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Colorings and crossings

Basic definitions - quick reminder

Let G = (V , E) be a graph and C a set of colors.
• coloring is a mapping c : V → C.
• chromatic number χ(G) is minimum k such that G can be

properly colored using k colors.
• G is k-critical if χ(G) = k and for every subgraph H of G

holds χ(H) < k .
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Colorings and crossings

What are k -critical graphs good for?

If χ(G) = k then G contains a k -critical subgraph
Algorithm for k colorability of G
• let K be all (k + 1)-critical graphs
• test if any H ∈ K is a subgraph of G

• YES - G is not k -colorable
• NO - G is k -colorable

is polynomial time if K is finite.



Colorings and crossings

k -critical graphs on surfaces

How many k -critical graphs are on a given surface?

k number author year
≥ 8 finite Dirac 1956
7 finite Thomassen 1994
6 finite Thomassen 1997
5 infinite Fisk 1978
4 infinite Fisk 1978

Do we know some of the lists?



Colorings and crossings

6-critical graphs on surfaces

1. projective plane Dirac, 1956
K6

2. torus Thomassen, 1994

3. Klein bottle Chenette, Postle, Streib, Thomas and Yerger,
independently Kawarabayashi, Král’, Kynčl and L., 2008
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6-critical graphs on surfaces
1. projective plane Dirac, 1956

K6
2. torus Thomassen, 1994

3. Klein bottle Chenette, Postle, Streib, Thomas and Yerger,
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Colorings and crossings

Crossings

Let G be embedded in the plane
• minimum number of crossings - cr(G)

• crossing is defined by two edges
• cluster of a crossing C are endpoints of C

What raises χ(G)? Clusters far apart or close?



Colorings and crossings

Distant or close clusters?

Observation
If all clusters have a common vertex, then χ(G) ≤ 5.

Theorem (Král’ and Stacho, 2008)
If clusters of all crossings are disjoint, then χ(G) ≤ 5.

Let G = (V , E) be a graph. An independent set I ⊆ V is a
stable crossing cover if G − I is planar.



Colorings and crossings

Theorem (Oporowski and Zhao, 2008)
If cr(G) ≤ 3 and ω(G) ≤ 5 then G is 5 colorable.
The only 6-critical graph with cr(G) ≤ 3 is K6.

Conjecture (Oporowski and Zhao, 2008)
If cr(G) ≤ 5 and ω(G) ≤ 5 then G is 5 colorable.
The only 6-critical graph with cr(G) ≤ 5 is K6.
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Colorings and crossings

Improvements

Theorem (Oporowski and Zhao, 2008)
The only 6-critical graph with cr(G) ≤ 3 is K6.

Theorem
The only 6-critical graph with cr(G) ≤ 4 is K6.
If cr(G) ≤ 4 and ω(G) ≤ 5 then G is 5 colorable.

Theorem
The only 6-critical graph which is planar after removing three
edges is K6.
If G is planar after removing three edges and ω(G) ≤ 5 then G
is 5 colorable.

Theorem ( + Z. Dvořák)
There exists a 6-critical graph with cr(G) = 5 different from K6.
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Colorings and crossings

Theorem
The only 6-critical graph which is planar after removing three
edges is K6.
If G is planar after removing three edges F and ω(G) ≤ 5 then
G is 5 colorable.

• edges in F share vertices
• endpoints of edges in F are a lot adjacent
• small adjacency of the edges



Colorings and crossings

The only 6-critical graph which is planar after removing three
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Colorings and crossings

Theorem
The only 6-critical graph with cr(G) ≤ 4 is K6.
If cr(G) ≤ 4 and ω(G) ≤ 5 then G is 5 colorable.

• take the smallest counterexample
• each edge crossed once
• find a 5-vertex
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Colorings and crossings

The only 6-critical graph with cr(G) ≤ 4 is K6.

• find a 5-vertex
• try Kempe chains
• try to identify neighbours of v
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Colorings and crossings

The only 6-critical graph with cr(G) ≤ 4 is K6.
• try to identify neighbours of v

v1 = v2

v3 v4

v5
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Colorings and crossings

What next?

cr(G) list
0,1,2 -

3,4

5 , , . . .

Problem
List all 6-critical graphs with 5 crossings.


