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CONJECTURE

CONJECTURE (MYERS 2002)

The number of monotone subsequences of length k is minimized
by a permutation on [n] with k — 1 increasing runs of as equal
lengths as possible.
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THEOREM (BALOGH, Hu, L., PIKHURKO, UDVARI, VOLEC ’14+)
Mpyers’ conjecture is true for k = 4 and n sufficiently large.
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THEOREM (BALOGH, Hu, L., PIKHURKO, UDVARI, VOLEC ’14+)
Mpyers’ conjecture is true for k = 4 and n sufficiently large.

We translate the problem to graphs and use flag algebras.
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over permutation graphs (and extremal permutations described
using Myers’ results).

THEOREM (SPERFELD ’'12; THOMASON ’89)

5 <mn(X+ X)) < 5

over all 2-edge-colored complete graphs.
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Seminal paper:

A. Razborov, Flag Algebras, Journal of Symbolic Logic 72 (2007),
1239-1282.

David P. Robbins Prize by AMS for Razborov in 2013

Applications to oriented graphs, hypergraphs, crossing number of
complete bipartite graphs, geometry, hypercubes,. ..

THEOREM (Harami,HLADKY,KRAL, NORINE,RAZBOROV 2011;
GRZESIK 2011)

The number of Cs's in a triangle-free graph on n vertices is at
most (n/5)°.
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FLAG ALGEBRAS - WHAT ARE FLAGS

Let G be a 2-edge-colored complete graph on n vertices.

The probability that three random vertices in
G span a red triangle.

The probability that three random vertices in
v G span a triangle with one red and two blue
/.

edges.

The probability that a random vertex other
than v is connected to v € V(G) by a red

edge, i.e., the red degree of v divided by n— 1.
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THEOREM (MANTEL 1907)

If a graph G on n vertices has more than %nz edges, then G
contain a triangle.

Assume edges are red and non-edges are blue.

°
Assume v = 0. (We want to conclude 1 <1)
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FLAG ALGEBRAS - IMPROVEMENT

Assume v = 0. (We want to conclude I <
®
1 2

:0§ 7 7§ 7 7§ 7
I + 3 + 3

Idea: find c1, ¢, c3 € R such that

0§C1V—|—C2 ;; +C3v.
Hence
I <cv+ 1—i—c v—i- g—i—c
| = 1 3 2 3 3
I

<n Cc1, = + - C
ax C + e
= 173 273 3

N[ =

and

)

AV



FLAG ALGEBRAS - CANDIDATES FOR ¢, &, C3

Y
o

(25)



FLAG ALGEBRAS - CANDIDATES FOR ¢1, G, &3

o« (IGO0 L)

S
o

(25)



FLAG ALGEBRAS - CANDIDATES FOR ¢1, G, &3

[l

9]
<v
(4

_|._

o
(w4

+
N| =

(9}
-<}
(o4

+
N| =

O
<
(w4




FLAG ALGEBRAS - CA

[l
9]
<>
(4
_|._
o




FLAG ALGEBRAS - CA

R €1, €, C3

11

v

\, < -\ v
/

\, LN v

a

o
A\
N
o9
-\D @
4 -
o—Q
[~
~_—




FLAG ALGEBRAS - CANDIDATES FOR ¢1, G, &3

Y
o

(25)



FLAG ALGEBRAS - CANDIDATES FOR ¢1, G, &3

(L)
VALV,

a cC

1

\Y%

3

b+ 2c

a+2c
3 ;; +

_l’_

P\

a c
c b



FLAG ALGEBRAS - CANDIDATES FOR ¢1, G, &3

(1 1L)

2 e 7
av + bv + Cv
» v v v

a c
c b

1

\Y%

b+ 2c

v b+ 2c
_|_

a+2c

3

3

_l’_

,C3 =

a-+2c

G =a0=

P\

a c
c b



FLAG ALGEBRAS - USING c¢i, G, C3

VAV
Bves vt

I { l+a+2c 2+ b+2c
< max\ a, 3 ,

W
w| N

and

Y
o

(25)



FLAG ALGEBRAS - USING c¢i, G, C3

VAV
Bves vt

I { l+a+2c 2+ b+2c
< max\ a, 3 ,

(25)-(24 %)

W
w| N

and

Try



FLAG ALGEBRAS - USING c¢i, G, C3

VAV
Bves vt

W
w| N

and
I { l+a+2c 2+ b+2c
< max\ a, ,
3

Try

a c\_ ( 1/2 -1)2

c b)) \ -1/2 1)2 '
It gives



FLAG ALGEBRAS - OPTIMIZING a, b, ¢

I { 1+a+2c 2+b+2c}
< maxy a,

3 ’ 3
Minimize d
subjectto a<d
1+a+2c < d
3 Py
( a ¢ ) -
c b

(SDP) can be solved on computers using CSDP or SDPA.
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BACK

TO PERMUTATIONS

1 _
!g! > — =0.037
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Write a semidefinite program (SDP) (with graphs on 7
vertices, 388 constraints, 2 types, 10 4 71 flags).
Solve (SDP) using a computer, obtain M’ € Rf*f.

M’ gives
E + E > 0.0370370369999

and M’ has negative eigenvalues (—0.1 x 10712).
Round M’ to M € Qf*f, such that

XK

and M = 0.
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AFTER FLAG ALGEBRA (STABILITY)
o0 0O,

m + m is close to % = G is close to o o 5

LEMMA (STABILITY)

For every € > O there exist ny and € > 0 such that every
admissible graph G of order n > ng with

KR4

is isomorphic to either

O 00
AR

after recoloring at most 20en? edges.
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e Using removal lemma, properties (A) and (B) can be satisfied.
(lost en? edges)

e Forall v € V(G)\ X, where | X| < 2en vertices
1 1
. < < 1/ 1
27 6—&0 er)}—zfrs (1)

o x ~yif
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e Every equivalence class is a monochromatic clique.
e There are three equivalence classes of size %n + 16en by (1).
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Every equivalence class is a monochromatic clique.

There are three equivalence classes of size $n = 16en by (1).

The classes have the same color

>

D=

Exact result: By recoloring edges.

21



Thank you for your attention!
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OTHER PERMUTATIONS - MAXIMIZING 1342 AND 2413

0.19657 < o(1342) < 2/9 = 0.22222.. .. AAHHS
o(1342) < 0.1988373 BHLPUV
51/511 = 0.0998 ... < ¢(2413) < 2/9 = 0.22222  AAHHS
0.1024732 < o(2413) P
0.10472... < o(2413) PS
o(2413) < 0.1047805 BHLPUV

AAHHS ... Albert, Atkinson, Handley, Holton, Stromquist 2002
P...Presutti 2008

PS. .. Presutti, Stromquist 2010

BHLPUV. . .us
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