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Abstract. A Weight graph is a connected (multi)graph with two ver-
tices u and v of degree at least three and other vertices of degree two.
Moreover, if any of these two vertices is removed, the remaining graph
contains a cycle. A Weight graph is called simple if the degree of u and v
is three. We show full computational complexity characterization of the
problem of deciding the existence of a locally injective homomorphism
from an input graph G to any fixed simple Weight graph by identifying
some polynomial cases and some NP-complete cases.
Keywords: computational complexity; locally injective homomorphism;
Weight graph

1 Introduction

Graphs in this paper are generally simple. The only graphs with allowed loops
and parallel edges are the Weight graphs. We denote the set of vertices of a graph
G by V (G) and the set of edges by E(G). The degree of a vertex v in a graph G
is denoted by degG(v) (recall that in multigraphs, degree of a vertex v is defined
as the number of edges going to other vertices plus twice the number of loops at
v) and the set of all neighbors of v by NG(v). We omit G in the subscript if G
is clear from the context. By [n] we denote the set of integers {1, . . . , n}.

A connected (multi)graph H is a Weight graph (or sometimes known also as
a dumbbell graph) if it contains two vertices u and v of degree at least three and
all other vertices are of degree two. Moreover, both H − u and H − v contain
a cycle or a loop. The Weight graph H is simple if both u and v have degree
3. Note that a simple Weight graph consists of a path connecting u and v and
two cycles. A simple Weight graph H is denoted by W(a, b, c) if H is a union of
cycles of lengths a and b and a path of length c. We call W(a, b, c) reduced if the
greatest common divisor of a, b and c is one.

Let G and H be graphs. A homomorphism f : G→ H is an edge preserving
mapping from V (G) to V (H). If H is not a multigraph then homomorphism
is locally injective (resp. surjective, bijective) if NG(v) is mapped to NH(f(v))

? Supported by Charles University as GAUK 95710 and by the grant SVV-2010-261313
(Discrete Methods and Algorithms).



2 O. B́ılka, B. Lidický and M. Tesař

injectively (resp. surjectively, bijectively) for every v ∈ V (G). Locally bijec-
tive homomorphism is also known as a covering projection or simply a cover.
Similarly, locally injective homomorphism is known as a partial covering pro-
jection or a partial cover. In this paper we denote locally injective homomor-
phism as LI-homomorphism. In case that H is multigraph (and G is simple)
LI-homomorphism generalizes as a mapping f : V (G) ∪ E(G) → V (H) ∪ E(H)
such that:

i) for every u ∈ V (G): f(u) ∈ V (H)
ii) for every e = {u, v} ∈ E(G): f(e) ∈ E(H) and f(e) = {f(u), f(v)}

iii) for every u ∈ V (G) and every non loop edge e ∈ E(H) such that f(u) ∈ e,
there is at most one edge e′ ∈ E(G) such that u ∈ e′ and f(e′) = e

iv) for every u ∈ V (G) and every loop edge e ∈ E(H) on vertex f(u), there are at
most two edges e′, e′′ ∈ E(G) such that u ∈ e′, u ∈ e′′ and f(e′) = f(e′′) = e

We can generalize the definition of locally surjective, resp. locally bijective
homomorphism from simple graph to multigraph by simply changing the phrase
“at most” by “at least”, resp. “exactly” in iii) and iv). In the following text we
denote homomorphism f from G to H simply as f : G→ H.

We consider the following decision problem. Let H be a fixed graph and G
be an input graph. Determine the existence of a locally injective (surjective, bi-
jective) homomorphism f : G→ H. We denote the problem by H-LIHom (resp.
H-LSHom, H-LBHom). If there is no local restriction on the homomorphism,
the problem is called H-Hom.

In this paper we focus on the H-LIHom problem.

Problem: H-LIHom
Input: Graph G
Task: Determine the existence of a LI-homomorphism f : G→ H.

Locally injective homomorphisms are closely related to H(2, 1)-labelings,
which have an applications in frequency assignment. Let H be a graph. An
H(2, 1)-labeling of a graph G is a mapping f : V (G) → V (H) such that image
of every pair of adjacent vertices is two distinct and nonadjacent vertices. More-
over, image of every pair of vertices in distance two is two distinct vertices. For
simple graphs the mapping f corresponds to a LI-homomorphism from G to the
complement of H.

The computational complexity of H-Hom was fully determined by Hell
and Nešetřil [10]. They showed that the problem is solvable in polynomial time
if H is bipartite and it is NP-complete otherwise.

The study of H-LSHom was initiated by Kristiansen and Telle [14] and com-
pleted by Fiala and Paulusma [9] who gave a full characterization by showing
that H-LSHom is NP-complete for every connected graph on at least three
vertices.

The computational complexity of locally bijective homomorphisms was first
studied by Bodlaender [2] and Abello et al. [1]. Despite of the effort [11–13] the
complete characterization is not known.
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Similarly, for the locally injective homomorphism the dichotomy for the com-
putational complexity is not known. Some partial results can be found in [5, 6,
8]. Fiala and Kratochv́ıl [7] also considered a list version of the problem and
showed dichotomy. Note that no direct consequences of complexity of H-Hom
or H-LSHom to H-LIHom are known.

The authors of [6] show that H-LBHom is reducible in polynomial time to
H-LIHom. Hence it makes sense to study the complexity of H-LIHom where
H-LBHom is solvable in polynomial time. In particular, many graphs with at
most two vertices of degree more than two belong to this class. It is also the case
for Theta graphs.

Theta graph is a graph with exactly two vertices u and v of degree at least
three and several paths connecting them. Note that u and v may be connected
by parallel edges. Study of Theta graphs started by a work of Fiala and Kra-
tochv́ıl [5], continued in [8] and was finished by showing a complete dichotomy
by Lidický and Tesař [15].

Also Weight graphs, considered in this paper, have at most two vertices of
degree more than two. Study of Weight graphs was initiated by Fiala [4] by
showing the following theorems.

Theorem 1. W(a, a, a)-LIHom is NP-complete.

Theorem 2. W(a, a, b)-LIHom is polynomial time solvable, whenever a is di-
visible by strictly higher power of two than b, and is NP-complete otherwise.

Fiala and Kratochv́ıl [5] observed that it is sufficient to consider only reduced
Weight graphs.

Proposition 1. Let W be a Weight graph and d be the greatest common divisor
of lengths of simple paths in W . Let W ′ be obtained from W by shortening each
of its simple path by a factor of d. Then W -LIHom is reducible to W ′-LIHom
in polynomial time.

In this paper we continue the study of Weight graphs by showing complete
dichotomy for simple Weight graphs.

Theorem 3. Let H be a bipartite simple reduced Weight graph. Then H-LIHom
problem is solvable in polynomial time.

Theorem 4. Let H be a non-bipartite simple reduced Weight graph. Then
H-LIHom problem is NP-complete.

In the following section, we introduce several definitions and observations.
Then we give the proof of Theorem 3 and finish with Section 4 containing the
proof of Theorem 4. Most of the proofs and all figures are moved to Appendix
due to page limit.
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2 Preliminaries

Let G be a graph and H be a spanning subgraph of G. We say that H is a
2-factor of G if for all v ∈ V (G) : degH(v) = 2. Let C be a set of colors. A
mapping ϕ : E(G)→ C is called an edge coloring if for every e1, e2 ∈ E(G) that
share a common vertex holds ϕ(e1) 6= ϕ(e2).

Let G be a graph and v0v1v2 . . . vn be a path P of length n in G. The path
is simple if v0 and vn are vertices of degree at least three and all inner vertices
of P have degree two. We denote a simple path of length n by SPn.

Let H be a Weight graph with vertices wA and wB of degree at least three.
Let f : G → H be a LI-homomorphism. Note that f must map all vertices of
degree at least three to wA or wB . Hence every end vertex of every simple path
of G must be mapped to wA or wB . We call a vertex big if it has degree at least
three. We denote the set of big vertices of G by B(G). Note that wA and wB are
also big vertices.

We need to control what are the possible LI-homomorphism of simple paths.
Hence we define a function gPf (v0, vn) = x if the edge v0v1 is mapped by a

LI-homomorphism f to an edge of SPx in H. We also use notation stPf (v0, vn)
to denote f(v0v1). We omit the superscript P if there is only one simple path
containing v0 and vn and the subscript f if it is clear from the context.

We say that SPn allows decomposition x − y if there exists a graph G con-
taining a simple path P of length n with end vertices v0 and vn and a LI-
homomorphism f : G → H such that gPf (v0, vn) = x and gPf (vn, v0) = y. We
denote the decomposition by x−k y (resp. x−c y) if it forces that f(v0) = f(vn)
(resp. f(v0) 6= f(vn)).

In the case of decomposition x−k y (resp. x−c y) we say, that the decompo-
sition keeps (resp. changes) the parity.

Let n be a positive integer and E ⊆ {a1, a2, . . . an}. The following notation

nH
E : x1 − y1, x2 − y2, . . . , xs − ys, (z1 − w1), (z2 − w2), . . . , (zt − wt)

describes the list of all decompositions x− y of SPn where x, y ∈ E . Decom-
positions xi − yi must be possible and decompositions zj − wj are optional for
all i ∈ [s] and j ∈ [t]. Moreover, −k and −c can be used instead of just −.

We call an edge e of H bridge edge if it is on a simple path with distinct end
vertices and loop edge otherwise. If an edge e′ is mapped by a LI-homomorphism
f to a bridge (loop) edge, we call e′ also a bridge (resp. loop) edge.

We denote the greatest common divisor of x1, . . . xn by GCD(x1, . . . , xn).

Proposition 2. Let a, b, d ∈ N such that GCD(a, b) = d. Then for every z ∈ Z
there exist s, t ∈ Z such that as + bt = zd.

3 Proof of Theorem 3 (polynomial case)

In this section we give the proof of Theorem 3.
First, we defineW(1na , 1nb , 1nc) to be a Weight graph with na, resp. nb loops

on vertices wA, resp. wB and nc parallel edges between wA and wB . Next we
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define that Weight graph W(ana , bnb , cnc) is obtained from W(1na , 1nb , 1nc) by
subdividing all loops on vertex wA, resp. wB a − 1, resp. b − 1 times and all
parallel edges between wA and wB c − 1 times. Theorem 3 is a special case of
the following Theorem 5 for na = nb = nc = 1.

Theorem 5. Let H = W(ana , bnb , cnc), where a, b, c, na, nb, nc ∈ N such that
GCD(a, b, c) = 1, be bipartite. Then H-LIHom problem is solvable in polynomial
time.

Proof. Let H be a fixed Weight graph from the statement of the theorem. Let
wA, wB ∈ V (H) be of degrees 2na + nc and 2nb + nc respectively. As H is
bipartite and GCD(a, b, c) = 1, we conclude that c is odd and a and b are (not
necessarily distinct) even numbers.

Let G be an input graph. We assume that G is bipartite. If not, there is no
LI-homomorphism from G to H and the algorithm returns NO answer instantly.

First we partition big vertices of V (G) to two sets of the bipartition A and
B. Note that all vertices of A must be mapped to wA and all vertices of B to wB

or vice versa. We try both possibilities and without loss of generality we assume
that vertices of A are mapped to wA and vertices of B are mapped to wB .

We reduce H-LIHom problem to a flag factor problem of an auxiliary graph
G′ (of size polynomial in size of G).

Problem: Flag factor
Input: graph G′ and functions fl : V (G′)→ N0 and fu : V (G′)→ N
Output: spanning subgraph F of G′ satisfying fl(v) ≤ degF (v) ≤ fu(v) for all
v ∈ V (G′).

We call the edges of F matched edges. The flag factor problem is solvable
in polynomial time [5]. We use the flag factor to identify edges of G, which
should be mapped to bridge edges of H. Let us now describe G′. The auxiliary
graph G′ contains two sets of vertices A′ and B′ corresponding to A and B. We
define fu(v) = nc for all v ∈ B′ ∪ A′, fl(v) = degG(v) − 2na for all v ∈ A′ and
fl(v) = degG(v)− 2nb for all v ∈ B′.

For every (simple) path between big vertices u, v ∈ B(G) we construct a list
L of all possible mappings under some LI-homomorphism (since H is bipartite,
all these decompositions either change or keep parity) and we only distinguish
if these decompositions begin, resp. end by loop edge or bridge edge. In list L
we denote loop edge as “∼” and bridge edge as “−”. We join corresponding
u′ ∈ V (G′) and v′ ∈ V (G′) by gadget according to L as depicted in Figure 1
(note that corresponding lists for vertices u, v and v, u are symmetric and so
corresponding gadgets are symmetric as well).

We show that there exists a LI-homomorphism f : G → H if and only if
there exists a flag factor F of G′.

If f exists, we can get F in a following way: for every edge {u,w} ∈ E(G) such
that u ∈ B(G) and {u,w} is mapped to the bridge edge, we take an edge incident
to u′ in a gadget corresponding to a simple path containing an edge {u,w} to
F . For such F for every u ∈ B(G) holds that fl(u

′) ≤ degF (u′) ≤ fu(u′) and it
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is not hard to prove (because of choosing of appropriate gadgets in construction
of G′) that if F is not a flag factor then we can add to F some edges which are
not incident to any u′ for u ∈ B(G). So if a flag factor F does not exist, neither
does a LI-homomorphism f .

If a flag factor F exists, we show that a LI-homomorphism f : G → H also
exists. The choice of fl and fu assures that each vertex of A′, resp. B′ has at
most nc incident matched edges and at most 2na, resp. 2nb incident non-matched
edges.

Let v ∈ V (G) be big and v′ be the corresponding vertex in G′. Then if v ∈ A
we prescribe f(v) = wA and otherwise f(v) = wB . Let P be a simple path
beginning with v and g be the gadget corresponding to P in G′. If there is a
matched edge in g incident to v′, then f will map the beginning of P to some
bridge edge and to some loop edge incident to vertex f(v) otherwise. We do not
define f on P yet. We only prescribe one of decompositions {a−a, a−b, a−c, b−
c, b − b, c − c}, which splits P into paths of lengths a, b and c and it prescribes
which internal vertices of P are mapped to wA and wB . So, we have fixed which
vertices of G are mapped to wA and wB .

Let T be vertices of G which are mapped to big vertices of H. Note that also
vertices of degree less than three may be in T . Also note that a path P where
T ∩P are the only endpoints of P has length in {a, b, c}. We just need to decide
to which loop or bridge of H the path P will be mapped.

We create auxiliary graphs Ua, Ub, resp. Uc with vertex set {u ∈ T | f(u) =
wA}, {u ∈ T | f(u) = wB}, resp. T . For all x ∈ {a, b, c} two vertices of Ux are
joined by an edge if they are connected by a path of length x which is internally
disjoint with T and Ux contains a loop at vertex v if there is a cycle C of length
x where v = T ∩ C for x ∈ {a, b}. The graph Ua can be made 2na-regular by
adding vertices and edges. It is well known that any 2na-regular graph can be
partitioned to na 2-factors in polynomial time. For each 2-factor Z of Ua we use
one cycle Ca of length a of H and map vertices in cycles of Z to Ca.We treat
Ub in analogous way. Note that there are no loops in Uc. Graph Uc is bipartite
with maximum degree at most nc and by König’s theorem there exists an edge
coloring ϕ : E(Uc) → [nc]. We assign one simple path of length c of H to each
color class of ϕ. So f can be constructed from F .

All steps of the reduction can be computed in polynomial time and the flag
factor problem is also solvable in polynomial time. Hence we conclude that f can
be computed in polynomial time if exists or detect that it does not exist. ut

4 Proof of Theorem 4 (NP-complete case)

The goal of this section is to give a proof of Theorem 4 by showing a reduction
from 1-in-3 SAT or NAE-3-SAT. These problems ask for existence of an eval-
uation of formula in CNF with clauses of size exactly 3 such that in every clause
there is exactly one positive literal, resp. in every clause there exist at least one
positive as well as at least one negative literal. Both problems are NP-complete
by Schaefer [16]. Note that H-LIHom is in NP as a description of the desired
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homomorphism is of linear size and can be verified in polynomial time. Hence
we only need to proof NP-hardness.

We use the same basic notation as in the previous section. Let H be a fixed
non-bipartite Weight graph W(a, b, c) with big vertices wA and wB . Recall that
Theorem 2 implies a 6= b.

We start by restricting a, b and c by the following corollary of Theorem 1.

Corollary 1. If there exist x, y ∈ N such that c = ax = by, then H-LIHom is
NP-complete.
(proof is in Appendix)

Lemma 1. Let a, b, c ∈ N such that GCD(a, b, 2c) = 1. Then exist s, t, z ∈ N
such that as = bt + 2cz + c and t > z.
(proof is in Appendix)

We use the notation u ∼ n− v, where u, v ∈ {wA, wB} and n ∈ N to denote
existence of a LI-homomorphism f from a simple path u = v0v1 . . . vn = v to H
such that gf (v0, v1) is a loop edge and gf (vn, vn−1) is a bridge edge. Variants
where ∼ and − are combined differently are defined similarly. Also ' is used
instead of ∼ and − if the exact mapping is not known. We say that f is beginning
with gf (v0, v1) and f is ending with gf (vn, vn−1) on path v0v1 . . . vn.

The following corollary connects Lemma 1 and mappings of simple paths to
H.

Corollary 2. There exists k ∈ N such that there exist LI-homomorphisms f1
and f2 where f1 = wA ∼ k ∼ x, f2 = wB ∼ k − x and x ∈ {wA, wB}.

Proof. As H is non-bipartite, a, b and c satisfy the assumptions of Lemma 1.
Let k = as + az = bt + 2cz + az + c and x = wA. As k is divisible by a, f1 can
just use the the cycle of length a to achieve wA ∼ k ∼ wA. We construct the
mapping f2 starting from wA by z repetitions of the pattern cbca and then by
adding c and finally (t − z) times b. As t > z, we have that gf2(vk, vk−1) = b.
Hence we constructed wA − k ∼ wB . ut

In the following, we assume that k is the smallest possible number, whose
existence is guaranteed by the previous Corollary, such that there exists map-
pings f1 = wA ∼ k ' x and f2 = wB ∼ k ' x. We use y for the vertex of H
such that {x, y} = {wA, wB}.

Lemma 2. There do not exist mappings

1. both wA ∼ k − x and wB ∼ k − x
2. both wA ∼ k ∼ x and wB ∼ k ∼ x

(proof is in Appendix)

Without loss of generality, in what follows we assume that f1 = wA ∼ k ∼ x
and f2 = wB ∼ k− x (since Lemma 2 and the fact that W(a, b, c) is isomorphic
to W(b, a, c)).
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Lemma 3. There do not exist mappings

1. wA ∼ k ∼ y
2. wB ∼ k − y

(proof is in Appendix)

Let us now summarize the results of previous lemmas:

– mappings wA ∼ k ∼ x and wB ∼ k − x exist
– mappings wA ∼ k − y and wB ∼ k ∼ y may or may not exist
– mappings wA ∼ k − x, wA ∼ k ∼ y, wB ∼ k ∼ x, and wB ∼ k − y do not

exist

Next we introduce several gadgets. Let z ∈ {wA, wB} then Z-gadget is a
graph containing a vertex vz of degree one such that any LI-homomorphism
from Z-gadget to H maps vz to z and the edge incident with vz is mapped to a
loop edge. We call vz a z-vertex.

Lemma 4. For every z ∈ {wA, wB} there exists an Z-gadget.
(proof is in Appendix)

If z is wA, wB , resp. x then we denote appropriate Z-gadget as A-gadget,
B-gadget, resp. X-gadget and appropriate z-vertex as a-vertex, b-vertex, resp.
x-vertex.

A variable gadget V G(i) for i ∈ N is a graph containing two subsets of
vertices A and B such that |A| = |B| = i and vertices of A ∪ B have degree
two. Moreover, if a graph G contains a copy of V G(i) and all vertices of A ∪B
are big, then for every LI-homomorphism f : G→ H holds that edges adjacent
to vertices of A ∪ B not contained in V G(i) are mapped to loop edges and
either ∀v ∈ A : f(v) = wA and ∀v ∈ B : f(v) = wB or in the other case
∀v ∈ A : f(v) = wB and ∀v ∈ B : f(v) = wA.

Lemma 5. If c is not divisible neither by a nor b then there exists a variable
gadget V G(i) for all i ∈ N.
(proof is in Appendix)

Lemma 6. If c is divisible by exactly one of the numbers a or b then there exists
a variable gadget V G(i) for all i ∈ N.
(proof is in Appendix)

Recall that from the proofs of Lemmas 5 and 6 we know that for every
i ∈ N there exist variable gadget V G(i) such that there exist LI-homomorphisms
f1, f2 : V G(i) → H such that for every vertex v ∈ A ∪ B one edge incident to
v is mapped to loop edge and one is mapped to bridge edge (for both f1 and
f2) and ∀u ∈ A,∀v ∈ B : f1(u) = f2(v) = wA and f1(v) = f2(u) = wB . In the
following text we use only such variable gadgets.

The last gadget is a gadget for representing clauses, so called CL-gadget. It
contains three vertices of degree one z1, z2 and z3 which are connected by three
internally disjoint paths of length k to a vertex z4 of degree three.
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Lemma 7. Let f be a locally injective homomorphism from CL-gadget to H
such that f(z1), f(z2), f(z3) ∈ {wA, wB} and st(z1, z4), st(z2, z4) and st(z3, z4)
are loop edges. Then {f(z1), f(z2), f(z3)} = {wA, wB}.

Proof. Suppose for contradiction that |{f(z1), f(z2), f(z3)}| = 1. First, let
f(z1) = f(z2) = f(z3) = wA. If f(z4) = x, then we get a contradiction with
Lemma 2 as f implies existence of a decomposition wA ∼ k − x. If f(z4) = y,
then we get existence of wA ∼ k ∼ y contradicting Lemma 3.

The case f(z1) = f(z2) = f(z3) = wB is analogous. Both cases f(z4) = x
and f(z4) = y contradict Lemma 2 or Lemma 3. ut

Let % be a formula in CNF with clauses C1, . . . , Cm and variables p1, . . . , pn
where all clauses contain exactly three literals. We denote the number of occur-
rences of a variable p in % by occ(p).

Now describe a construction of a graph G%. First take a copy CLi of CL-
gadget for every i ∈ [m] and then take a copy V Gj of V G(occ(pj))-gadget for
every j ∈ [n] (see Figure 3 in Appendix for an example.). We denote A and B
of V Gj by Aj and Bj for every j ∈ [n] and {z1, z2, z3} of CLi by Zi and zj by
zij for every j ∈ {1, 2, 3, 4} and i ∈ [m].

Next we identify some vertices. If pj occurs as a positive literal in Ci, we
identify one vertex of Zi with one vertex of Aj and if the occurrence is negative,
we identify one of Zi with one of Bj . The identification can be done such that
every vertex is identified at most once as occ(pj) ≤ |Aj | = |Bj |. Finally, for every
w ∈ Aj ∪Bj of degree 2, we add a new vertex of degree one adjacent to w (so w
is big vertex).

We prove Theorem 4 as a consequence of the following Lemmas 8 and 9.

Lemma 8. If there exist both decompositions wA ∼ k−y and wB ∼ k ∼ y, then
H-LIHom is NP-hard.

Proof. Let % be an instance of NAE-3-SAT.
If there exists a LI-homomorphism f : G% → H, then we evaluate pj true if

f(Aj) = wB and false otherwise for all j ∈ [n] (this evaluation is well defined
because of definition of variable gadget). Lemma 7 implies that there is no clause
with all literals equal.

On the other hand let ϕ be an NAE evaluation of %. We predefine a LI-
homomorphism f : G% → H by mapping V Gj while requiring f(Aj) = wB if
%(pj) is true and f(Aj) = wA otherwise. This can be done as V Gj ’s are disjoint.
Observe that Zi = {wA, wB}. Hence f can be also defined on CLi for all i ∈ [m].

ut

Lemma 9. If at least one of decompositions wA ∼ k − y and wB ∼ k ∼ y does
not exist, then H-LIHom is NP-hard.

Proof. Let % be an instance of 1-in-3-SAT.
If there exists a LI-homomorphism f : G% → H, then we evaluate pj true

if f(Aj) = wB and false otherwise for all j ∈ [n]. The assumptions imply that
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f(zi4) = x for all i ∈ [n], hence exactly one vertex of f(zi1), f(zi2) and f(zi3) is
wB and so every clause has exactly one literal evaluated as true.

On the other hand let ϕ be an 1-in-3 evaluation of %. We predefine a LI-
homomorphism f : G% → H by mapping V Gj while requiring f(Aj) = wB if
%(pj) is true and f(Aj) = wA otherwise. This can be done as V Gj ’s are disjoint.
Next we map f(zi4) to x. As exactly one literal in every clause is true, exactly one
of f(zi1), f(zi2) and f(zi3) is wB . Hence f can be extended to a locally injective
homomorphism to H. ut

Recall that predefined mappings from proofs of Lemmas 8 and 9 can be
easily extended to edges and so to LI-homomorphisms (similarly as in the proof
of Theorem 5).

References

1. J. Abello, M. R. Fellows and J. C. Stillwell: On the complexity and combinatorics of
covering finite complexes, Australian Journal of Combinatorics 4 (1991), 103–112.

2. H. L. Bodlaender: The classification of coverings of processor networks, Journal of
Parallel Distributed Computing 6 (1989), 166–182.

3. J. Fiala: NP completeness of the edge precoloring extension problem on bipartite
graphs, Journal of Graph Theory 43 (2003), 156–160.

4. J. Fiala: Locally injective homomorphisms, disertation thesis (2000).
5. J. Fiala, and J. Kratochv́ıl: Complexity of partial covers of graphs, In Algorithms

and Computation, ISAAC (2001), LNCS 2223, 537–549.
6. J. Fiala, and J. Kratochv́ıl: Partial covers of graphs, Discussiones Mathematicae

Graph Theory 22 (2002), 89–99.
7. J. Fiala, and J. Kratochv́ıl: Locally injective graph homomorphism: Lists guarantee

dichotomy, Graph-Theoretical Concepts in Computer Science, WG (2006), LNCS
4271, 15–26.
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10. P. Hell and J. Nešetřil: On the complexity of H-colouring, Journal of Combinatorial
Theory, Series B 48 (1990), 92–110.

11. J. Kratochv́ıl, A. Proskurowski and J. A. Telle: Covering regular graphs, Journal
of Combinatorial Theory B 71 (1997), 1–16.

12. J. Kratochv́ıl, A. Proskurowski and J. A. Telle: Covering directed multigraphs I.
colored directed multigraphs, In Graph-Theoretical Concepts in Computer Science,
WG (1997), LNCS 1335, 242–257.

13. J. Kratochv́ıl, A. Proskurowski and J. A. Telle: Complexity of graph covering prob-
lems, Nordic Journal of Computing 5 (1998), 173–195.

14. P. Kristiansen and J. A. Telle: Generalized H-coloring of graphs, In Algorithms
and Computation, ISAAC 01 (2000), LNCS 1969, 456-466.
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Appendix

This Appendix contains the missing proofs and figures. We repeat the statements
for easier reading.

∼∼

∼−
1

−−
1 1

∼∼
∼−

0, 1

∼∼
−−

1 1

∼−
−−

0, 1 1

∼−
−∼

1

∼−
−∼
−− 1, 2

∼∼
−∼
−− 1 0, 1

∼∼
∼−
−∼ 0, 1

∼∼
∼−−∼−− 0, 1, 2

u v u′ v′

G G′

Fig. 1. Gadget joining vertices u′ and v′ in G′. The right gadget is chosen according
to possible decompositions of a simple path joining big vertices u and v in G. The
numbers below the vertices indicate the intervals given by fl and fu.

Corollary 1. If there exist x, y ∈ N such that c = ax = by, then H-LIHom is
NP-complete.

Proof. Let G be an instance of W(1, 1, 1)-LIHom problem where we ask for
existence of a locally injective homomorphism f from G toW(1, 1, 1). We denote
the big vertices of W(1, 1, 1) by uW and vW .

Let G′ be a graph obtained from G by making every vertex of G big by
adding pendant leaves to vertices of low degree and then subdividing every edge
c− 1 times.

It holds that cH{a,b,c} : a−k a, b−k b, c−c c, since c can be used at most once
in every decomposition of SPc and c = ax = by.

It is easy to see that if there exists LI-homomorphism f : G→W(1, 1, 1) then
there exists a LI-homomorphism f ′ from G′ to H (since allowed decompositions
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of SPc). To complete the proof we need to show that existence of f ′ : G′ → H
implies existence of f : G→W(1, 1, 1).

Let f ′ exists. Recall that vertices of G are in one-to-one correspondence to
big vertices of G′. For every t ∈ V (G) let t′ ∈ V (G′) be the corresponding vertex.
We define f(t) to be uW if f ′(t′) = wA and vW if f ′(t′) = wB . It is not hard
to prove that such predefined mapping f can be generalized to locally injective
homomorphism from G to W(1, 1, 1). ut

Lemma 1. Let a, b, c ∈ N such that GCD(a, b, 2c) = 1. Then exist s, t, z ∈ N
such that as = bt + 2cz + c and t > z.

Proof. Let d be GCD(b, 2c). Then by Proposition 2 there exist i, j ∈ Z such
that bi + (2c)j = d. As GCD(a, d) = 1 we get that there exist p, q ∈ Z such
that pd + qa = 1. Hence pd ≡ 1 mod a and thus exist l ∈ N such that ld ≡ −c
mod a. Therefore there exist z, t ∈ N such that t > z and bt+(2c)z ≡ −c mod a
which proves the lemma. ut

Lemma 2. There do not exist mappings

1. both wA ∼ k − x and wB ∼ k − x
2. both wA ∼ k ∼ x and wB ∼ k ∼ x

Proof. In the first case we observe that there exist mappings f ′1 = wA ∼ (k−c) '
y and f ′2 = wB ∼ (k−c) ' y contradicting the choice of k. In the second case we
consider mappings f ′′1 = wA ∼ (k − d) ' x and f ′′2 = wB ∼ (k − d) ' x, where
d is the length of the loop at x in H. This also contradicts the choice of k. ut

Lemma 3. There do not exist mappings

1. wA ∼ k ∼ y
2. wB ∼ k − y

Proof. We proceed case by case.

1. Suppose that there exists f ′ = wA ∼ k ∼ y. Recall that there exist f1 =
wA ∼ k ∼ x. As {x, y} = {wA, wB}, we can view wA as x and x, y as
wA, wB , which gives mappings wA ∼ k ∼ x and wB ∼ k ∼ x. Their existence
contradicts Lemma 2.

2. Suppose that there exists f ′ = wB ∼ k − y. Recall that there exist f2 =
wB ∼ k− x. As both mappings end with bridge edges, there exist mappings
f ′′ = wB ∼ (k − c) ∼ x and f ′2 = wB ∼ (k − c) ∼ y. As {x, y} = {wA, wB},
we can view x, y as wA, wB and obtain a contradiction with the choice of k.

ut
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Lemma 4. For every z ∈ {wA, wB} there exists an Z-gadget.

Proof. The Z-gadget can be constructed in the following way. Take two triangles
on vertices u1, u2, u3 and v1, v2, v3 (see Figure 2) and two paths with endpoints
u4, u5 of length a and v4, v5 of length b. Subdivide each edge of the first triangle
a − 1 times and b − 1 times for the second one. Then connect u1 and v1 by a
path of length c, add a vertex of degree 1 to u2, v2, u4 and v4. Finally, connected
u4, v3 and v4, u3 by paths of length c.

u1 v1

v3

v2

u4 u5

u3

u2

v4v5 c
a

a

a

cb
b

b

b

c a

Fig. 2. Gadget X.

By considering the ordering of {a, b, c} we get that ui must be mapped to
wA and vi to wB for 1 ≤ i ≤ 5. Then if z is wA then define u5 as z-vertex and
otherwise define v5 as z-vertex. Clearly the edge incident to z-vertex must be a
loop edge. ut

x1
1 a11 = z11 b11 x1

2

k c k

X X

x2
1

a21 = z12

b21

x2
2

k

c

k

X

X

x3
1

a31

b31 = z13

x3
2

k

c

k

X

X

z14 k
k

k

Fig. 3. Clause C1 = (p1 ∨ p2 ∨ ¬p3).
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Lemma 5. If c is not divisible neither by a nor b then there exists a variable
gadget V G(i) for all i ∈ N.

Proof. We first describe a construction of V G(i) and then argue that it is indeed
a variable gadget.

We start the construction by taking i copies of the X-gadget X1, . . . , Xi with
x-vertices x1, . . . , xi (see Figure 4). We continue by adding paths xjajbjxj+1 of
length three for all j ∈ [i] where xi+1 is x1. Finally, we subdivide both edges
incident to xj that are not contained in gadget Xj k−1 times and the edge ajbj
c− 1 times for all j ∈ [i]. The resulting graph is V G(i) and A = {aj : 1 ≤ j ≤ i}
and B = {bj : 1 ≤ j ≤ i}.

x1 a1 b1 x2 a2 b2 x3biaixi

k c k k c kkck

X X XX

Fig. 4. Gadget V G(i) from Lemma 5. Light lines indicate edges which will be present
in a graph containing the gadget.

Let G be a graph containing a copy of V G(i) where A ∪ B ⊆ B(G) and
f : G→ H be LI-homomorphism. Observe that f(xj) = x because it belongs to
a copy of X-gadget and one of the two edges incident to xj not contained in the
X-gadget is mapped to a loop edge and the other one is mapped to a bridge edge
for all j ∈ [i]. Since neither a nor b divides c, the only decomposition of a simple
path of length c is c−c c and so gf (aj , bj) = c = gf (bj , aj) and f(aj) 6= f(bj) for
every j ∈ [i].

Suppose that st(x1, a1) is a loop edge. We know that st(a1, x1) is a loop
edge (because st(a1, b1) is a bridge edge) and so f(a1) = wA and gf (a1, x1) = a
(because x ∼ k ∼ wA and Lemma 2). It means that f(b1) = wB and since
st(b1, x2) is a loop edge and f(x2) = x we have that st(x2, b1) is a bridge edge
and consequently st(x2, a2) is a loop edge. Now we can continue in the same way
in gadget V G(i) and we get that st(aj , bj) as well as st(bj , aj) is a bridge edge,
f(aj) = wA and f(bj) = wB for all j ∈ [i], what proves that V G(i) is a variable
gadget.

If st(x1, a1) is a bridge edge then st(x1, bi) is a loop edge and we can continue
in a similar way (but in an opposite direction) as in the previous paragraph.
We get that st(aj , bj) as well as st(bj , aj) is a bridge edge, f(aj) = wB and
f(bj) = wA for all j ∈ [i], what proves that V G(i) is a variable gadget. ut
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Lemma 6. If c is divisible by exactly one of the numbers a or b then there exists
a variable gadget V G(i) for all i ∈ N.

Proof. Without loss of generality we can suppose that c is divisible by a and
not divisible by b (otherwise we simply change a, resp. A-gadget by b, resp. B-
gadget in the proof). We prove this lemma in a similar way as Lemma 5. We
first describe a construction of V G(i) and then argue that it is indeed a variable
gadget.

We start the construction by taking i copies of the A-gadget A1, . . . , Ai with
a-vertices v1, . . . , vi (see Figure 5). We continue by adding paths vjajbjvj+1 of
length three for all j ∈ [i] where vi+1 is v1. Finally, we subdivide both edges
incident to vj that are not contained in gadget Aj c− 1 times and the edge ajbj
b+c−1 times for all j ∈ [i]. The resulting graph is V G(i) and A = {aj : 1 ≤ j ≤ i}
and B = {bj : 1 ≤ j ≤ i}.

v1 a1 b1 v2 a2 b2 v3biaivi

c b+ c c c b+ c ccb+ cc

A A AA

Fig. 5. Gadget V G(i) from Lemma 6. Light lines indicate edges which will be present
in a graph containing the gadget.

Since c is divisible by a and not divisible by b, the only possible decomposi-
tions of simple paths of length c and b + c are:

(c)H{a,b,c} : a−k a, c−c c

(b + c)H{a,b,c} : b−c c, (a−k a), (a−k c)

Recall that decompositions a −k a and a −k c of SPb+c are possible only if
a = 1, because otherwise b is divisible by a and we have GCD(a, b, c) = a > 1.

Let G be a graph containing a copy of V G(i) where A ∪ B ⊆ B(G) and
f : G → H be LI-homomorphism. Observe that f(vj) = wA because it belongs
to a copy of A-gadget and one of the two edges incident to vj not contained in
the A-gadget is mapped to a loop edge and the other one is mapped to a bridge
edge for all j ∈ [i].

Suppose that st(v1, a1) is a bridge edge. Then we have gf (v1, a1) = c =
gf (a1, v1) and f(a1) = wB . Then necessarily gf (a1, b1) = b, gf (b1, a1) = c and
f(b1) = wA, what imply gf (b1, v2) = a = gf (v2, b1) and gf (v2, a2) = c. We can
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continue in the same way in gadget V G(i) and we get that st(aj , vj) as well
as st(bj , aj) is a bridge edge, f(aj) = wB and f(bj) = wA for all j ∈ [i], what
proves that V G(i) is a variable gadget.

If st(v1, a1) is a loop edge then st(v1, bi) is a bridge edge and we can continue
in the similar way (but in the opposite direction) as in the previous paragraph.
We get that st(aj , bj) as well as st(bj , vj+1) is a bridge edge, f(aj) = wA and
f(bj) = wB for all j ∈ [i], what proves that V G(i) is a variable gadget. ut


