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Definitions (coloring)

graph G = (V ,E), colors C

coloring is ϕ : V → C such that ϕ(u) 6= ϕ(v) if uv ∈ E

G is a k-colorable if coloring with |C| = k exists

G is a k-critical graph if G is not (k − 1)-colorable
but every H ⊂ G is (k − 1)-colorable.
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Definitions (coloring)

graph G = (V ,E), colors C, S ⊂ G

G is S-critical graph if for every S ⊂ H ⊂ G exists a 3-coloring
of S that extends to a 3-coloring of H but does not extend to a
3-coloring of G.

Note that ∅-critical graph is 4-critical
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Theorem (Grötzsch; 1959)
Every planar triangle-free graph is 3-colorable.

Does it extend to graphs of higher genus?
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Theorem (Youngs; 96)
There are non 3-colorable triangle-free projective planar
graphs.
Torus example:

w

Constraint on 4-cycles is needed.



Theorem (Thomassen; 03)
For every surface Σ there are finitely many 4-critical graph of
girth 5 embeddable on Σ.

Theorem (Dvořák, Král’, Thomas; 12+)
For every surface Σ of genus g the 4-critical graphs of girth 5
embeddable on Σ have at most Kg vertices.

Theorem (Thomassen, 94)
Every graph in the projective plane without contractible 3-cycle
or 4-cycle is 3-colorable.

Theorem (Thomassen; 94)
Every graph in the torus without contractible 3-cycle or 4-cycle
is 3-colorable.



Theorem (Thomas, Walls; 04)
There are infinitely many 4-critical graphs embedded in the
Klein bottle without contractible 3-cycle or 4-cycle.
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Theorem (Thomas, Walls; 04)
Every F-free graph embeddable in the Klein bottle without
contractible 3-cycle and 4-cycle is 3-colorable.

F =

· · ·



Remember

C = · · ·

(will make 4-critical graphs of arbitrary size)



Theorem (Dvořák, Král’, Thomas; 12+)
For every surface Σ of genus g the 4-critical graphs of girth 5
embeddable on Σ have at most Kg vertices.

Theorem (Dvořák, Král, Thomas; 12+)
Let K = 1028. Let G be a graph embedded in a surface Σ of
genus g and let {F1,F2, . . . ,Fk} be a set of faces of G such that
the open region corresponding to Fi is homeomorpic to the
open disk for 1 ≤ i ≤ k. If G is (F1 ∪ F2 . . . ∪ Fk )-critical and
every cycle of length of at most 4 in G is equal to Fi for some
1 ≤ i ≤ k, then

|V (G)| ≤ `(F1) + . . . + `(Fk ) + K (g + k).



Theorem (Dvořák, L.)
There exists a function f (g) = O(g) with the following property.
Let G be a 4-critical graph embedded in a surface Σ of genus g
so that every contractible cycle has length at least 5. Then G
contains a subgraph H such that
• |V (H)| ≤ f (g), and
• if F is a face of H that is not equal to a face of G, then F

has exactly two boundary walks, each of the walks has
length 4, and the subgraph of G drawn in the closed region
corresponding to F belongs to C.

4-critical graph is a small graph H with members of C
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4-critical graph is a small graph H with members of C



Proof idea
• allow faces H = {F1,F2, . . . ,Fk} like (Dvořák, Král’,

Thomas; 12+)
• split non-contractible 3-cycle or 4-cycle C into (two) new

face(s) in H
• genus decreases
• |H| decreases
• C separates one Fi (process all such C last together)

• all 3-cycles and 4-cycles precolored
• use (Dvořák, Král’, Thomas; 12+)



Proof idea
• allow faces H = {F1,F2, . . . ,Fk} like (Dvořák, Král’,

Thomas; 12+)
• split non-contractible 3-cycle or 4-cycle C into (two) new

face(s) in H
• genus decreases
• |H| decreases
• C separates one Fi (process all such C last together)

• all 3-cycles and 4-cycles precolored
• use (Dvořák, Král’, Thomas; 12+)

Left to check: graphs in the plane (cylinder) with {F1,F2}



Lemma (Dvořák, L.)
Let G be a plane graph and F1 and F2 faces of G. If G is
(F1 ∪ F2)-critical and every cycle of length at most 4 separates
F1 from F2, then G ∈ C or G has at most 20 vertices.

• distance between two separating ≤ 4-cycles is ≤ 4

F2 F1



Lemma (Dvořák, L.)
Let G be a plane graph and F1 and F2 faces of G. If G is
(F1 ∪ F2)-critical and F1 and F2 are the only ≤ 4 cycles and the
distance between F1 and F2 is at most 4 then G is one of 22
graphs.
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Lemma (Dvořák, L.)
Let G be a plane graph and F1 and F2 faces of G. If G is
(F1 ∪ F2)-critical and F1 and F2 are the only ≤ 4 cycles and the
distance between F1 and F2 is at most 4 then G is one of 22
graphs.

F2

F1 F

Results in a planar F -critical graph of girth 5 (with the outer
face F ).
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Every F-critical planar graph of girth 5 with the outer face F
contains one of

(a) (b)

(c) (d)
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Theorem (Dvořák, Kawarabayashi; 12+)
Every F-critical planar graph of girth 5 with the outer face F
contains one of

(a) (b)

(c) (d)

Can be used for generating F -critical graphs (on a computer)
List known for the outer face of size ≤ 12, we extended to ≤ 16.
Maybe up to 20 computable.



Summary

Theorem (Dvořák, L.)
There exists a function f (g) = O(g) with the following property.
Let G be a 4-critical graph embedded in a surface Σ of genus g
so that every contractible cycle has length at least 5. Then G
contains a subgraph H such that
• |V (H)| ≤ f (g), and
• if F is a face of H that is not equal to a face of G, then F

has exactly two boundary walks, each of the walks has
length 4, and the subgraph of G drawn in the closed region
corresponding to F belongs to C.

Theorem (Dvořák, L.)
There are 7969 F-critical planar graphs of girth 5 with outer
face F of size 16.



Thank you for your attention!


