Short proofs of coloring theorems on planar graphs

Oleg V. Borodin, Alexandr V. Kostochka, <u>Bernard Lidický</u>, Matthew Yancey

Sobolev Institute of Mathematics and Novosibirsk State University University of Illinois at Urbana-Champaign

AMS Sectional Meetings University of Mississippi, Oxford March 2, 2013

Definitions (4-critical graphs)

```
graph G = (V, E)

coloring is \varphi : V \to C such that \varphi(u) \neq \varphi(v) if uv \in E

G is a k-colorable if coloring with |C| = k exists

G is a 4-critical graph if G is not 3-colorable

but every H \subset G is 3-colorable.
```


Inspiration

Theorem (Grötzsch '59)

Every planar triangle-free graph is 3-colorable.

Recently reproved by Kostochka and Yancey using

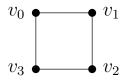
Theorem (Kostochka and Yancey '12) If G is 4-critical graph, then

$$|E(G)|\geq \frac{5|V(G)|-2}{3}.$$

used as $3|E(G)| \ge 5|V(G)| - 2$

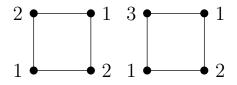
Let G be a minimal counterexample - not 3-colorable but every subgraph is. i.e. G is 4-critical

CASE1 G contains a 4-face (try 3-color G)



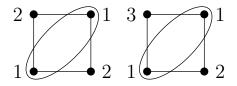
Let G be a minimal counterexample - not 3-colorable but every subgraph is. i.e. G is 4-critical

CASE1 G contains a 4-face (try 3-color G)



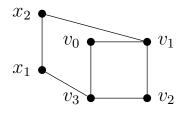
Let G be a minimal counterexample - not 3-colorable but every subgraph is. i.e. G is 4-critical

CASE1 G contains a 4-face (try 3-color G)



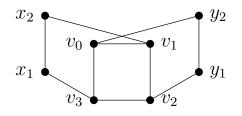
Let G be a minimal counterexample - not 3-colorable but every subgraph is. i.e. G is 4-critical

CASE1 G contains a 4-face (try 3-color G)



Let G be a minimal counterexample - not 3-colorable but every subgraph is. i.e. G is 4-critical

CASE1 G contains a 4-face (try 3-color G)



Let G be a minimal counterexample - not 3-colorable but every subgraph is. i.e. G is 4-critical

CASE1 G contains a 4-face (try 3-color G)

$$|E(G)| = e, |V(G)| = v, |F(G)| = f.$$

- v 2 + f = e by Euler's formula
- $2e \ge 5f$ since face is at least 5-face
- 5v 10 + 5f = 5e
- $5v 10 + 2e \ge 5e$
- $5v 10 \ge 3e$ (our case)
- $3e \ge 5v 2$ (every 4-critical graph)

Generalizations?

Theorem (Grötzsch '59)

Every planar triangle-free graph is 3-colorable.

Can be strengthened?

Generalizations?

Theorem (Grötzsch '59)

Every planar triangle-free graph is 3-colorable.

Can be strengthened?

Yes! - recall that CASE2

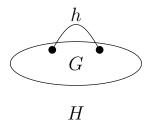
- $5v 10 \ge 3e$ (no 3-,4-faces)
- $3e \ge 5v 2$ (every 4-critical graph)

has some gap.

Adding a bit

Theorem (Aksenov '77; Jensen and Thomassen '00)

Let G be a triangle-free planar graph and H be a graph such that G = H - h for some edge h of H. Then H is 3-colorable.



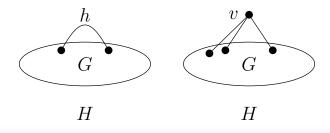
Adding a bit

Theorem (Aksenov '77; Jensen and Thomassen '00)

Let G be a triangle-free planar graph and H be a graph such that G = H - h for some edge h of H. Then H is 3-colorable.

Theorem (Jensen and Thomassen '00)

Let G be a triangle-free planar graph and H be a graph such that G = H - v for some vertex v of degree 3. Then H is 3-colorable.



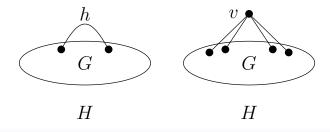
Adding a bit

Theorem (Aksenov '77; Jensen and Thomassen '00)

Let G be a triangle-free planar graph and H be a graph such that G = H - h for some edge h of H. Then H is 3-colorable.

Theorem

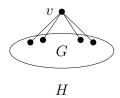
Let G be a triangle-free planar graph and H be a graph such that G = H - v for some vertex v of degree 4. Then H is 3-colorable.



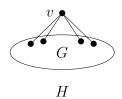
For proof

Theorem

Let G be a triangle-free planar graph and H be a graph such that G = H - v for some vertex v of degree 4. Then H is 3-colorable.



G plane, triangle-free, G = H - v, H is 4-critical

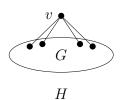


CASE1: No 4-faces in G

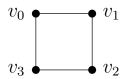
$$V(H) = v, E(H) = e, V(G) = v - 1, E(G) = e - 4, F(G) = f$$

- $5f \le 2(e-4)$ since G has no 4-faces
- (n-1) + f (e-4) = 2 by Euler's formula
- 5n + 5f 5e = -5
- 5n 3e 8 > -5
- $5n 3 \ge 3e$ (our case)
- but $3e \ge 5n 2$ (*H* is 4-criticality)

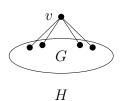
G plane, triangle-free, G = H - v, H is 4-critical



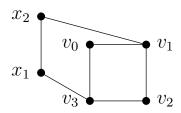
CASE1: No 4-faces in G



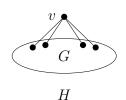
G plane, triangle-free, G = H - v, H is 4-critical



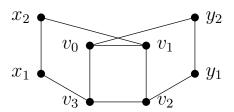
CASE1: No 4-faces in G



G plane, triangle-free, G = H - v, H is 4-critical



CASE1: No 4-faces in G



Precoloring

Theorem (Grötzsch '59)

Let G be a triangle-free planar graph and F be a face of G of length at most 5. Then each 3-coloring of F can be extended to a 3-coloring of G.

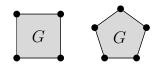
Theorem (Aksenov et al. '02)

Let G be a triangle-free planar graph. Then each coloring of two non-adjacent vertices can be extended to a 3-coloring of G.

For proof

Theorem (Grötzsch '59)

Let G be a triangle-free planar graph and F be a face of G of length at most 5. Then each 3-coloring of F can be extended to a 3-coloring of G.

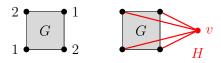


If G is triangle-free planar, F is a precolored 4-face or 5-face, then precoloring of F extends.

CASE1: F is a 4-face

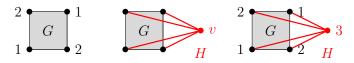
If G is triangle-free planar, F is a precolored 4-face or 5-face, then precoloring of F extends.

CASE1: F is a 4-face H is 3-colorable



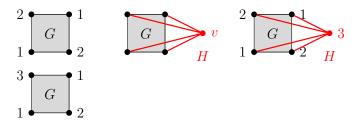
If G is triangle-free planar, F is a precolored 4-face or 5-face, then precoloring of F extends.

CASE1: F is a 4-face H is 3-colorable



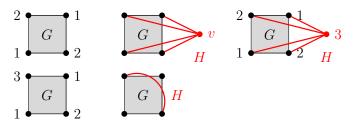
If G is triangle-free planar, F is a precolored 4-face or 5-face, then precoloring of F extends.

CASE1: F is a 4-face H is 3-colorable



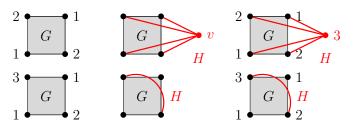
If G is triangle-free planar, F is a precolored 4-face or 5-face, then precoloring of F extends.

CASE1: F is a 4-face H is 3-colorable



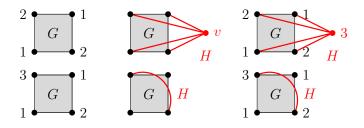
If G is triangle-free planar, F is a precolored 4-face or 5-face, then precoloring of F extends.

CASE1: F is a 4-face H is 3-colorable



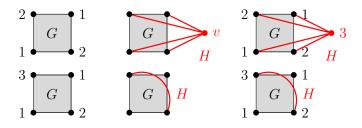
If G is triangle-free planar, F is a precolored 4-face or 5-face, then precoloring of F extends.

CASE1: F is a 4-face H is 3-colorable

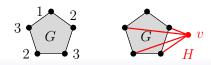


If G is triangle-free planar, F is a precolored 4-face or 5-face, then precoloring of F extends.

CASE1: F is a 4-face H is 3-colorable

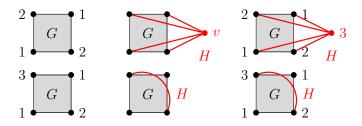


CASE2: F is a 5-face

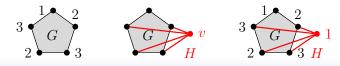


If G is triangle-free planar, F is a precolored 4-face or 5-face, then precoloring of F extends.

CASE1: F is a 4-face H is 3-colorable



CASE2: F is a 5-face



Some triangles?

Theorem (Grötzsch '59)

Every planar triangle-free graph is 3-colorable.

Some triangles?

Theorem (Grötzsch '59)

Every planar triangle-free graph is 3-colorable.

We already showed one triangle!

Removing one edge of triangle results in triangle-free *G*.

Some triangles?

Theorem (Grötzsch '59)

Every planar triangle-free graph is 3-colorable.

Theorem (Grünbaum '63; Aksenov '74; Borodin '97)

Let G be a planar graph containing at most three triangles. Then G is 3-colorable.

Three triangles - Proof outline

Theorem (Grünbaum '63; Aksenov '74; Borodin '97) Let G be a planar graph containing at most three triangles. Then G is 3-colorable.

- G is 4-critical (minimal counterexample)
- 3-cycle is a face
- 4-cycle is a face or has a triangle inside and outside
- 5-cycle is a face or has a triangle inside and outside

CASE1: G has no 4-faces

CASE2: *G* has a 4-faces with triangle (no identification) CASE3: *G* has a 4-face where identification applies

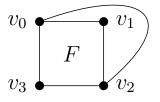
Three triangles - Proof outline

CASE1: G has no 4-faces

- v 2 + f = e by Euler's formula
- 5v 4 + 5f 6 = 5e
- $2e \ge 5(f-3) + 3 \cdot 3 = 5f 6$ since 3 triangles
- $5v 4 \ge 3e$ (our case)
- $3e \ge 5v 2$ (every 4-critical graph)

Three triangles - Proof outline

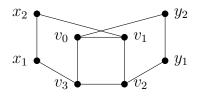
CASE2: *G* has a 4-face *F* with a triangle (no identification)



Both v_0 , v_1 , v_2 and v_0 , v_2 , v_3 are faces. G has 4 vertices!

Three triangles - Proof

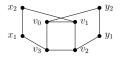
CASE3: G has a 4-face where identification applies



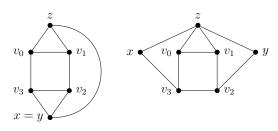
Since G is planar, some vertices are the same.

Three triangles - Proof

CASE3: G has a 4-face where identification applies



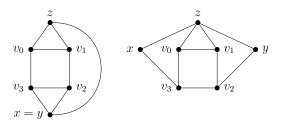
Since G is planar, some vertices are the same.



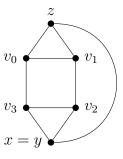
Three triangles - Proof

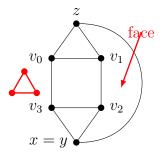
CASE3: G has a 4-face where identification applies

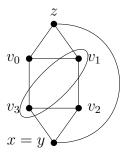
Since *G* is planar, some vertices are the same.

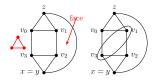


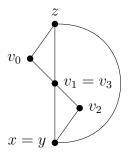
Only some cases left ...

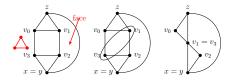


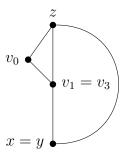


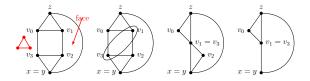


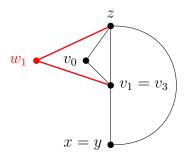


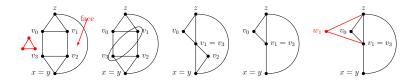


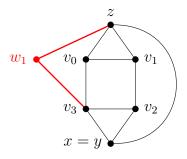


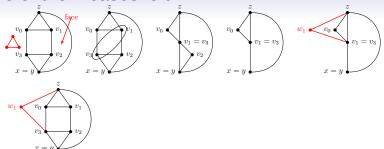


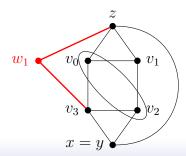


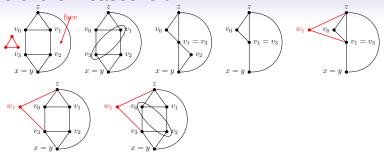


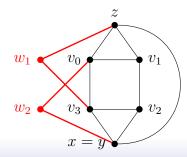


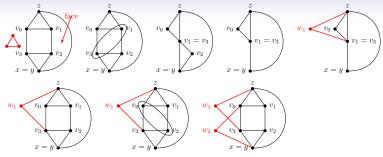


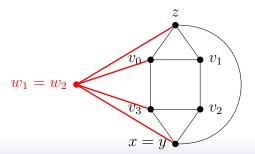












Thank you for your attention!

I hope to see you at EXCILL2, Mar 16-18 @ UIUC