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Definitions (4-critical graphs)

graph G = (V ,E)

coloring is ϕ : V → C such that ϕ(u) 6= ϕ(v) if uv ∈ E

G is a k-colorable if coloring with |C| = k exists

G is a 4-critical graph if G is not 3-colorable
but every H ⊂ G is 3-colorable.



Inspiration

Theorem (Grötzsch ’59)
Every planar triangle-free graph is 3-colorable.



More triangles?

Theorem (Grötzsch ’59)
Every planar triangle-free graph is 3-colorable.

Theorem (Grünbaum ’63; Aksenov ’74; Borodin ’97;
Borodin et. al. ’12+)
Let G be a planar graph containing at most three triangles.
Then G is 3-colorable.

G

Question: What about four triangles?



3-coloring planar graphs with four triangles?

First studied by Aksenov in 70’s

Problem (Erdős ’92)
Are the following three graphs all 3-critical planar graphs with
four triangles?

Some (partial) results announced by Borodin ’97.
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3-coloring planar graphs with four triangles?

Not true...

Even infinitely many more!

...



How to describe?

Observation
In every 3-coloring of a 4-face, two non-adjacent vertices have
the same color.

PLAN:
• characterize 4-critical plane graph with four triangles and

no 4-faces
• describe how 4-faces could look like



Results

Theorem
4-critical plane graphs without 4-faces are precisely graphs in C.
C is described later...

Theorem
Every 4-critical plane graph can be obtained from G ∈ C by
expanding some vertices of degree 3.
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Act 1: no 4-faces

Theorem
4-critical plane graphs without 4-faces are precisely graphs in C.



(no 4-faces) Main tool:

Theorem (Kostochka and Yancey; 12+)
Let G be a 4-critical graph. Then 3|E(G)| = 5|V (G)| − 2 iff G is
4-Ore.

3|E(G)| = 5|V (G)| − 2 holds for plane graphs with four
triangles and without 4-faces (and all other faces 5-faces).

G is 4-Ore if G = K4 or G is an Ore composition of two 4-Ore
graphs.
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(no 4-faces) Key property

G is 4,4-graph if it is 4-Ore and has 4 triangles

Lemma
4,4-graph G is K4 or Ore composition of two 4,4-graphs Ga
and Gb.

GGbGa

→+



Description of 4,4-graphs (by pictures)
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Description of 4,4-graphs (by pictures)

...

Infinite class - same as Thomas-Walls for the Klein bottle
without contractible 3- and 4-cycles.

And now few more...
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Description of 4,4-graphs (by picture)

Lemma
Every 4,4-graph is planar.



Description of C
All 4-critical plane graphs with four triangles and no 4-faces can
be obtained from the Thomas-Walls sequence

...

by replacing dashed edges by edges or

.



Act 2: 4-faces

Theorem
Every 4-critical plane graph can be obtained from G ∈ C by
expanding some vertices of degree 3.
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(Interior of a 6-cycle is a quadrangulation - only 4-faces)



Why is expansion good?
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G − x is 3-colorable since G is 4-critical.
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G − x is 3-colorable since G is 4-critical.
Any 3-coloring of G − x gives different colors to y , z,w .



Why is expansion good?
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G − x is 3-colorable since G is 4-critical.
Any 3-coloring of G − x gives different colors to y , z,w .
3-coloring extends to a 3-coloring of 6-cycle uniquely.



Why is expansion good?
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Theorem (Gimbel and Thomassen ’97)
Let G be a planar triangle-free graph with chordless outer
6-cycle C. Let c be a coloring of C by colors 1,2,3. Then c
cannot be extended to a 3-coloring of G if and only if G interior
of C contains a quadrangulation and opposite vertices of C
have the same color.



Proof idea

Theorem
Every 4-critical plane graph can be obtained from G ∈ C by
expanding some vertices of degree three.

Let G be a minimal counterexample.

• obtain G′ from G by identifying opposite vertices of a 4-face

F

G
w→

G′

• obtain 4-critical subgraph G′′ of G′

• G′′ has no 4-faces (hence described in Act 1!)

...



Proof idea

Let G be a minimal counterexample.

• obtain G′ from G by identifying opposite vertices of a 4-face
• obtain 4-critical subgraph G′′ of G′

• G′′ has no 4-faces (hence described in Act 1!)

...
• Reconstruct G from G′′ by guessing w , decontractig w and

adding other vertices that were removed.

G identification−−−−−−−→ G′ critical subgraph−−−−−−−−−→ G′′

G
adding vertices←−−−−−−−−− G1

decontraction←−−−−−−−− G′′



Thank you for your attention!


