Bipartizing fullerenes

Zdeněk Dvořák, Bernard Lidický and Riste Škrekovski

Charles University University of Illinois University of Ljubljana

Second Postdoctoral Research Symposium Urbana-Champaign Jan 27 2012

- 1965 C₆₀ first mentioned H.P. Schultz (1965)
- 70's theoretical study (prediction) of C_{60}
- 1985 C₆₀ exists! H. Kroto, J. R. Heath, S. O'Brien, R. Curl and R. Smalley
- 1991 possible to produce C_{60} , nanotubes
- 1996 Nobel prize in chemistry for C₆₀

- 1965 C₆₀ first mentioned H.P. Schultz (1965)
- 70's theoretical study (prediction) of C_{60}
- 1985 C₆₀ exists! H. Kroto, J. R. Heath, S. O'Brien, R. Curl and R. Smalley
- 1991 possible to produce C_{60} , nanotubes
- 1996 Nobel prize in chemistry for C₆₀

- 1965 C₆₀ first mentioned H.P. Schultz (1965)
- 70's theoretical study (prediction) of C_{60}
- 1985 C₆₀ exists! H. Kroto, J. R. Heath, S. O'Brien, R. Curl and R. Smalley
- 1991 possible to produce C_{60} , nanotubes
- 1996 Nobel prize in chemistry for C₆₀

- 1965 C₆₀ first mentioned H.P. Schultz (1965)
- 70's theoretical study (prediction) of C_{60}
- 1985 C₆₀ exists! H. Kroto, J. R. Heath, S. O'Brien, R. Curl and R. Smalley
- 1991 possible to produce C₆₀, nanotubes
- 1996 Nobel prize in chemistry for C₆₀

- 1965 C₆₀ first mentioned H.P. Schultz (1965)
- 70's theoretical study (prediction) of C₆₀
- 1985 C₆₀ exists! H. Kroto, J. R. Heath, S. O'Brien, R. Curl and R. Smalley
- 1991 possible to produce C₆₀, nanotubes
- 1996 Nobel prize in chemistry for C₆₀

- 50's Select manufactured the first "C₆₀" soccer ball
- 1965 C₆₀ first mentioned H.P. Schultz (1965)
- 70's theoretical study (prediction) of C₆₀
- 1985 C₆₀ exists! H. Kroto, J. R. Heath, S. O'Brien, R. Curl and R. Smalley
- 1991 possible to produce C₆₀, nanotubes
- 1996 Nobel prize in chemistry for C₆₀

Theoretical prediction of fullerenes

- glue together pentagonal and hexagonal faces
- is the result stable?

Fullerens as graphs (in graph theory)

- atoms vertices
- adjacency edges
- · molecule planar graph
- 12 pentagonal faces, unbounded number of hexagonal faces

Stability of fullerenes predicted by graphs

Not all graphs correspond to fullerenes (resulting molecules are not stable)

Conjecture

Stability of fullerenes corresponds to some graph property.

- number of perfect matchings
- independence number
-
- isolated pentagon rule close pentagons are trouble
 - What is the distance between pentagons?

(No good correspondence is know yet)

Stability of fullerenes predicted by graphs

Not all graphs correspond to fullerenes (resulting molecules are not stable)

Conjecture

Stability of fullerenes corresponds to some graph property.

- number of perfect matchings
- independence number
-
- isolated pentagon rule close pentagons are trouble
 - What is the distance between pentagons?

(No good correspondence is know yet)

How distant?

How far can the pentagons be from each other?

Conjecture (Došlić, Vukičević)

Distance is at most $\sqrt{12n/5}$.

Theorem (Dvořák, L., Škrekovski)

Distance is at most $c\sqrt{n}$ for some constant c.

Fullerene graph can be made bipartite by removing $c\sqrt{n}$ edges.

How distant?

How far can the pentagons be from each other?

Conjecture (Došlić, Vukičević)

Distance is at most $\sqrt{12n/5}$.

Theorem (Dvořák, L., Škrekovski)

Distance is at most $c\sqrt{n}$ for some constant c.

Fullerene graph can be made bipartite by removing $c\sqrt{n}$ edges.

Our result

Theorem (Dvořák, L., Škrekovski)

Let F be a pentagonal face. There are 5 other pentagonal faces in distance at most $c\sqrt{n}$ from F.

Our result

Theorem (Dvořák, L., Škrekovski)

Let F be a pentagonal face. There are 5 other pentagonal faces in distance at most $c\sqrt{n}$ from F.

Corollary (Dvořák, L., Škrekovski)

"Fullerenes look like nanotubes."

Bipartizing fullerenes

Thank you for your attention!

