Martin Böhm, Jan Ekstein, Jiří Fiala, Přemek Holub, Lukáš Lánský and Bernard Lidický

Charles University and University of West Bohemia

Cycles and Colourings 2010 - Tatranská Štrba

Packing Chromatic Number

Definition Graph G = (V, E), $X_d \subseteq V$ is *d*-packing if $\forall u, v \in X_d$: distance(u, v) > d.

1-packing is an independent set

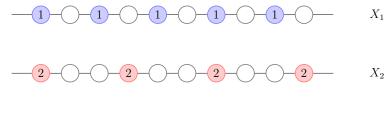
Definition Packing chromatic number is the minimum k such that $V = X_1 \cup X_2 \cup ... \cup X_k$; denoted by $\chi_{\rho}(G)$.

Also known as the broadcast chromatic number.

Example with path P_{∞}

Definition

Packing chromatic number is the minimum *k* such that $V = X_1 \cup X_2 \cup ... \cup X_k$; denoted by $\chi_{\rho}(G)$.



informally, density of X_d is $|X_d|/|V|$

Example with path P_{∞}

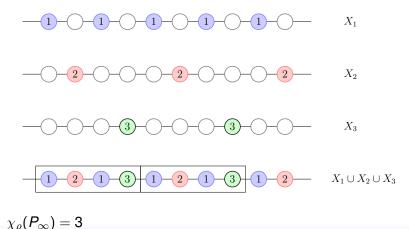
Definition

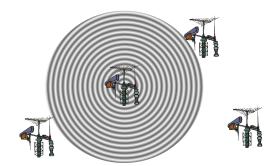
Packing chromatic number is the minimum *k* such that $V = X_1 \cup X_2 \cup ... \cup X_k$; denoted by $\chi_{\rho}(G)$.

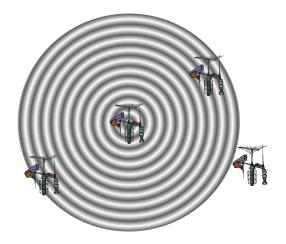


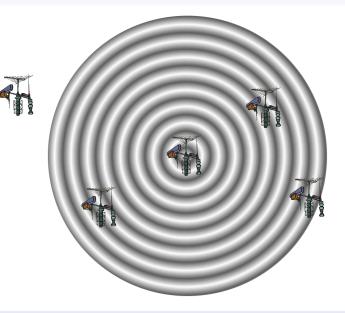
informally, density of X_d is $|X_d|/|V|$

Definition Packing chromatic number is the minimum k such that $V = X_1 \cup X_2 \cup ... \cup X_k$; denoted by $\chi_{\rho}(G)$.









Complexity of χ_{ρ}

Theorem (Goddard et al. '08)

Let G be a graph.

- Decide if $\chi_{\rho}(G) \leq k$ is \mathcal{NP} -complete (k on input).
- Decide if $\chi_{\rho}(G) \leq 3$ is in \mathcal{P} .
- Decide if $\chi_{\rho}(G) \leq 4$ is \mathcal{NP} -complete.

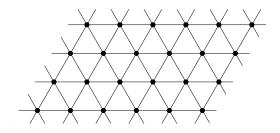
Theorem (Fiala and Golovach '09)

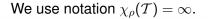
Decide if $\chi_{\rho}(G) \leq k$ for trees is \mathcal{NP} -complete (k on input).

Triangular lattice $\ensuremath{\mathcal{T}}$

Theorem (Finbow and Rall '07)

Infinite triangular lattice \mathcal{T} cannot be colored by a finite number of colors.

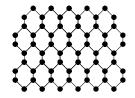




Hexagonal Lattice

Theorem (Brešar, Klavžar and Rall '07) For hexagonal lattice \mathcal{H} : $6 \le \chi_{\rho}(\mathcal{H}) \le 8$

Theorem (Vesel '07) $7 \le \chi_{\rho}(\mathcal{H})$ Theorem (Fiala, Klavžar, L. '09) $\chi_{\rho}(\mathcal{H}) \le 7$



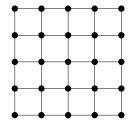
Square lattice

Theorem (Goddard et al. '02) For infinite planar square lattice \mathbb{Z}^2 : $9 \le \chi_{\rho}(\mathbb{Z}^2) \le 23$

Theorem (Schwenk '02) $\chi_{\rho}(\mathbb{Z}^2) \leq 22$

Theorem (Fiala, Klavžar, L. '09) $10 \le \chi_{\rho}(\mathbb{Z}^2)$

Theorem (Holub and Soukal '09) $\chi_{\rho}(\mathbb{Z}^2) \leq 17$ Theorem $12 \leq \chi_{\rho}(\mathbb{Z}^2)$



How we did the lower bound 12

Wish (Conjecture)

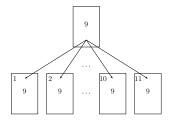
If $\chi_{\rho}(\mathbb{Z}^2) = k$ then exist X_1, \ldots, X_k such that $\forall i X_i$ has maximum possible density after fixing $\bigcup_{1 \le i \le i} X_j$.

Wish implies the lower bound 12.

No wish implies brute force computer search (backtracking).

Find a (small) part of \mathbb{Z}^2 that cannot be colored by 11 colors.

Grid 15×9 cannot be colored using 11 colors when [5, 5] is precolored by 9.



- easy to compute in parallel
- two implementations
- 115 days of CPU time (in 2009)
- 43112312093324 configurations tested

Layers of a lattice

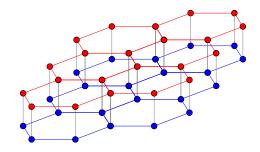
Theorem (Finbow and Rall '07) $\chi_{\rho}(\mathbb{Z}^3) = \infty$

Theorem (Fiala, Klavžar, L. '09) $\chi_{\rho}(P_2 \Box \mathbb{Z}^2) = \infty$

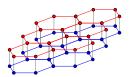
Theorem (Fiala, Klavžar, L. '09) $\chi_{\rho}(P_6 \Box \mathcal{H}) = \infty$

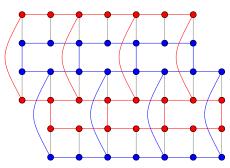
Theorem $\chi_{\rho}(P_2 \Box \mathcal{H}) \leq 526$ (large but finite)

 $P_2 \square \mathcal{H}$



 $P_2 \square \mathcal{H}$





$P_2 \square \mathcal{H}$

Observations

- large colors have large period
- use small colors as much as possible (the Wish)
- there might be a lot of locally good patterns
- do not try to fill large area of zeros

Ideas

- glue small patterns with small colors to large pattern for large colors
- use some random while constructing pattern
- repeat search lot of times with crossed fingers

$P_2 \square \mathcal{H}$

Result

- pattern (2×) 768 × 768
- extra program for checking correctness of the result
- 526 colors (probably not optimal)
- lower bound for χ_ρ(P₂ □ H) around 20 (more that χ_ρ(Z²), huge gap)

Open problems

- Is $\chi_{\rho}(\mathcal{H} \Box P_3)$ finite?
- What is $\chi_{\rho}(\mathbb{Z}^2)$ for the infinite planar square lattice \mathbb{Z}^2 ?
- Is there *c* such that every cubic graph *G* has $\chi_{\rho}(G) \leq c$?
 - if G is planar?
 - if G has large girth?

Open problems

- Is there *c* such that every cubic graph *G* has $\chi_{\rho}(G) \leq c$?
 - if G is planar?
 - if G has large girth?

Theorem (Sloper '02)

3-regular infinite tree T_3 : $\chi_{\rho}(T_3) = 7$

Theorem (Sloper '02)

4-regular infinite tree T₄: $\chi_{\rho}(T_4) = \infty$

