Zdeněk Dvořák, Bernard Lidický and Riste Škrekovski

Charles University University of Ljubljana

CanaDAM 2009 - Montreal

List coloring - quick reminder

Let G be a graph and C set of colors.

- *coloring* is a mapping $c: V(G) \rightarrow C$.
- coloring is *proper* if adjacent vertices have distinct colors
- chromatic number χ(G) is minimum k such that G can be properly colored using k colors.
- *list assignment* is a mapping $L: V(G) \rightarrow 2^C$
- *list coloring* (*L*-coloring) is a coloring *c* such that $c(v) \in L(v)$ for all $v \in V(G)$
- choosability χ_ℓ(G) is minimum k such that if |L(v)| ≥ k for all v ∈ V(G) then G can be properly L-colored

Choosability

- $\chi(G) \leq \chi_{\ell}(G)$
- $\chi(G) \leq \Delta(G) + 1$ and also $\chi_{\ell}(G) \leq \Delta(G) + 1$
- Exists graph G: $\chi(G) < \chi_{\ell}(G)$

Choosability

- $\chi(G) \leq \chi_{\ell}(G)$
- $\chi(G) \leq \Delta(G) + 1$ and also $\chi_{\ell}(G) \leq \Delta(G) + 1$
- Exists graph G: $\chi(G) < \chi_{\ell}(G)$

Choosability

- $\chi(G) \leq \chi_{\ell}(G)$
- $\chi(G) \leq \Delta(G) + 1$ and also $\chi_{\ell}(G) \leq \Delta(G) + 1$
- Exists graph G: $\chi(G) < \chi_{\ell}(G)$

List coloring - motivation to our problem

Theorem (Grötzsch 1959)

Every planar triangle-free graph is 3-colorable.

Theorem (Voigt, 1995)

There exists a planar triangle-free graph which is not 3-choosable

Observation (Kratochvíl and Tuza, 1994) Every planar triangle-free graph is 4-choosable.

Theorem (Alon and Tarsi, 1992)

Every planar bipartite graph is 3-choosable.

We want to give a sufficient conditions when planar triangle-free graph is 3-choosable.

List coloring - triangle-free graphs

0	4	-	<u> </u>	7	0		a utla a va	
3	4	5	6	1	8	9	autnors	year
Х		Х		Х		Х	Alon and Tarsi	1992
Х	Х						Thomassen	1995
Х			Х	Х		Х	Zhang and Xu	2004
Х		Х			Х	Х	Zhang	2005
Х		Х	Х				Lam, Shiu and Song	2005
Х					Х	Х	Zhang, Xu and Sun	2006
Х					Х	Х	Zhu, Lianying and Wang	2007
Х			Х	Х	Х		L.	2009
Х				Х	Х		Dvořák, L. and Škrekovski	2009
Х			Х	Х			Dvořák, L. and Škrekovski	submitted
			Google:			Mi	ckael Montassier	,

Our results

Theorem

Every planar triangle-free graph without 4-cycles sharing edges with 4- and 5-cycles is 3-choosable.

Corollary

Every planar graph without 3-,6-, and 7- cycles is 3-choosable.

Theorem

Every planar graph without 3-,7-, and 8- cycles is 3-choosable.

Theorem (Li, 2008)

Every planar triangle-free graph without 4-cycles sharing vertex with 4- and 5-cycles is 3-choosable.

367 - precoloring extension (Thomassen like)

- prove something stronger
- restrict lists of vertices in the outer face
- induction on the number of vertices
- remove some vertices from the outer face and extend the coloring of a smaller graph from induction

367 - stronger theorem

Theorem

Let G be a triangle-free planar graph without 4-cycles adjacent to 4- and 5-cycles, with outer face C, and P a path of length at most three such that $V(P) \subseteq V(C)$. The graph G can be L-colored for any list assignment L such that

- |L(v)| = 3 for all $v \in V(G) \setminus V(C)$;
- $2 \leq |L(v)| \leq 3$ for all $v \in V(C) \setminus V(P)$;
- |L(v)| = 1 for all v ∈ V(P), and the colors in the lists give a proper coloring of the subgraph of G induced by V(P);
- the vertices with lists of size two form an independent set; and
- each vertex with lists of size two has at most one neighbor in *P*.

367 - conditions on pictures

367 - precoloring extension (Thomassen like)

- small cycles (4,5,6,7, 8, 9) induce faces
- dealing with 1-, 2- and 3- chords
- distinguish 5 cases for removing vertices

367 - case (C1)

378 - discharging - basic idea

- get the smallest counterexample
- identify reducible configurations
- assign initial charges to faces and vertices (sum < 0 for planar graphs)
- redistribute charges (sum is still the same)
- show that charge of every vertex and face is ≥ 0
- hence sum of charges \geq 0 and a contradiction

378 - discharging - initial charges

378 - discharging - discharging rules

Thank you for your attention