5-Coloring Graphs with 4 Crossings

Rok Erman, Frédéric Havet, Bernard Lidický and Ondřej Pangrác

University of Ljubljana INRIA - Sophia Antipolis Charles University

17.6.2010 - Austin SIAM DM10

Basic definitions - quick reminder

Let G = (V, E) be a graph and C a set of colors.

- *coloring* is a mapping $c: V \rightarrow C$.
- chromatic number χ(G) is minimum k such that G can be properly colored using k colors.
- G is k-critical if χ(G) = k and for every subgraph H of G holds χ(H) < k.

What are k-critical graphs good for?

If $\chi(G) = k$ then *G* contains a *k*-critical subgraph Algorithm for *k* colorability of *G*

- let K be all (k + 1)-critical graphs
- test if any $H \in K$ is a subgraph of G
 - YES G is not k-colorable
 - NO G is k-colorable

is polynomial time if K is finite.

k-critical graphs on surfaces

How many *k*-critical graphs are on a given surface?

k	number	author	year
≥ 8	finite	Dirac	1956
7	finite	Thomassen	1994
6	finite	Thomassen	1997
5	infinite	Fisk	1978
4	infinite	Fisk	1978

Do we know some of the lists?

6-critical graphs on surfaces

- 1. projective plane Dirac, 1956 K_6
- 2. torus Thomassen, 1994

3. Klein bottle Chenette, Postle, Streib, Thomas and Yerger, independently Kawarabayashi, Král', Kynčl and L., 2008

6-critical graphs on surfaces

- 1. projective plane Dirac, 1956 K_6
- 2. torus Thomassen, 1994
- 3. Klein bottle Chenette, Postle, Streib, Thomas and Yerger, independently Kawarabayashi, Král', Kynčl and L., 2008

Crossings

Let G be embedded in the plane

- minimum number of crossings cr(G)
- crossing is defined by two edges
- cluster of a crossing C are endpoints of C

What raises $\chi(G)$? Clusters far apart or close?

Distant or close clusters?

Observation If all clusters have a common vertex, then $\chi(G) \leq 5$.

Theorem (Král' and Stacho, 2008) If clusters of all crossings are disjoint, then $\chi(G) \leq 5$.

Let G = (V, E) be a graph. An independent set $I \subseteq V$ is a stable crossing cover if G - I is planar.

Theorem (Oporowski and Zhao, 2008) If $cr(G) \le 3$ and $\omega(G) \le 5$ then G is 5 colorable. The only 6-critical graph with $cr(G) \le 3$ is K_6 .

Conjecture (Oporowski and Zhao, 2008) If $cr(G) \le 5$ and $\omega(G) \le 5$ then G is 5 colorable. The only 6-critical graph with $cr(G) \le 5$ is K_6 . Theorem (Oporowski and Zhao, 2008) If $cr(G) \le 3$ and $\omega(G) \le 5$ then G is 5 colorable. The only 6-critical graph with $cr(G) \le 3$ is K_6 .

Conjecture (Oporowski and Zhao, 2008) If $cr(G) \le 5$ and $\omega(G) \le 5$ then G is 5 colorable. The only 6-critical graph with $cr(G) \le 5$ is K_6 .

Improvements

Theorem (Oporowski and Zhao, 2008) The only 6-critical graph with $cr(G) \le 3$ is K_6 .

Theorem The only 6-critical graph with $cr(G) \le 4$ is K_6 . If $cr(G) \le 4$ and $\omega(G) \le 5$ then G is 5 colorable.

Theorem

The only 6-critical graph which is planar after removing three edges is K_6 .

If G is planar after removing three edges and $\omega(G) \le 5$ then G is 5 colorable.

Theorem (+ Z. Dvořák)

Theorem

The only 6-critical graph which is planar after removing three edges is K_6 .

If G is planar after removing three edges F and $\omega(G) \le 5$ then G is 5 colorable.

- edges in *F* share vertices
- endpoints of edges in F are a lot adjacent
- small adjacency of the edges

The only 6-critical graph which is planar after removing three edges is K_6 .

small adjacency of the edges

The only 6-critical graph which is planar after removing three edges is K_6 .

small adjacency of the edges

Theorem The only 6-critical graph with $cr(G) \le 4$ is K_6 . If $cr(G) \le 4$ and $\omega(G) \le 5$ then G is 5 colorable.

- · take the smallest counterexample
- each edge crossed once
- find a 5-vertex

The only 6-critical graph with $cr(G) \le 4$ is K_6 .

- find a 5-vertex
- try Kempe chains
- try to identify neighbours of v

The only 6-critical graph with $cr(G) \le 4$ is K_6 .

• try to identify neighbours of v

The only 6-critical graph with $cr(G) \le 4$ is K_6 .

• try to identify neighbours of v

What next?

Problem List all 6-critical graphs with 5 crossings.