimize number of questions.

Find a treasure quickly!



The search problem - general version

Input: n objects where one is special
Output: The special object

x

Questions: Is the special object in a subset S?
Answers: Yes/No.

Objective: Minimize number of questions.

Find a treasure quickly!



The search problem - general version

Input: n objects where one is special
Output: The special object

x

Questions: Is the special object in a subset S?
Answers: Yes/No.

Objective: Minimize number of questions.

Find a treasure quickly!



The search problem - general version

Input: n objects where one is special
Output: The special object

x

Questions: Is the special object in a subset S?
Answers: Yes/No.
Objective: Minimize number of questions.

Find a treasure quickly!



The search problem - general version

Input: n objects where one is special
Output: The special object

x

Questions: Is the special object in a subset S?
Answers: Yes/No.
Objective: Minimize number of questions.

Find a treasure quickly!



Online and offline versions

Online: Questions and answers alternate.
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Offline: All questions first, then all answers.
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Searching

in trees

Find 4 in an ordered list using binary search.

Input: Tree T , one hidden vertex

41 6 7

Output:

Decision tree D of minimum depth

Theorem (Lam, Yue ’98)

An optimal decision tree D can be computed in a polynomial time.
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Known results

Input: Tree T on n vertices, cost c
Output: Decision tree D with cost(D) = OPT (T , c)

Theorem (Dereniowsky, ’06)

NP-complete if diameter of T is 10
O(log(n))-approximation algorithm

cost(D) = O(log(n)) · OPT (T , c)

Theorem (Cicalese, Jacobs, Laber, Valentin ’12)

NP-complete for diameter of T is 6
NP-complete for max degree of T is 3

O(n2)-time algorithm if T is a path
O(n2n)-time algorithm

O
(

log n
log log log n

)
-approximation algorithm
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Proof warm-up

Lemma
There is a 2-approximation algorithm for subdivided stars.

x
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Find a decision tree for S and for Pi and combine them.
Cost : OPT (T , c) + OPT (T , c)
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Proof sketch (algorithm for trees)

Idea: Find a small separator S , small resulting components, recurse

2
2

3
2

21
4

2
4

Fix t = log(n);

pick t centroids S = {x1 . . .}; (components n/t)
build auxiliary graph Y of size 2t, solve Y in O(t22t)
solve subdivided stars in S , solve neighbors of S , recursion ×k ;
tk = n hence k = log(n)/ log(t)
Cost:

(

OPT (T , c)

+ 2OPT (T , c) + OPT (T , c)) × k
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