The planar slope-number of planar partial 3-trees of bounded degree

Vít Jelínek, Eva Jelínková, Jan Kratochvíl, Bernard Lidický, Marek Tesař and Tomáš Vyskočil

> Charles University in Prague University of Illinois at Urbana-Champaign

Cumberland 25 East Tennessee State University May 12, 2012

graph G = (V, E)Drawing maps V to points and E to curves.

graph G = (V, E)Drawing maps V to points and E to curves without crossings.

G is *planar* if it can be drawn without crossings

graph G = (V, E)Drawing maps V to points and E to straight segments.

straight-line drawing

graph G = (V, E)Drawing maps V to points and E to straight segments.

straight-line drawing does not have to be non-crossing

Definitions

Definition (Wade, Chu; 1994)

Slope-number sl(G) of a graph G is the minimum number of slopes in a straight-line drawing of G.

Definition (Dujmović, Suderman, Wood; 2004) *Planar-slope-number* psl(G) of a planar graph *G* is the minimum number of slopes in a straight-line drawing of *G* without crossings.

Recall that every planar graph has a straight-line drawing.

How to bound sI(G) and psI(G)?

Definition (Wade, Chu; 1994)

Slope-number sl(G) of a graph G is the minimum number of slopes in a straight-line drawing of G.

How to bound sI(G) and psI(G)?

Definition (Wade, Chu; 1994)

Slope-number sl(G) of a graph G is the minimum number of slopes in a straight-line drawing of G.

where Δ is the maximum degree $psl(G) \ge sl(G) \ge \lceil \Delta/2 \rceil$

Bounds on sl(G) (with crossings)

Theorem (Barát, Matoušek, Wood and indep. Pach, Pálvölgyi; 2006) There exist graphs with $\Delta \ge 5$ and arbitrarily large slope-number.

Theorem (Keszegh, Pach, Pálvölgyi, Tóth; 2007) If $\Delta \leq 3$ then slope-number ≤ 5 .

Theorem (Mukkamala, Szegedy; 2009) If $\Delta \leq 3$ then slope-number ≤ 4 .

Case $\Delta = 4$ is not known.

Bounds on *psl*(*G*) (no crossings)

Planar-slope-number psl(G) of a planar graph G is the minimum number of slopes in a straight-line drawing of G without crossings.

Theorem (Dujmović, Epstein, Suderman, Wood 2007) For every tree *G* holds $psl(G) = \lceil \Delta/2 \rceil$. For cubic 3-connected planar grap *G* holds $psl(G) \le 6$. Bounds for maximal outerplanar graphs, planar 2-trees, planar 3-trees, planar 2-connected and 3-connected as a function of |V(G)|.

(outerplanar graph has a drawing with one face incident to all vertices)

Theorem (Dujmović, Epstein, Suderman, Wood 2007) For every tree *G* holds $psl(G) = \lceil \Delta/2 \rceil$. For cubic 3-connected planar grap *G* holds $psl(G) \le 6$. Bounds for maximal outerplanar graphs, planar 2-trees, planar 3-trees, planar 2-connected and 3-connected as a function of |V(G)|.

Problem (Dujmović, Epstein, Suderman, Wood 2007) Is there a function f such that for every (outerplanar) graph Gholds $psl(G) \leq f(\Delta(G))$.

(outerplanar graph has a drawing with one face incident to all vertices)

Answer to the problem

Theorem (JJKLTV; 2010)

Every partial planar 3-tree G has $psl(G) = O(c^{\Delta})$. (constructive)

(outerplanar graphs ⊂ partial planar 3-trees)

Theorem (Keszegh, Pach, Pálvölgyi; 2011)

Every planar graph G has $psl(G) = O(c^{\Delta})$ for some constant c. (non-constructive)

Theorem (JJKLTV; 2012+)

Every partial planar 3-tree G has $psl(G) = O(\Delta^5)$. (constructive)

Theorem (Knauer, Micek, Walczak 2012+) Every outerplanar graph G with $\Delta \ge 4$ has $psl(G) \le \Delta - 1$. (constructive)

- a triangle
- obtained from a 3-tree by adding a vertex adjacent to three vertices of a triangle

- a triangle
- obtained from a 3-tree by adding a vertex adjacent to three vertices of a triangle

- a triangle
- obtained from a 3-tree by adding a vertex adjacent to three vertices of a triangle

- a triangle
- obtained from a 3-tree by adding a vertex adjacent to three vertices of a triangle

- a triangle
- obtained from a 3-tree by adding a vertex adjacent to three vertices of a triangle

- a triangle
- obtained from a 3-tree by adding a vertex adjacent to three vertices of a triangle

- a triangle
- obtained from a 3-tree by adding a vertex adjacent to three vertices of a triangle

- a triangle
- obtained from a 3-tree by adding a vertex adjacent to three vertices of a triangle

- a triangle
- obtained from a 3-tree by adding a vertex adjacent to three vertices of a triangle

- a triangle
- obtained from a 3-tree by adding a vertex adjacent to three vertices of a triangle

- a triangle
- obtained from a 3-tree by adding a vertex adjacent to three vertices of a triangle

- A graph G is a 3-tree if it is
 - a triangle
 - obtained from a 3-tree by adding a vertex adjacent to three vertices of a triangle

Partial 3-tree is a sugraph of a 3-tree

- A graph G is a 3-tree if it is
 - a triangle
 - obtained from a 3-tree by adding a vertex adjacent to three vertices of a triangle

Partial 3-tree is a sugraph of a 3-tree

- A graph G is a 3-tree if it is
 - a triangle
 - obtained from a 3-tree by adding a vertex adjacent to three vertices of a triangle

Partial 3-tree is a sugraph of a 3-tree

Suppose every vertex is adjacent to *a*, *b* or *c*

• $\leq 3\Delta$ vertices

Suppose every vertex is adjacent to *a*, *b* or *c*

- \leq 3 Δ vertices
- finitely many graphs (and hence drawings)

Suppose every vertex is adjacent to a, b or c

- $\leq 3\Delta$ vertices
- finitely many graphs (and hence drawings)
- finitely many slopes and triangles

Suppose every vertex is adjacent to a, b or c

- $\leq 3\Delta$ vertices
- finitely many graphs (and hence drawings)
- finitely many slopes and triangles
- finitely many things to place in triangles (recursion)

Draw leg on a line

Draw leg on a line

Draw leg on a line and make all bubbles the same

Draw leg on a line and make all bubbles the same

One leg and bubbles $O(\Delta^2)$ slopes and $O(\Delta^3)$ triangles.

One leg and bubbles $O(\Delta^2)$ slopes and $O(\Delta^3)$ triangles. One leg an bubbles have $O(\Delta^2)$ points, so $O(\Delta^2)$ slopes.

One leg and bubbles $O(\Delta^2)$ slopes and $O(\Delta^3)$ triangles. One leg an bubbles have $O(\Delta^2)$ points, so $O(\Delta^2)$ slopes. Lines from placing legs and bubbles in triangles gives $O(\Delta^3 \cdot \Delta^2)$ slopes. Total $O(\Delta^5)$.

Open problems

Problem

Is slope-number graphs with $\Delta \leq 4$ bounded?

Problem

Is planar slope-number of planar graphs $O(\Delta^c)$? (or constructive bound)

Problem

Is planar slope-number of planar graphs of bounded tree-width $O(\Delta^c)$?

Problem

Improve lower bound $3\Delta - 6$ for planar slope-number.

Thank you for your attention!