4-critical graphs on surfaces without contractible cycles of length at most 4

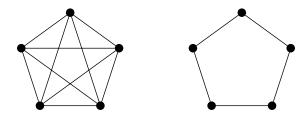
Zdeněk Dvořák, Bernard Lidický

Charles University in Prague University of Illinois at Urbana-Champaign

MIdwest GrapH TheorY LIII lowa State University September 22, 2012

graph
$$G = (V, E)$$

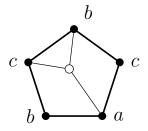
G is a *k-critical graph* if *G* is not (k-1)-colorable but every $H \subset G$ is (k-1)-colorable.



We are interested in 4-critical graphs.

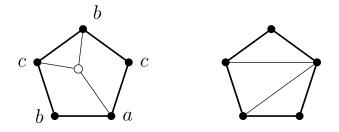
graph
$$G = (V, E)$$
, $S \subset G$

G is *S-critical graph* if for every $S \subset H \subset G$ exists a 3-coloring of *S* that extends to a 3-coloring of *H* but does not extend to a 3-coloring of *G*.



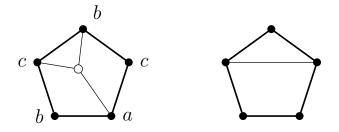
graph
$$G = (V, E), S \subset G$$

G is *S-critical graph* if for every $S \subset H \subset G$ exists a 3-coloring of *S* that extends to a 3-coloring of *H* but does not extend to a 3-coloring of *G*.



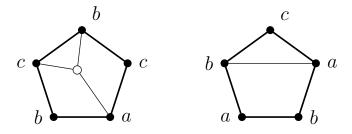
graph
$$G = (V, E), S \subset G$$

G is *S-critical graph* if for every $S \subset H \subset G$ exists a 3-coloring of *S* that extends to a 3-coloring of *H* but does not extend to a 3-coloring of *G*.



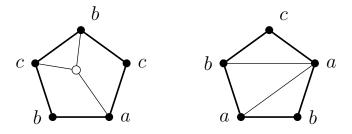
graph
$$G = (V, E), S \subset G$$

G is *S-critical graph* if for every $S \subset H \subset G$ exists a 3-coloring of *S* that extends to a 3-coloring of *H* but does not extend to a 3-coloring of *G*.



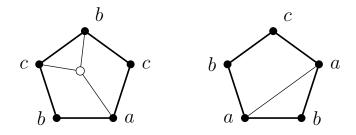
graph
$$G = (V, E), S \subset G$$

G is *S-critical graph* if for every $S \subset H \subset G$ exists a 3-coloring of *S* that extends to a 3-coloring of *H* but does not extend to a 3-coloring of *G*.



graph
$$G = (V, E), S \subset G$$

G is *S-critical graph* if for every $S \subset H \subset G$ exists a 3-coloring of *S* that extends to a 3-coloring of *H* but does not extend to a 3-coloring of *G*.



Theorem (Grötzsch; 59) Every planar triangle-free graph is 3-colorable.

Does it extend to graphs of higher genus?

Theorem (Grötzsch; 59)

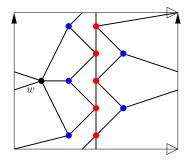
Every planar triangle-free graph is 3-colorable.

Does it extend to graphs of higher genus?

Theorem (Youngs; 96)

There are non 3-colorable triangle-free projective planar graphs.

Torus example:



Constraint on 4-cycles is needed.

Theorem (Thomassen; 03)

For every surface Σ there are finitely many 4-critical graph of girth 5 embeddable on Σ .

Theorem (Dvořák, Král', Thomas; 12+)

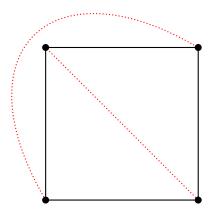
For every surface Σ of genus g the 4-critical graphs of girth 5 embeddable on Σ have at most Kg vertices.

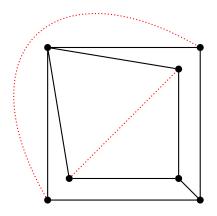
Theorem (Thomassen, 94)

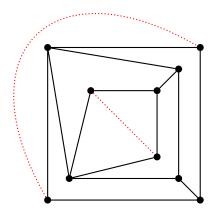
Every graph in the projective plane without contractible 3-cycle or 4-cycle is 3-colorable.

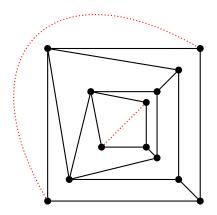
Theorem (Thomassen; 94)

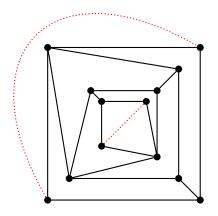
Every graph in the torus without contractible 3-cycle or 4-cycle is 3-colorable.



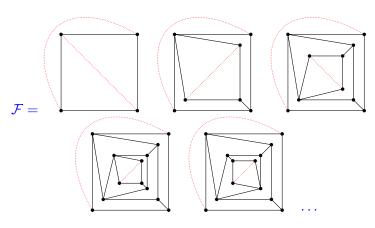




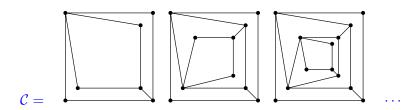




Every \mathcal{F} -free graph embeddable in the Klein bottle without contractible 3-cycle and 4-cycle is 3-colorable.



Remember



(will make 4-critical graphs of arbitrary size)

Theorem (Dvořák, Král', Thomas; 12+)

For every surface Σ of genus g the 4-critical graphs of girth 5 embeddable on Σ have at most Kg vertices.

Theorem (Dvořák, Král, Thomas; 12+)

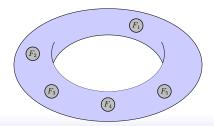
Let $K=10^{28}$. Let G be a graph embedded in a surface Σ of genus g and let $\{F_1, F_2, \ldots, F_k\}$ be a set of faces of G such that the open region corresponding to F_i is homeomorpic to the open disk for $1 \le i \le k$. If G is $(F_1 \cup F_2 \ldots \cup F_k)$ -critical and every cycle of length of at most 4 in G is equal to F_i for some $1 \le i \le k$, then

$$|V(G)| \leq \ell(F_1) + \ldots + \ell(F_k) + K(g+k).$$

Theorem (Dvořák, Král, Thomas; 12+)

Let $K = 10^{28}$. Let G be a graph embedded in a surface Σ of genus g and let $\{F_1, F_2, \ldots, F_k\}$ be a set of faces of G such that the open region corresponding to F_i is homeomorpic to the open disk for $1 \le i \le k$. If G is $(F_1 \cup F_2 \ldots \cup F_k)$ -critical and every cycle of length of at most 4 in G is equal to F_i for some $1 \le i \le k$, then

$$|V(G)| \leq \ell(F_1) + \ldots + \ell(F_k) + K(g+k).$$

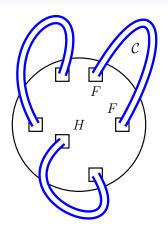


Theorem (Dvořák, L.)

There exists a function f(g) = O(g) with the following property. Let G be a 4-critical graph embedded in a surface Σ of genus g so that every contractible cycle has length at least g. Then g contains a subgraph g such that

- $|V(H)| \le f(g)$, and
- if F is a face of H that is not equal to a face of G, then F
 has exactly two boundary walks, each of the walks has
 length 4, and the subgraph of G drawn in the closed region
 corresponding to F belongs to C.

4-critical graph is a small graph H with members of C



4-critical graph is a small graph H with members of C

Proof idea

- allow faces \(\mathcal{H} = \{F_1, F_2, \ldots, F_k \} \) like (Dvořák, Král', Thomas; 12+)
- split non-contractible 3-cycle or 4-cycle C into (two) new face(s) in H
 - genus decreases
 - |H decreases
 - C separates one F_i (process all such C last together)
- all 3-cycles and 4-cycles precolored
 - use (Dvořák, Král', Thomas; 12+)

Proof idea

- allow faces $\mathcal{H} = \{F_1, F_2, \dots, F_k\}$ like (Dvořák, Král', Thomas; 12+)
- split non-contractible 3-cycle or 4-cycle C into (two) new face(s) in H
 - · genus decreases
 - |H| decreases
 - C separates one F_i (process all such C last together)
- all 3-cycles and 4-cycles precolored
 - use (Dvořák, Král', Thomas; 12+)

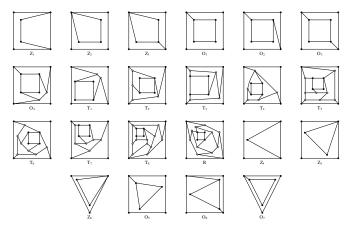
Left to check: graphs in the plane (cylinder) with $\{F_1, F_2\}$

Let G be a plane graph and F_1 and F_2 faces of G. If G is $(F_1 \cup F_2)$ -critical and every cycle of length at most 4 separates F_1 from F_2 , then $G \in \mathcal{C}$ or G has at most 20 vertices.



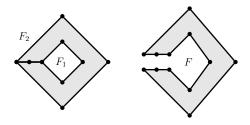
- distance between two consecutive separating < 4-cycles is
 4 (discharging)
- distance between every two consecutive separating
 4-cycles is < 4 (on next slides)

Let G be a plane graph and F_1 and F_2 faces of G. If G is $(F_1 \cup F_2)$ -critical and F_1 and F_2 are the only ≤ 4 cycles and the distance between F_1 and F_2 is at most 4 then G is one of 22 graphs.

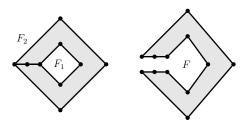


Glue them together, the only infinite sequence is C. Others have < 20 vertices.

Let G be a plane graph and F_1 and F_2 faces of G. If G is $(F_1 \cup F_2)$ -critical and F_1 and F_2 are the only ≤ 4 cycles and the distance between F_1 and F_2 is at most 4 then G is one of 22 graphs.



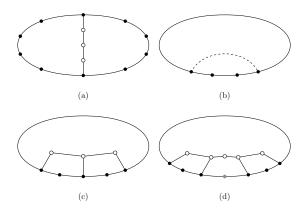
Let G be a plane graph and F_1 and F_2 faces of G. If G is $(F_1 \cup F_2)$ -critical and F_1 and F_2 are the only ≤ 4 cycles and the distance between F_1 and F_2 is at most 4 then G is one of 22 graphs.



Results in a planar F-critical graph of girth 5 (with the outer face F).

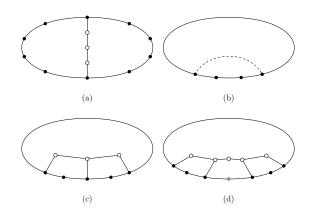
Theorem (Dvořák, Kawarabayashi; 12+)

Every F-critical planar graph of girth 5 with the outer face F contains one of



Theorem (Dvořák, Kawarabayashi; 12+)

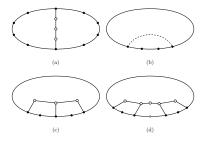
Every F-critical planar graph of girth 5 with the outer face F contains one of



Can be used for generating *F*-critical graphs (on a computer)

Theorem (Dvořák, Kawarabayashi; 12+)

Every F-critical planar graph of girth 5 with the outer face F contains one of



Can be used for generating F-critical graphs (on a computer) List known for the outer face of size \leq 12, we extended to \leq 16. Maybe up to 20 computable.

Summary

Theorem (Dvořák, L.)

There exists a function f(g) = O(g) with the following property. Let G be a 4-critical graph embedded in a surface Σ of genus g so that every contractible cycle has length at least g. Then g contains a subgraph g such that

- $|V(H)| \le f(g)$, and
- if F is a face of H that is not equal to a face of G, then F
 has exactly two boundary walks, each of the walks has
 length 4, and the subgraph of G drawn in the closed region
 corresponding to F belongs to C.

Theorem (Dvořák, L.)

There are 7969 F-critical planar graphs of girth 5 with outer face F of size 16.

