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Packing Chromatic Number

Definition
Graph G = (V , E), Xd ⊆ V is d-packing if
∀u, v ∈ Xd : distance(u, v) > d .

1-packing is an independent set

Definition
Packing chromatic number is the minimum k such that
V = X1 ∪ X2 ∪ ... ∪ Xk ; denoted by χρ(G).

Also known as the broadcast chromatic number.
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Example with path P∞

Definition
Packing chromatic number is the minimum k such that
V = X1 ∪ X2 ∪ ... ∪ Xk ; denoted by χρ(G).

1 1 1 1 1 X1

2 2 2 2 X2

3 3 3 X3

informally, density of Xd is |Xd |/|V |
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Definition
Packing chromatic number is the minimum k such that
V = X1 ∪ X2 ∪ ... ∪ Xk ; denoted by χρ(G).

1 1 1 1 1 X1

2 2 2 X2

3 3 X3

1 2 1 3 1 2 1 3 1 2 X1 ∪X2 ∪X3

χρ(P∞) = 3
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Complexity of χρ

Theorem (Goddard et al. ’08)
Let G be a graph.
• Decide if χρ(G) ≤ k is NP-complete (k on input).
• Decide if χρ(G) ≤ 3 is in P.
• Decide if χρ(G) ≤ 4 is NP-complete.

Theorem (Fiala and Golovach ’09)
Decide if χρ(G) ≤ k for trees is NP-complete (k on input).



Packing chromatic number for square and hexagonal lattices

Triangular lattice T

Theorem (Finbow and Rall ’07)
Infinite triangular lattice T cannot be colored by a finite number
of colors.

We use notation χρ(T ) = ∞.
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Hexagonal Lattice

Theorem (Brešar, Klavžar and Rall ’07)
For hexagonal lattice H: 6 ≤ χρ(H) ≤ 8

Theorem (Vesel ’07)
7 ≤ χρ(H)

Theorem (Fiala, Klavžar, L. ’09)
χρ(H) ≤ 7
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Square lattice

Theorem (Goddard et al. ’02)
For infinite planar square lattice Z2:
9 ≤ χρ(Z2) ≤ 23

Theorem (Schwenk ’02)
χρ(Z2) ≤ 22

Theorem (Fiala, Klavžar, L. ’09)
10 ≤ χρ(Z2)

Theorem (Holub and Soukal ’09)
χρ(Z2) ≤ 17

Theorem
12 ≤ χρ(Z2)
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How we did the lower bound 12

Wish (Conjecture)
If χρ(Z2) = k then exist X1, . . . , Xk such that ∀i Xi has
maximum possible density after fixing

⋃
1≤j<i Xj .

Wish implies the lower bound 12.

No wish implies brute force computer search (backtracking).

Find a (small) part of Z2 that cannot be colored by 11 colors.
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Grid 15× 9 cannot be colored using 11 colors when [5, 5] is
precolored by 9.

9

9

1

9

2

· · ·

· · ·

9

10

9

11

• easy to compute in parallel
• two implementations
• 115 days of CPU time (in 2009)
• 43112312093324 configurations tested
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Layers of a lattice

Theorem (Finbow and Rall ’07)
χρ(Z3) = ∞

Theorem (Fiala, Klavžar, L. ’09)
χρ(P2 � Z2) = ∞

Theorem (Fiala, Klavžar, L. ’09)
χρ(P6 �H) = ∞

Theorem
χρ(P2 �H) ≤ 526 (large but finite)



Packing chromatic number for square and hexagonal lattices

P2 �H
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P2 �H
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P2 �H

Observations
• large colors have large period
• use small colors as much as possible (the Wish)
• there might be a lot of locally good patterns
• do not try to fill large area of zeros

Ideas
• glue small patterns with small colors to large pattern for

large colors
• use some random while constructing pattern
• repeat search lot of times with crossed fingers
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P2 �H

Result
• pattern (2×) 768× 768
• extra program for checking correctness of the result
• 526 colors (probably not optimal)
• lower bound for χρ(P2 �H) around 20

(more that χρ(Z2), huge gap)
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Open problems

• Is χρ(H� P3) finite?

• What is χρ(Z2) for the infinite planar square lattice Z2?

• Is there c such that every cubic graph G has χρ(G) ≤ c?
• if G is planar?
• if G has large girth?
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Open problems

• Is there c such that every cubic graph G has χρ(G) ≤ c?
• if G is planar?
• if G has large girth?

Theorem (Sloper ’02)
3-regular infinite tree T3: χρ(T3) = 7

Theorem (Sloper ’02)
4-regular infinite tree T4: χρ(T4) = ∞
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