3-coloring planar graphs with four triangles

Oleg V. Borodin, Zdeněk Dvořák, Alexandr V. Kostochka, Bernard Lidický, Matthew Yancey

Sobolev Institute of Mathematics and Novosibirsk State University Charles University in Prague University of Illinois at Urbana-Champaign

54th Midwest Graph Theory Conference Miami University in Oxford, OH April 6, 2013

Definitions (4-critical graphs)

graph G = (V, E)coloring is $\varphi : V \to C$ such that $\varphi(u) \neq \varphi(v)$ if $uv \in E$ *G* is a *k*-colorable if coloring with |C| = k exists *G* is a 4-critical graph if *G* is not 3-colorable but every $H \subset G$ is 3-colorable.

Theorem (Grötzsch '59)

Every planar triangle-free graph is 3-colorable.

Theorem (Grötzsch '59)

Every planar triangle-free graph is 3-colorable.

Theorem (Grünbaum '63; Aksenov '74; Borodin '97; Borodin et. al. '12+)

Let G be a planar graph containing at most three triangles. Then G is 3-colorable.

Question: What about four triangles?

3-coloring planar graphs with four triangles?

First studied by Aksenov in 70's

Problem (Erdős '92)

Are the following three graphs all 3-critical planar graphs with four triangles?

Some (partial) results announced by Borodin '97.

Problem (Erdős '92)

Are the following three graphs all 3-critical planar graphs with four triangles?

Not true...

3-coloring planar graphs with four triangles?

Problem (Erdős '92)

Are the following three graphs all 3-critical planar graphs with four triangles?

Not true...

3-coloring planar graphs with four triangles?

Not true...

Even infinitely many more!

Observation

In every 3-coloring of a 4-face, two non-adjacent vertices have the same color.

PLAN:

- characterize 4-critical plane graph with four triangles and no 4-faces
- describe how 4-faces could look like

Results

Theorem

4-critical plane graphs without 4-faces are precisely graphs in C.

C is described later...

Theorem

Every 4-critical plane graph can be obtained from $G \in C$ by expanding some vertices of degree 3.

Theorem

4-critical plane graphs without 4-faces are precisely graphs in C.

Theorem (Kostochka and Yancey; 12+) Let G be a 4-critical graph. Then 3|E(G)| = 5|V(G)| - 2 iff G is 4-Ore.

3|E(G)| = 5|V(G)| - 2 holds for plane graphs with four triangles and without 4-faces (and all other faces 5-faces).

Theorem (Kostochka and Yancey; 12+) Let G be a 4-critical graph. Then 3|E(G)| = 5|V(G)| - 2 iff G is 4-Ore.

3|E(G)| = 5|V(G)| - 2 holds for plane graphs with four triangles and without 4-faces (and all other faces 5-faces).

Theorem (Kostochka and Yancey; 12+) Let G be a 4-critical graph. Then 3|E(G)| = 5|V(G)| - 2 iff G is 4-Ore.

3|E(G)| = 5|V(G)| - 2 holds for plane graphs with four triangles and without 4-faces (and all other faces 5-faces).

Theorem (Kostochka and Yancey; 12+) Let G be a 4-critical graph. Then 3|E(G)| = 5|V(G)| - 2 iff G is 4-Ore.

3|E(G)| = 5|V(G)| - 2 holds for plane graphs with four triangles and without 4-faces (and all other faces 5-faces).

Theorem (Kostochka and Yancey; 12+) Let G be a 4-critical graph. Then 3|E(G)| = 5|V(G)| - 2 iff G is 4-Ore.

3|E(G)| = 5|V(G)| - 2 holds for plane graphs with four triangles and without 4-faces (and all other faces 5-faces).

G is 4-*Ore* if $G = K_4$ or *G* is an Ore composition of two 4-Ore graphs.

Not 3-colorable.

Theorem (Kostochka and Yancey; 12+) Let G be a 4-critical graph. Then 3|E(G)| = 5|V(G)| - 2 iff G is 4-Ore.

3|E(G)| = 5|V(G)| - 2 holds for plane graphs with four triangles and without 4-faces (and all other faces 5-faces).

(no 4-faces) Key property

G is 4, 4-graph if it is 4-Ore and has 4 triangles

Lemma

4, 4-graph G is K_4 or Ore composition of two 4, 4-graphs G_a and G_b .

Infinite class - same as Thomas-Walls for the Klein bottle without contractible 3- and 4-cycles.

And now few more...

Infinite class - same as Thomas-Walls for the Klein bottle without contractible 3- and 4-cycles.

And now few more...

Infinite class - same as Thomas-Walls for the Klein bottle without contractible 3- and 4-cycles.

And now few more...

Lemma Every 4, 4-graph is planar.

Description of ${\mathcal C}$

All 4-critical plane graphs with four triangles and no 4-faces can be obtained from the Thomas-Walls sequence

by replacing dashed edges by edges or

Act 2: 4-faces

Theorem

Every 4-critical plane graph can be obtained from $G \in C$ by expanding some vertices of degree 3.

(Interior of a 6-cycle is a quadrangulation - only 4-faces)

G - x is 3-colorable since G is 4-critical.

G - x is 3-colorable since G is 4-critical. Any 3-coloring of G - x gives different colors to y, z, w.

G - x is 3-colorable since G is 4-critical. Any 3-coloring of G - x gives different colors to y, z, w. 3-coloring extends to a 3-coloring of 6-cycle uniquely.

Theorem (Gimbel and Thomassen '97)

Let G be a planar triangle-free graph with chordless outer 6-cycle C. Let c be a coloring of C by colors 1,2,3. Then c cannot be extended to a 3-coloring of G if and only if G interior of C contains a quadrangulation and opposite vertices of C have the same color.

Proof idea

Theorem Every 4-critical plane graph can be obtained from $G \in C$ by expanding some vertices of degree three.

Let G be a minimal counterexample.

• obtain G' from G by identifying opposite vertices of a 4-face

- obtain 4-critical subgraph G["] of G[']
- G" has no 4-faces (hence described in Act 1!)

Proof idea

Let G be a minimal counterexample.

- obtain G' from G by identifying opposite vertices of a 4-face
- obtain 4-critical subgraph G" of G'
- G" has no 4-faces (hence described in Act 1!)

• Reconstruct *G* from *G*["] by guessing *w*, decontractig *w* and adding other vertices that were removed.

$$G \xrightarrow{\text{identification}} G' \xrightarrow{\text{critical subgraph}} G''$$
$$G \xleftarrow{\text{adding vertices}} G_1 \xleftarrow{\text{decontraction}} G''$$

Thank you for your attention!

