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Packing Chromatic Number

Definition
Graph G = (V ,E), Xd ⊆ V is d-packing if
∀u, v ∈ Xd : distance(u, v) > d .

1-packing is an independent set

Definition
Packing chromatic number is the minimum k such that
V = X1 ∪ X2 ∪ ... ∪ Xk ; denoted by χρ(G).

Also known as the broadcast chromatic number.
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Example with path P∞

Definition
Packing chromatic number is the minimum k such that
V = X1 ∪ X2 ∪ ... ∪ Xk ; denoted by χρ(G).

1 1 1 1 1 X1

2 2 2 2 X2

3 3 3 X3

informally, density of Xd is |Xd |/|V |
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Definition
Packing chromatic number is the minimum k such that
V = X1 ∪ X2 ∪ ... ∪ Xk ; denoted by χρ(G).

1 1 1 1 1 X1

2 2 2 X2

3 3 X3

1 2 1 3 1 2 1 3 1 2 X1 ∪X2 ∪X3

χρ(P∞) = 3
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Complexity of χρ

Theorem (Goddard, Hedetniemi, Hedetniemi, Harris, Rall
’08)
Let G be a graph.
• Decide if χρ(G) ≤ k is NP-complete (k on input).
• Decide if χρ(G) ≤ 3 is in P.
• Decide if χρ(G) ≤ 4 is NP-complete.

Theorem (Fiala, Golovach ’09)
Decide if χρ(G) ≤ k for trees is NP-complete (k on input).
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Triangular lattice T
Theorem (Finbow, Rall ’07)
Infinite triangular lattice T cannot be colored by a finite number
of colors.

We use notation χρ(T ) =∞.
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Hexagonal Lattice H

Theorem (Brešar, Klavžar, Rall ’07)
For hexagonal lattice H: 6 ≤ χρ(H) ≤ 8

Theorem (Vesel ’07)
7 ≤ χρ(H)

Theorem (Fiala, Klavžar, L. ’09)
χρ(H) ≤ 7
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χρ(H) ≤ 7

d-packing density
1 1/2
2 1/6
3 1/6
4 1/24
5 1/24
6 1/24
7 1/24
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Square lattice Z2(= Z�Z)
Theorem (Goddard et al. ’08)
For infinite planar square lattice Z2:
9 ≤ χρ(Z2) ≤ 23

Theorem (Schwenk ’02)
χρ(Z2) ≤ 22

Theorem (Fiala, Klavžar, L. ’09)
10 ≤ χρ(Z2)

Theorem (Holub, Soukal ’09)
χρ(Z2) ≤ 17

Theorem (Ekstein, Holub, Fiala, L. ’10)
12 ≤ χρ(Z2)
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χρ(Z2) ≤ 17
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χρ(Z2) ≤ 12

Wish (Conjecture)
If χρ(Z2) = k then exist X1, . . . ,Xk such
that ∀i Xi has maximum possible
density after fixing

⋃
1≤j<i Xj .

Wish implies the lower bound 12.

No wish implies brute force computer search (backtracking).

Find a (small) part of Z2 that cannot be colored by 11 colors.
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Layers of the square lattice - going 3D

Theorem (Finbow, Rall ’07)
χρ(Z3) =∞

Theorem (Fiala, Klavžar, L. ’09)
χρ(P2 �Z2) =∞
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Layers of the hexagonal lattice - going 3D

Theorem (Fiala, Klavžar, L. ’09)
χρ(P6 �H) =∞

Theorem (Böhm, Lánský, L. ’10)
χρ(P2 �H) ≤ 526 (large but finite)
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Layers summary

Lattice Triangular Square (Z2) Hexagonal (H)
Colorable layers l 0 1 2 ≤ l < 6
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Distance graphs
• C ⊂ N
• A distance graph D(C) is a graph on vertices Z,

uv adjacent if |u − v | ∈ C.
• D({1}) = P∞

−2 −1 0 1 2 3 4

• D({1,2})

−4 −3 −2 −1 0 1 2 3 4

• D({1,3})

−5 −4 −3 −2 −1 0 1 2 3 4
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Distance graphs - general bound

Theorem (Goddard et al. ’08)
Let G be finite. Then χρ(P∞�G) <∞.

Corollary
χρ(D(C)) <∞ for any C.
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Distance graphs - D({1, k})

Theorem (Togni ’10)

χρ(D({1, t})) ≤
{

174 t even,
86 t odd

if t ≥ 224
special constructions

Theorem (Ekstein, Holub, L. ’11)

χρ(D({1, t})) ≤
{

56 t even,
35 t odd

if t ≥ 648
using Z2
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Distance graphs - D({1, k})

Theorem (Togni ’10)

χρ(D({1, t})) ≤
{

174 t even,
86 t odd

if t ≥ 224
special constructions

Theorem (Ekstein, Holub, L. ’11)

χρ(D({1, t})) ≤
{

56 t even,
35 t odd

if t ≥ 648
using Z2

D({1,5})



Packing Coloring and Grids

Open problems

• Is χρ(H�P3) finite?

• What is χρ(Z2)? (12 – 17)

• Is there c such that every cubic graph G has χρ(G) ≤ c?
• if G is planar?
• if G has large girth?
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Open problems

• Is there c such that every cubic graph G has χρ(G) ≤ c?
• if G is planar?
• if G has large girth?

Theorem (Sloper ’02)
3-regular infinite tree T3: χρ(T3) = 7

Theorem (Sloper ’02)
4-regular infinite tree T4: χρ(T4) =∞



Packing Coloring and Grids

Thank you for your attention!
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