Jiří Fiala and Bernard Lidický

Department of Applied Math Charles University

Cycles and Colourings 2007 - Tatranská Štrba

Packing Chormatic Number

Definition Graph G = (V, E), $P_d \subseteq V$ is *d*-packing if $\forall u, v \in P_d$: distance(u, v) > d.

1-packing is an independent set

Definition

Packing chromatic number is the minimum *k* such that $V = P_1 \cup P_2 \cup ... \cup P_k$; denoted by $\chi_{\rho}(G)$.

About $\chi_{\rho}(G)$

- We study bounds for infinite lattices / graphs.
- Example infinite path P_{∞}

$$\chi_{
ho}(P_{\infty}) \leq 3$$

d-packing	$ ho_{d}$
1	1/2
2	1/4
3	1/4

 ρ_d is density of *d*-packing

Tree

Theorem (Sloper '02)

3-regular infinite tree T_3 : $\chi_{\rho}(T_3) \leq 7$

d-packing	$ ho_{d}$
1	1/2
2	1/6
3	1/6
4	1/18
5	1/18
6	1/36
7	1/36

Theorem (Sloper '02)

4-regular infinite tree T_4 : no bound on $\chi_{\rho}(T_4)$

Square lattice

Theorem (Goddard et al. '02) For infinite planar square lattice \mathcal{R}_2 : $9 \le \chi_{\rho}(\mathcal{R}_2) \le 23$

Theorem (Schwenk '02)

 $\chi_{
ho}(\mathcal{R}_2) \leq 22$

Theorem (Finbow and Rall '07)

3-dimensional square lattice \mathcal{R}_3 : no bound on $\chi_{\rho}(\mathcal{R}_3)$.

Hexagonal Lattice

Theorem (Brešar, Klavžar and Rall '07) Hexagonal lattice \mathcal{H} : $6 \le \chi_{\rho}(\mathcal{H}) \le 8$

Theorem (Vesel '07) $7 \le \chi_{\rho}(\mathcal{H})$ Theorem $\chi_{\rho}(\mathcal{H}) \le 7$

Hexagonal Lattice

Theorem (Brešar, Klavžar and Rall '07) Hexagonal lattice \mathcal{H} : $6 \le \chi_{\rho}(\mathcal{H}) \le 8$

Theorem (Vesel '07) $7 \leq \chi_{\rho}(\mathcal{H})$

Theorem $\chi_{\rho}(\mathcal{H}) \leq 7$

Hexagonal Lattice

Theorem (Brešar, Klavžar and Rall '07) Hexagonal lattice \mathcal{H} : $6 \le \chi_{\rho}(\mathcal{H}) \le 8$

Theorem (Vesel '07) $7 \le \chi_{\rho}(\mathcal{H})$ Theorem $\chi_{\rho}(\mathcal{H}) \le 7$

 $\chi_{
ho}(\mathcal{H}) \leq 7$

d-packing	$ ho_{d}$
1	1/2
2	1/6
3	1/6
4	1/24
5	1/24
6	1/24
7	1/24

Spider web (Hex lattice on cylinder)

Theorem Spider web $W: \chi_{\rho}(W) \leq 9$

Triangular lattice $\ensuremath{\mathcal{T}}$

Theorem (F. and L. and independently Finbow and Rall) Infinite triangular lattice T has unbounded packing chromatic number.

Proof. Count the density of *d*-packings.

Triangular lattice $\ensuremath{\mathcal{T}}$

Theorem (F. and L. and independently Finbow and Rall) Infinite triangular lattice T has unbounded packing chromatic number.

Proof. Count the density of *d*-packings.

Idea of counting density of 2-packing.

Resize hex to 1/2 and fill the lattice. $\rho_2 \leq 1/7$

Sum of ρ_d for \mathcal{T}

d-packing	radius	upper bound on ρ_d
1		1/3
2	2	1/7
3	2	1/7
4	3	1/19
5	3	1/19
6	4	1/37
2 <i>x</i> – 2	x	$1/3x^2 - 3x + 1$
2 <i>x</i> – 1	x	$1/3x^2 - 3x + 1$

$$\sum_{d=1}^{\infty} \rho_d \le \frac{1}{3} + \frac{2}{7} + \frac{2}{19} + 2\int_{3}^{\infty} \frac{1}{3x^2 - 3x + 1} \, \mathrm{d}x \le \frac{1977}{1995} < 1$$

Open problems

- What is the maximum packing chromatic number for a cubic graph?
- What is $\chi_{\rho}(\mathcal{R}_2)$ for the infinite planar square lattice \mathcal{R}_2 ?
- Is there a polynomial time alogrithm for deciding $\chi_{\rho}(G)$ for trees?

 $(\chi_{\rho}(G) \leq 3 \text{ is in } P \text{ and } \chi_{\rho}(G) \leq 4 \text{ is NP-hard for general } G)$