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Permutations and extremal problems

Problem
What is the minimum number of monotone subsequences of size k
in a permutation of [n]?

k = 3
n = 5

(5,4,1,2,3)

(5,4,1),(5,4,2),(5,4,3)
(1,2,3)

(4,5,1,2,3)

(1,2,3)
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Conjecture

Conjecture (Myers 2002)

The number of monotone subsequences of length k is minimized
by a permutation on [n] with k − 1 increasing runs of as equal
lengths as possible.

k = 4, n = 15

3



Extremal case is not unique
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Theorem (Balogh, Hu, L., Pikhurko, Udvari, Volec ’14+)

Myers’ conjecture is true for k = 4 and n sufficiently large.

We translate the problem to graphs and use flag algebras.
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From permutations to permutation graphs

(1,2) (2,1)

k = 3
n = 5

(5,4,1,2,3) 1 2

3

4

5

(4,5,1,2,3) 1 2

3

4

5
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Extremal example (k = 4)
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As flag algebra question (k = 4)

(1,2,3,4) (4,3,2,1)

minimize +

Theorem (Balogh, Hu, L., Pikhurko, Udvari, Volec ’14+)

+ ≥ 1

27

for every permutation graph.
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Theorem (Balogh, Hu, L., Pikhurko, Udvari, Volec ’14+)

min

(
+

)
=

1

27

over permutation graphs (and extremal permutations described
using Myers’ results).

Theorem (Sperfeld ’12; Thomason ’89)

1

35
< min

(
+

)
<

1

33

over all 2-edge-colored complete graphs.
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Flag algebras

Seminal paper:
A. Razborov, Flag Algebras, Journal of Symbolic Logic 72 (2007),
1239–1282.
David P. Robbins Prize by AMS for Razborov in 2013

Applications to oriented graphs, hypergraphs, crossing number of
complete bipartite graphs, geometry, hypercubes,. . .

Theorem (Hatami,Hladký,Krá ,l,Norine,Razborov 2011;
Grzesik 2011)

The number of C5’s in a triangle-free graph on n vertices is at
most (n/5)5.

n
5

n
5

n
5

n
5

n
5
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Flag algebras - what are flags

Let G be a 2-edge-colored complete graph on n vertices.

The probability that three random vertices in
G span a red triangle.

The probability that three random vertices in
G span a triangle with one red and two blue
edges.

v

The probability that a random vertex other
than v is connected to v ∈ V (G ) by a red
edge, i.e., the red degree of v divided by n− 1.
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Flag algebras - example

Theorem (Mantel 1907)

If a graph G on n vertices has more than 1
4n2 edges, then G

contain a triangle.

Assume edges are red and non-edges are blue.

Assume = 0. (We want to conclude ≤ 1
2 .)

1 = + +

+

= 0 +
1

3
+

2

3

≤ 2

3

(
+ +

)
≤ 2

3
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Flag algebras - improvement

Assume = 0. (We want to conclude ≤ 1
2 .)

= 0 +
1

3
+

2

3

Idea: find c1, c2, c3 ∈ R such that

0 ≤ c1 + c2 + c3 .

Hence

≤ c1 +

(
1

3
+ c2

)
+

(
2

3
+ c3

)
and

≤ max

{
c1,

1

3
+ c2,

2

3
+ c3

}
.
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Flag algebras - candidates for c1, c2, c3

0 ≤

1

n

∑
v

(
v
,

v

)(
a c
c b

)(
v
,

v

)T

=

1

n

∑
v

a
v

?
+ b

v

?
+

1

2

c
v

?

+
1

2
c

v

?

= a +
a + 2c

3
+

b + 2c

3

+ b

c1 = a, c2 =
a + 2c

3
, c3 =

b + 2c

3

(
a c
c b

)
< 0
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Flag algebras - using c1, c2, c3

= +
1

3
+

2

3

0 ≤ a +
a + 2c

3
+

b + 2c

3

and

≤ max

{
a,

1 + a + 2c

3
,

2 + b + 2c

3

}
.

Try (
a c
c b

)
=

(
1/2 −1/2
−1/2 1/2

)
.

It gives

≤ max

{
1

2
,

1

6
,

1

2

}
=

1

2
.

(
a c
c b

)
< 0
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Flag algebras - optimizing a, b, c

≤ max

{
a,

1 + a + 2c

3
,

2 + b + 2c

3

}

(SDP)



Minimize d

subject to a ≤ d
1+a+2c

3 ≤ d
2+b+2c

3 ≤ d(
a c

c b

)
< 0

(SDP) can be solved on computers using CSDP or SDPA.

16



Back to permutations

+ ≥ 1

27

= 0.037

• Write a semidefinite program (SDP) (with graphs on 7
vertices, 388 constraints, 2 types, 10 + 71 flags).

• Solve (SDP) using a computer, obtain M ′ ∈ Rf×f .

• M ′ gives

+ ≥ 0.0370370369999

and M ′ has negative eigenvalues (−0.1× 10−12).

• Round M ′ to M ∈ Qf×f , such that

+ ≥ 1

27

and M < 0.

17
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Structure of extremal permutations

Assuming

+ =
1

27

Flag algebra implies:

(A) = 0

(B) H = > 0⇒ H =
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After flag algebra (stability)

“ + is close to 1
27 ⇒ G is close to or ”

Lemma (Stability)

For every ε > 0 there exist n0 and ε′ > 0 such that every
admissible graph G of order n > n0 with

+ ≤ 1

27
+ ε′

is isomorphic to either

or

after recoloring at most 20εn2 edges.
19



After flag algebra (stability sketch)

• Using removal lemma, properties (A) and (B) can be satisfied.
(lost εn2 edges)

• For all v ∈ V (G ) \ X , where |X | ≤ 2εn vertices

1

27
− ε ≤

v
+

v
≤ 1

27
+ ε′′ (1)

• x ∼ y if
x

y

20
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• x ∼ y if
x

y

(A) = 0

(B) H = > 0⇒ H =

• Every equivalence class is a monochromatic clique.
• There are three equivalence classes of size 1

3n ± 16εn by (1).
• The classes have the same color

Exact result: By recoloring edges.

21
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≥ 1
2

Exact result: By recoloring edges.
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Thank you for your attention!
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Other permutations - maximizing 1342 and 2413

0.19657 ≤ σ(1342) ≤ 2/9 = 0.22222 . . . AAHHS

σ(1342) ≤ 0.1988373 BHLPUV

51/511 = 0.0998 . . . ≤ σ(2413) ≤ 2/9 = 0.22222 AAHHS

0.1024732 ≤ σ(2413) P

0.10472 . . . ≤ σ(2413) PS

σ(2413) ≤ 0.1047805 BHLPUV

AAHHS . . . Albert, Atkinson, Handley, Holton, Stromquist 2002
P. . . Presutti 2008
PS. . . Presutti, Stromquist 2010
BHLPUV. . . us
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