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Abstract. A Theta graph is a multigraph which is a union of at least
three internally disjoint paths that have the same two distinct end ver-
tices. We show full computational complexity characterization of the
problem of deciding the existence of a locally injective homomorphism
from an input graph G to any fixed Theta graph.
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1 Introduction

Let G be a graph. We denote its set of vertices by V (G) and its set of edges
by E(G). Graphs in this paper are generally simple. If they may have parallel
edges or loops, we explicitly say so. We denote the degree of a vertex v by degG(v)
and the set of all neighbors of v by NG(v). We omit G in the subscript if it is
clear from the context. By [n] we denote the set of integers {1, . . . , n}.

Let G and H be graphs. A homomorphism is an edge preserving mapping
f : G → H. A homomorphism is locally injective (resp. surjective, bijective)
if N(v) is mapped to N(f(v)) injectively (resp. surjectively, bijectively). A lo-
cally bijective homomorphism is also known as a covering projection or simply a
cover. Similarly, locally injective homomorphism is known as a partial covering
projection and a partial cover.

We consider the following decision problem. Let H be a fixed graph and G
be an input graph. Determine the existence of a locally injective (surjective, bi-
jective) homomorphism f : G→ H. We denote the problem by H-LIHom (resp.
H-LSHom, H-LBHom). If there is no local restriction on the homomorphism,
the problem is called H-Hom.

In this paper we consider the H-LIHom problem.

Problem: H-LIHom
Input: graph G
Question: Does there exist a locally injective homomorphism f : G→ H.

Locally injective homomorphisms are closely related to H(2, 1)-labelings,
which have applications in frequency assignment. Let H be a graph. An H(2, 1)-
labeling of a graph G is a mapping f : V (G) → V (H) such that every pair of
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adjacent vertices are mapped to distinct and nonadjacent vertices. Moreover,
image of every pair of vertices in distance two is two distinct vertices. The map-
ping f corresponds to a locally injective homomorphism to the complement of
H.

The computational complexity of H-Hom was fully determined by Hell
and Nešetřil [9]. They show that the problem is solvable in polynomial time
if H is bipartite and it is NP-complete otherwise.

The study of H-LSHom was initiated by Kristiansen and Telle [13] and com-
pleted by Fiala and Paulusma [8] who gave a full characterization by showing
that H-LSHom is NP-complete for every connected graph on at least three
vertices.

The complexity of locally bijective homomorphisms was first studied by Bod-
laender [2] and Abello et al. [1]. Despite the effort [10–12] the complete charac-
terization is not known.

Similarly for the locally injective homomorphism the dichotomy for the com-
plexity is not known. Some partial results can be found in [4, 5, 7]. Fiala and Kra-
tochv́ıl [6] also considered a list version of the problem and showed dichotomy.

Fiala and Kratochv́ıl [5] showed, that H-LBHom is reducible in polynomial
time to H-LIHom. Hence it makes sense to study the complexity of H-LIHom
where H-LBHom is solvable in polynomial time. This is the case for Theta
graphs, which we consider in this paper. Note that no other direct consequences
of complexity of H-Hom or H-SHom to H-LIHom are known.

Fiala and Kratochv́ıl [4] showed, that if Theta graph H contains only simple
paths of length a, then H-LIHom is always polynomial. They also showed that
if H contains only simple paths of two different lengths a and b, then:

– if both a and b are odd, then H-LIHom is polynomial,

– if a and b have different parity, then H-LIHom is NP-complete,

– if both a and b are even, then H-LIHom is as hard as H ′-LIHom, where H ′

is a Theta graph, that arise from H by replacing paths of length a, resp. b
by paths of lengths a

2 , resp. b
2 .

The study of Theta graphs continues in the work of Fiala et al. [7], which
proves NP-completeness for Theta graphs with exactly three odd different lengths
of simple paths. We extend the last result to all Theta graphs, which finishes
the complexity characterization of Theta graphs.

Theorem 1. Let H be a Theta graph with simple paths of at least three distinct
lengths. Then H-LIHom problem is NP-complete.

In the next section, we introduce several definitions and gadgets which we
use in NP-hardness reductions. In Section 3 we state necessary Lemmas for the
proof of Theorem 1. We postpone proofs of some Propositions and Lemmas to
Appendix due to the page limit for the paper.
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2 Definitions and Gadgets

A graph G is a Theta graph (or Θ-graph) if it is the union of at least three
internally disjoint paths that have the same two distinct end vertices. We denote
the two vertices of degree at least three by A and B. Note that if two paths
of the union are of length one, the resulting graph have parallel edges.

A Θ-graph T is denoted by Θ(at11 , a
t2
2 , . . . , a

tn
n ), where 1 ≤ a1 < a2 < · · · < an

and ti ≥ 1 for all 1 ≤ i ≤ n, if T is the union of paths of lengths a1, a2, . . . , an
and ti are the corresponding multiplicities. We write ai instead of a1i . We assume
that n ≥ 3 as the case n ≤ 2 is already solved [4].

Throughout this section we assume that T = Θ(at11 , . . . , a
tn
n ) is some

Θ-graph.
Let G be a graph and v1, v2, . . . , vn be a path in G. The path is simple if

v1 and vn are vertices of degree at least three and all inner vertices of the path
have degree two. We denote a simple path of length n by SPn.

Let G be a graph and f be a locally injective homomorphism from G to T .
Note that f must map all vertices of degree at least three to A or B in T . Hence
every end vertex of every simple path of G must be mapped to A or B. We call
a vertex special if it has degree at least three or if we insist that it is mapped to
A or B. Note that A and B are also special vertices and if v is a special vertex
of degree less than three, then adding extra pendant leaves forces, that v must
be mapped to A or B. We need to control what are the possible mappings of
simple paths. Let v1, v2, . . . , vl−1, vl be a simple path P . For a locally injective
homomorphism f , define a function gPf (v1, vl) = ai if the edge v1v2 is mapped
by f to an edge of SPai in T . We omit the superscript P if there is only one
simple path containing v1 and vl.

We say that SPn allows decomposition ai − aj if there exists a graph H
containing a simple path P of length n with end vertices u and v and a locally
injective homomorphism f : H → T such that gPf (u, v) = ai and gPf (v, u) = aj .
We denote the decomposition by ai−k aj (resp. ai−c aj) if it forces that f(u) =
f(v) (resp. f(u) 6= f(v)).

In case of x−k y (resp. x−c y) decomposition we say, that the decomposition
keeps (resp. changes) the parity.

Proposition 1. Every simple path SPai always allows decomposition ai −c ai
and does not allow decomposition ai−kai. Similarly, for i 6= j holds that SPai+aj
always allows decomposition ai −k aj and never allows ai −c aj.

The proof of Proposition 1 as well as proofs of the other propositions is in
Appendix.

Let M be a positive integer and E ⊆ {a1, a2, . . . an}. The following notation

MT
E : x1 − y1, x2 − y2, . . . , xs − ys, (z1 − w1), (z2 − w2), . . . , (zt − wt)

describes the list of all decompositions x− y of SPM where x, y ∈ E . Decom-
positions xi − yi must be possible and decompositions zj − wj are optional for
all i ∈ [t] and j ∈ [s]. Moreover, −k and −c can be used instead of just −.
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Now we introduce gadget BTz , which can be used for blocking a simple path
of length z at some vertex. It has a central vertex y which is for every i ∈ [n]
connected by paths of length ai to vertices vij where j ∈ [ti]. Moreover, every

vertex vij except vz1 has two extra pendant leaves (so vij is special). If X is a copy

of BTz , we refer to the vertex vz1 by X(w) or w if X is clear from the context.
Moreover, we demand that w is special. See Figure 1.

Fig. 1. BT
z and a blocking gadget

Proposition 2. Let G be a graph and let X be a copy of BTz in G. Moreover,
w has degree at least three. Suppose, that there exists a locally injective homo-
morphism f : G→ T . Then:

gf (w, y) = z = gf (y, w)

The gadget BTz blocks usage of one z at w by forcing T -LIHom to map the
path wy to SPz in T .

We usually need to use several copies of the gadget BTz at once. Let d1,
d2, . . . , dn be nonnegative integers such that di ≤ ti for all i ∈ [n]. We define the
(ad11 , . . . , a

dn
n )-blocking gadget to be the union of ti − di copies of BTai for every

i ∈ [n] where there is only one vertex w shared by all of them. If X is a copy of
the blocking gadget, we refer to the vertex w by X(w) or w if X is clear from
the context. Note that we will consider only copies of the blocking gadget where
vertex w is special.

In the notation we omit a0 and the superscript di if di = 1. In further
figures, we depict the (ad11 , . . . , a

dn
n )-blocking gadget by a triangle with one vertex

corresponding to w and with inscribed text ad11 , . . . , a
dn
n , see Figure 1.

Proposition 3. Let G be a graph and X be a copy of (ad11 , a
d2
2 , . . . , a

dn
n )-blocking

gadget in G where degG(w) ≥ 3. Let P1, P2, . . . , Pk be the all simple paths,
starting at w with without any other intersection with the blocking gadget X
and with end points u1, u2, . . . , uk. Suppose, that there exists a locally injective
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homomorphism f : G→ T . Then k ≤
∑n
i=1 di and

∀i ∈ [n] : |{uj , g
Pj

f (w, uj) = ai}| ≤ di.

Note that the blocking gadget on its own is not sufficient for reducing
Θ(ak, bl, cm, at44 , . . . , a

tn
n ) to Θ(a, b, c). The obstacle is that a simple path may

have different possible inner decompositions and the blocking gadget cannot be
used inside paths in general.

Apart from blocking some paths we also need to force that several special
vertices are mapped to the same vertex (to A or B). Hence we introduce the
following gadget.

Definition 1. Let T = Θ(ak, bl, cm, at44 , . . . , a
tn
n ) be a Θ-graph. Let r ≥ 2 be an

integer and N be the smallest power of two such that N ≥ 2r. Define a graph
PCTa (r) (see Figure 2) with special vertices u1, u2, . . . , u2N−1, u

′
1, u
′
2, . . . , u

′
N−1,

v1, v2, . . . , v2N−1, v
′
1, v′2, . . . , v

′
N−1 to be a graph constructed in the following way:

– ∀i ∈ {1, 2, . . . , N − 1}, connect vertex u′i with vertices ui, u2i and u2i+1 by
paths of lengths c, a and b (in this order),

– ∀i ∈ {1, 2, . . . , N − 1}, connect vertex v′i with vertices vi, v2i and v2i+1 by
paths of lengths c, a and b (in this order),

– ∀i ∈ {2, 3, . . . , N − 1}, take copies Ui and Vi of (a, c)-blocking gadget if i is
even and (b, c)-blocking gadget if i is odd and identify vertex ui with Ui(w)
and vertex vi with Vi(w),

– ∀i ∈ {1, 2, . . . , N − 1}, take copies U ′i and V ′i of (a, b, c)-blocking gadget and
identify vertex u′i with U ′i(w) and vertex v′i with V ′i (w),

– identify vertex u′1 with v1 and vertex v′1 with u1.

Fig. 2. Graph PCT
a (N) and local neighborhood of vertices ui and u′

i

Proposition 4. Let r ≥ 2 be an integer, T = Θ(ak, bl, cm, at44 , . . . , a
tn
n ) be a

Θ-graph and let Z be a copy of graph PCTa (r) in a graph G. Let N be as in
the definition of PCTa (r). Suppose, that there exists a locally injective homomor-
phism f : G → T , such that for all i ∈ [2N − 1] : f(Z(ui)), f(Z(vi)) ∈ {A,B}.
Then for all even i, j ∈ {N,N + 1, . . . , 2N − 1} the following hold:

f(Z(ui)) = f(Z(uj)) 6= f(Z(vj)) = f(Z(vi)),
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gf (Z(ui), Z(u′i/2)) = a = gf (Z(vj), Z(v′j/2)).

Let Z be a copy of PCTa (r). For i ∈ [N ] we define Z(xi) to be uN+2i−2
and Z(yi) to be vN+2i−2. Similarly as the gadget PCTa (r), we define a gadget
PCTb (r), with the only difference, that a and b are swapped in the construction.
We call the graphs PCTa (r) and PCTb (r) parity controllers. With parity con-
trollers we are able to create arbitrary many special vertices, which are mapped
to the same vertex of T in every locally injective homomorphism to T . Moreover,
each of these special vertices is an end point of a path which must be mapped
to a simple path of length a (resp. b) in T .

For some T , we reduce 3-SAT or NAE-3-SAT to T -LIHom. In the reduction
we use copies the following gadget for representing clauses.

Let T = Θ(ak, bl, cm, at44 , . . . , a
tn
n ) be a Θ-graph. We define T -clause gadget

to be a graph with special vertices u0, u1, u2, u3 such that, for all i ∈ {1, 2, 3},
vertex ui is connected to u0 by a path of length a + b + c and u0 is identified
with the vertex X(w), where X is a copy of the (a, b, c)-blocking gadget. If Y
is a copy of T -clause gadget, we refer to the vertices uj by Y (uj) or uj if Y is
clear from the context for all j ∈ {0, 1, 2, 3}. Note that we will consider only such
copies of T -clause gadget, that vertices u1, u2 and u3 are special. See Figure 3.

Fig. 3. T -clause gadget

Let Y be a copy of the T -clause gadget and γ ∈ {a, b}. We say, that T is
γ-positive if and only if there exists a locally injective homomorphism f : Y → T
such that:

– f(u0) 6= f(u1) = f(u2) = f(u3) ∈ {A,B},
– gf (u1, u0) = gf (u2, u0) = gf (u3, u0) = γ.

Proposition 5. Let a < b < c be positive integers, such that a + b 6= c. Let
T = Θ(ak, bl, cm, at44 , . . . , a

tn
n ) be a Θ-graph and Y be the T -clause gadget. Let

γ ∈ {a, b} and x, y, z ∈ {γ, c}.
Then there exists a locally injective homomorphism f : Y → T satisfying:

– f(u0) 6= f(u1) = f(u2) = f(u3) ∈ {A,B},
– gf (u1, u0) = x, gf (u2, u0) = y, gf (u3, u0) = z
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if and only if at least one of the following conditions hold:

– {x, y, z} = {γ, c},
– x = y = z = γ and T is γ-positive.

3 NP-Completeness reductions

In this section we give several lemmas, which each show NP-completeness for
some Θ-graphs. Together, they cover all Θ-graphs and hence they imply Theo-
rem 1. We present the proof only of Lemma 1. Proofs of the other lemmas are
in Appendix.

Note that the lemmas show only NP-hardness as H-LIHom is clearly in NP
for any H.

In this section we assume that T = Θ(ak, bl, cm, at44 , . . . , a
tn
n ).

Lemmas are grouped into three blocks, which reflect what type of reduction
is used. Reductions in each group are similar. The first group shows NP-hardness
from 3-SAT and NAE-3-SAT.

Lemma 1. Let T be a Θ-graph such that a+ b 6= c and
(a + b)Ta,b,c : a− b, (a− a)

(a + c)Ta,b,c : a− c, (a− a), (b− b)
then T -LIHom is NP-complete.

Proof. Let φ = ∨pi=1(c1i ∧ c2i ∧ c3i ) be a boolean formula in conjunctive normal
form with variables s1, s2, . . . , sr (where every clause has exactly 3 literals).
Let var, neg and ord be functions from the set of all literals of the formula φ,
such that var(cji ) is the variable corresponding to the literal cji , neg(cji ) is 0 if

the literal cji is a positive occurrence of the variable var(cji ) and neg(cji ) = 1

otherwise, and ord(cji ) is the order of occurrence of the literal of the variable

var(cji ) in φ.

Fig. 4. Variable gadget α

Define variable gadget α of order h (see Figure 4) as a graph with special
vertices v0, v1, . . . , v3h−1 such that for all i ∈ {0, . . . , h−1}, vertices v3i and v3i+1
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are connected by a path of length a + b and vertices v3i+1 and v3i+2 as well as
vertices v3i+2 and v3i+3 are connected by a path of length a+ c (all indices are
counted by modulo 3h). For every i ∈ {0, . . . , h− 1} we take two copies B0

i and
B1
i of the (a, b, c)-blocking gadget and identify the vertex B0

i (w) with the vertex
v3i and the vertex B1

i (w) with the vertex v3i+1, and for every j = 0, . . . , h − 1
we take a copy B2

i of the (a, c)-blocking gadget and identify the vertex B2
i (w)

with the vertex v3j+2.

For every i ∈ [r], let ni be the number of occurrences of the variable si in
the formula φ, let Xi be a copy of the variable gadget α of order ni + 1. For
every j ∈ [p] let Zj be a copy of the the clause gadget and let Y be a copy
of the parity controller PCTb (r). Now define a graph Gφ, which contains copies
X1, . . . , Xr, Z1, . . . , Zp, Y and for every literal cdj of the formula φ, if var(cdj ) = si
then we identify the vertices Xi(v3ord(cdj )+neg(cdj )−3) and Zj(ud). For every i ∈ [r]

we replace the copy of the (a, c)-blocking gadget on vertex Xi(v3ni+2) by a
copy of the (a, b, c)-blocking gadget and identify vertices Xi(v3ni+2) and Y (xi)
(clearly the combination of the (a, b, c)-blocking gadget and Y creates for the
vertex Xi(v3ni+2) the same constraints as the (a, c)-blocking gadget), and to
every vertex Xi(vj) and Y (yi) of degree less then three we add new pendant
leaves (so all vertices Xi(vj) and Y (yi) are special).

We claim, that if T is b-positive then φ is satisfiable if and only if there exists
a locally injective homomorphism from Gφ to T . And if T is not b-positive then
φ is NAE-satisfiable if and only if there exists a locally injective homomorphism
from Gφ to T . The fact that 3-SAT and NAE-3-SAT are NP-complete problems
and T -LIHom is in NP imply that T -LIHom is NP-complete.

At first suppose that T is b-positive and there exists a locally injective ho-
momorphism f : Gφ → T . Let X be one of the copies of the variable gadget α of
order d in Gφ. Since (a+b)Ta,b,c : a−kb, (a−a), we know that gf (v0, v1) ∈ {a, b}.
If gf (v0, v1) = b, then necessarily gf (v1, v0) = a. But since there is a copy of
the (a, b, c)-blocking gadget on vertex v1 we know, that gf (v1, v2) is b or c. Since
(a + c)Ta,b,c : a −k c, (a − a), (b − b) if gf (v1, v2) = b, then gf (v2, v1) = b,
which is not possible because of the copy of the (a, c)-blocking gadget on v2 and
so gf (v1, v2) = c and necessary gf (v2, v1) = a, gf (v2, v3) = c, gf (v3, v2) = a and
then necessarily gf (v3, v4) = b. And since the gadget X is symmetric, we can con-
tinue in the same way until we reach the vertex v0 again. Then ∀i ∈ {0, . . . , d−2}
if there exists a simple path from v3i to Z(u0) for some copy Z of the clause gad-
get, then gf (v3i, Z(u0)) = c (the corresponding literal is false) and analogically
for the simple path from v3i+1 to Z(u0), for which holds gf (v3i+1, Z(u0)) = b (the
corresponding literal is true). In this case we say that the variable corresponding
to X is false.

If gf (v0, v1) = a then we use a similar idea as in the previous paragraph,
but we argue in the counterclockwise order (gf (v0, v3d−1) must be c, etc.) and
analogically we get, that if appropriate simple paths exists then gf (v3i, Z(u0)) =
b (the corresponding literal is true), resp. gf (v3i+1, Z(u0)) = c (the corresponding
literal is false). In this case we say that the variable corresponding to X is true.
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We claim that in this evaluation every clause of φ is satisfied. If not, then
there exists a copy of the clause gadget Z corresponding to some clause and
gf (u1, u0) = gf (u2, u0) = gf (u3, u0) = c in Z. Since there is a copy of the
(a, b, c)-blocking gadget at vertex u0, without loss of generality we suppose that
gf (u0, u1) = c. Thus the simple path u0u1 of length a+b+c allows decomposition
c − c. But this is not possible because 0 < a + b < c + a and a + b 6= c, a
contradiction.

On the other side, if T is b-positive and formula φ is satisfiable, then there ex-
ists a locally injective homomorphism f : Gφ → T . Suppose that e : {s1, . . . , sr} →
{true, false} is a satisfying evaluation of the variables of φ and predefine a func-
tion f : Gφ → T in the following way. For every i ∈ [r] let ni be the number
of occurrences of variable si in φ and let Xi be a copy of the variable gadget α
corresponding to si, for every j = 0, . . . , 3ni + 2 define f(vj) = A and

– if e(si) = true, then for all j ∈ {0, .., ni} : gf (v3j , v3j+1) = a,
gf (v3j+1, v3j) = b, gf (v3j+1, v3j+2) = a, gf (v3j+2, v3j+1) = c,
gf (v3j+2, v3j+3) = a, gf (v3j+3, v3j+2) = c,

– if e(si) = false, then for all j ∈ {0, .., ni} : gf (v3j , v3j+1) = b,
gf (v3j+1, v3j) = a, gf (v3j+1, v3j+2) = c, gf (v3j+2, v3j+1) = a,
gf (v3j+2, v3j+3) = c, gf (v3j+3, v3j+2) = a.

It is now easy to extend the predefined function f to a locally injective
homomorphism from the graph Gφ to T .

If T is not b-positive, the proof is similar to the previous case with the only
difference, that we must to prove that in any locally injective homomorphism
f : Gφ → T , for no copy Z of the clause gadget holds gf (u1, u0) = gf (u2, u0) =
gf (3, u0) = b. If such gadget Z exists, then necessarily f(u1) = f(u2) = f(u3)
(because of parity controller Y and construction of variable gadgets). Because
of Proposition 5 we have that f(u0) = f(u1) and because of (a, b, c)-blocking
gadget on vertex u0 we have, that the simple path of length a+b+c must allows
decomposition b−k c. But this is clearly not possible and so in every clause, there
exists at least one positive and at least one negative literal. So NAE-3-SAT can
be reduced to the T -LIHom.

ut

Lemma 2. Let T be a Θ-graph such that a+ b 6= c and
(a + b)Ta,b,c : a− b, (a− a)

(c)Ta,b,c : b− b, c− c, (a− a)

then T -LIHom is NP-complete.

Lemma 3. Let T be a Θ-graph such that a+ b 6= c and
(a + b)Ta,b,c : a− b, (a− a)

(c)Ta,b,c : a− b, c− c, (a− a)
then T -LIHom is NP-complete.

While in Lemmas 1, 2 and 3 we reduced 3-SAT, resp. NAE-3-SAT to the
T -LIHom, in the next Lemmas 4, 5, 6 and 7, the NP-complete problem of
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determining, if there exists a covering projection from a (simple) graph to the
weight graph is reduced to the T -LIHom. The weight graph is a multigraph on
vertices C and D joined by one edge and one loop at each of them. It is known,
that covering projection (or simply cover) from a graph G = (V,E) to the weight
graph exists if and only if G is cubic and we can split the set of vertices V to
two sets V1 and V2 such, that every vertex in V1 has exactly two neighbors in V1
and every vertex in V2 has exactly two neighbors in V2.

Lemma 4. Let T be a Θ-graph where
(c)Ta,b,c : a−k b, c− c, (b− b) or (c)Ta,b,c : a−k b, c− c, (a− a)

then T -LIHom is NP-complete.

Lemma 5. Let T be a Θ-graph for which l ≥ 2. If there exists positive integer
p such that

(p)Ta,b : a−c a, b−k b
then T -LIHom is NP-complete.

Lemma 6. Let T be a Θ-graph where
(a + c)Ta,b,c : a− c, b−c b, (a− a), (a− b)

then T -LIHom is NP-complete.

Lemma 7. Let T be a Θ-graph where
(c)Ta,b,c : a−k a, a−k b, b−k b, c− c

then T -LIHom is NP-complete.

It is well known, that we can color edges of every cubic bipartite graph with 3
colors in such a way, that all edges incident with one vertex have distinct colors,
while determine, if such an edge 3-coloring exists for general cubic graphs is NP-
complete problem. However, deciding if a given precoloring of a cubic bipartite
graph can be extended to the proper edge 3-coloring of the whole graph is also
NP-complete [3]. We prove Lemmas 8, 9 and 10 by reducing this problem to
T -LIHom.

Lemma 8. Let T be a Θ-graph where
(c)Ta,b,c : a−c b, c− c, (b− b)

then T -LIHom is NP-complete.

Lemma 9. Let T be a Θ-graph where
(a + c)Ta,b,c : a− c, b−k b, (a− a), (a− b), (b−c b)

then T -LIHom is NP-complete.

Lemma 10. Let T be a Θ-graph where k = 1 and
(c)Ta,b,c : a−c a, a−c b, b−c b, c− c

then T -LIHom is NP-complete.

The lemmas are main tools for proving the following two theorems. They
clearly cover all Theta graphs and hence imply Theorem 1. Recall that k is the
multiplicity of the shortest simple path in T .

Theorem 2. Let T be a Θ-graph where k = 1. Then T -LIHom is NP-complete.

Theorem 3. Let T be a Θ-graph where k ≥ 2. Then T -LIHom is NP-complete.
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Appendix

This Appendix contains all the missing proofs from Section 2 and Section 3.

Proposition 1. Every simple path SPai always allows decomposition ai −c ai
and does not allow decomposition ai−kai. Similarly, for i 6= j holds that SPai+aj
always allows decomposition ai −k aj and never allows ai −c aj.

Proof. Let v0, v1, . . . , vai be vertices of a simple path SPai . And let A = u0, u1,
. . . , uai = B be vertices of a simple path of length ai in T . Then we can define
a locally injective homomorphism f : SPai → T as f(vk) = uk, for all k =
0, 1, . . . , ai. Such a homomorphism proves that SPai allows the decomposition
ai −c ai.

On the other hand, assume that SPai allows some decomposition ai −k ai
and denote the corresponding locally injective homomorphism by f : SPai → T .
Without loss of generality we can suppose that f(v0) = u0 = A and f(v1) = u1.
Since for every k ∈ {1, 2, . . . , ai− 1}, vertex vk+1 must be mapped by f to some
neighbor of f(vk) and f is locally injective, necessarily f(vk+1) = uk+1 and
especially f(vai) = B, a contradiction with the assumption that decomposition
ai −k ai keeps the parity.

Next suppose that vertices of SPai+aj are v′0, v
′
1, . . . , v

′
ai+aj and let B =

w0, w1, . . . , waj = A be vertices of a simple path of length aj in T . Then we can
define locally injective homomorphism f ′ : SPai+aj → T as f ′(v′k) = uk, for all
k = 0, 1, . . . , ai and f ′(v′ai+k′) = wk′ , for all k′ = 1, 2, . . . , aj . Such homomor-
phism proves that SPai+aj allows the decomposition ai −k aj .

For the rest of the proof assume that SPai+aj allows decomposition ai −c aj
and denote the corresponding locally injective homomorphism by f ′ : SPai+aj →
T . Without loss of generality we can suppose that f ′(v′0) = u0 = A, f ′(v′1) =
u1, f

′(v′ai+aj−1) = w1 and f ′(v′ai+aj ) = w0 = B. Then necessarily B = uai =
f ′(v′ai) = waj = A, a contradiction with the assumption that decomposition
ai −c aj changes the parity.

Proposition 2. Let G be a graph and let X be a copy of BTz in G. Moreover,
w has degree at least three. Suppose, that there exists a locally injective homo-
morphism f : G→ T . Then:

gf (w, y) = z = gf (y, w)

Proof. Since the only possible decomposition of SPa1 is a1 − a1, necessarily for
all j ∈ [t1] : gf (y, v1j ) = gf (v1j , y) = ai. Since f is locally injective, it is clear

that for all i ≥ 2, j ∈ [ti] : gf (vij , y) 6= a1 6= gf (y, vij). Now we can continue by
induction on i and in each step we show, that the only possible decomposition
of SPai is ai− ai (because all shorter simple paths in T are already blocked). It
means, that for very i ∈ [n], j ∈ [ti] : gf (y, vij) = gf (vij , y) = ai. ut
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Proposition 3. Let G be a graph and X be a copy of (ad11 , a
d2
2 , . . . , a

dn
n )-blocking

gadget in G where degG(w) ≥ 3. Let P1, P2, . . . , Pk be the all simple paths,
starting at w with without any other intersection with the blocking gadget X
and with end points u1, u2, . . . , uk. Suppose, that there exists a locally injective
homomorphism f : G→ T . Then k ≤

∑n
i=1 di and

∀i ∈ [n] : |{uj , g
Pj

f (w, uj) = ai}| ≤ di.

Proof. In any locally injective homomorphism f : X → T , for every vertex
v ∈ V (X) holds that degX(v) ≤ degT (f(v)). Then we have k +

∑n
i=1(ti − di) =

degX(w) ≤ degT (f(w)) =
∑n
i=1 ti, which imply k ≤

∑n
i=1 di.

If for some i ∈ [n] : |{uj , g
Pj

f (w, uj) = ai}| > di, then the number of simple
paths beginning in w and ending in some u ∈ V (G), such that gf (w, u) = ai
is more than ti − di + di = ti (using Proposition 2 and the fact, that there are
ti − di copies of BTai gadget on vertex w), which contradicts the locally injective
constraints. ut

Proposition 4. Let r ≥ 2 be an integer, T = Θ(ak, bl, cm, at44 , . . . , a
tn
n ) be a

Θ-graph and let Z be a copy of graph PCTa (r) in a graph G. Let N be as in
the definition of PCTa (r). Suppose, that there exists a locally injective homomor-
phism f : G → T , such that for all i ∈ [2N − 1] : f(Z(ui)), f(Z(vi)) ∈ {A,B}.
Then for all even i, j ∈ {N,N + 1, . . . , 2N − 1} hold the following:

f(Z(ui)) = f(Z(uj)) 6= f(Z(vj)) = f(Z(vi)),

gf (Z(ui), Z(u′i/2)) = a = gf (Z(vj), Z(v′j/2)).

Proof. Because of the copies of the blocking gadgets on vertices u, u′, v and v′,
it is clear that all simple paths of length a, resp. b and c must be mapped by
f to the paths SPa, resp. SPb and SPc in T . That imply that for all even
i ∈ {N,N + 1, . . . , 2N − 1} : gf (Z(ui), Z(u′i/2)) = a = gf (Z(vj), Z(v′j/2)).

By Proposition 1, we know that all these decompositions (a − a of SPa,
b − b of SPb and c − c of SPc) change the parity and it trivially imply that
f(Z(ui)) = f(Z(uj)) 6= f(Z(vj)) = f(Z(vi)) for all i ∈ {N,N + 1, . . . , 2N − 1}.

ut

Proposition 5. Let a < b < c be positive integers, such that a + b 6= c. Let
T = Θ(ak, bl, cm, at44 , . . . , a

tn
n ) be a Θ-graph and Y be the T -clause gadget. Let

γ ∈ {a, b} and x, y, z ∈ {γ, c}.
Then there exists a locally injective homomorphism f : Y → T satisfying:

– f(u0) 6= f(u1) = f(u2) = f(u3) ∈ {A,B},
– gf (u1, u0) = x, gf (u2, u0) = y, gf (u3, u0) = z

if and only if at least one of the following conditions hold:

– {x, y, z} = {γ, c}



14 B. Lidický and M. Tesař

– x = y = z = γ and T is γ-positive.

Proof. Without loss of generality assume that γ = a (case γ = b can be proved
analogically). Suppose that f : Y → T is a locally injective homomorphism,
such that f(u0) 6= f(u1) = f(u2) = f(u3) ∈ {A,B}, x = y = z and gf (u1, u0) =
gf (u2, u0) = gf (u3, u0) = x. If x = a then T must a-positive by the definition of
a-positive graph. Next suppose that x = y = z = c. Without loss of generality
gf (u0, u1) = c (since there is an (a, b, c)-blocking gadget on vertex u0). So we
have gf (u1, u0) = gf (u0, u1) = c. But there exists no decomposition c − c of a
simple path of length a+ b+ c (because c 6= a+ b and c+ ai + c > a+ b+ c for
every i ∈ [n]), a contradiction.

For the other implication we can assume that {x, y, z} = {a, c} (if x = y =
z = a then T is a-positive by definition). It is clear that (a + b + c)Ta,b,c always
allows decompositions a −c b, a −c c and b −c c and using these decompositions
we can simply define a locally injective homomorphism f : Y → T , such that
f(u0) 6= f(u1) = f(u2) = f(u3) ∈ {A,B} and gf (u1, u0) = x, gf (u2, u0) =
y, gf (u3, u0) = z ut

Lemma 2. Let T be a Θ-graph such that a+ b 6= c and
(a + b)Ta,b,c : a− b, (a− a)

(c)Ta,b,c : b− b, c− c, (a− a)

then T -LIHom is NP-complete.

Proof. At first suppose that (a + b)Ta,b,c allows a decomposition a − a. Then

necessarily (b)Ta,b,c also allows a decomposition a − a (in fact k ≥ 2 and b is

divisible by a). Hence (c)Ta,b,c allows a−b (we can take a b−b decomposition of

SPc and substitute one b to several a’s ) - contrary with the fact, that (c)Ta,b,c
does not allow a decomposition a − b. So necessarily (a + b)Ta,b,c : a −k b (a
decomposition a− b must keep the parity by Proposition 1).

Fig. 5. Variable gadget β
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Define a variable gadget β of order h (see Figure 5) as a graph with special
vertices v0, v

′
0, v1, v

′
1, . . . , v

′
3h−1 such that, for all i ∈ {0, . . . , h − 1}, pairs of

vertices (v3i, v3i+1) and (v′3i, v
′
3i+1) are connected by paths of length a + b and

pairs of vertices (v3i+1, v3i+2), (v3i+2, v
′
3i), (v′3i+1, v

′
3i+2) and (v′3i+2, v3i+3) are

connected by paths of length c (all indices are counted modulo 3h). For every
i ∈ {0, . . . , h− 1} we take six copies Xi, Yi, Zi, X

′
i, Y

′
i , Z

′
i of the (a, b, c)-blocking

gadget and identify vertices Xi(w), Yi(w), Zi(w), X ′i(w), Y ′i (w) and Z ′i(w) with
vertices v3i, v3i+1, v3i+2, v

′
3i, v

′
3i+1 and v′3i+2 (in this order).

For a boolean formula φ = ∨pi=1(c1i ∧c2i ∧c3i ) in conjunctive normal form with
variables s1, s2, . . . , sr, where every clause has exactly 3 literals, define a graph
G′φ in the same way as in the proof of Lemma 1 with the only difference, that
instead of copies of the variable gadget α, we use copies of the variable gadget β
(with corresponding orders). In every copy X of the variable gadget β if (c)Ta,b,c
allows some decomposition b −c b then we identify all vertices v3i+2 and v′3i+2

with appropriate vertices of suitable a-parity controller (Proposition 4) in such
a way, that all these vertices will be mapped to the same vertex in any locally
injective homomorphism to the graph T . If (c)Ta,b,c allows only decomposition
b −k b, then we identify all vertices v3i+2 and v′3i+2 with appropriate vertices
of suitable a-parity controller (Proposition 4) in such a way, that in any locally
injective homomorphism f to the graph T , all vertices v3i+2 will be mapped to
the same vertex f(v0), all vertices v′3i+2 will be mapped to the same vertex f(v′0)
and f(v0) 6= f(v′0). We denote such graph by Gφ.

The reduction from the NP-complete problem (3-SAT or NAE-3-SAT) is
very similar to the reduction used in the proof of Lemma 1. More precisely, if
T is a-positive, then we reduce 3-SAT to the T -LIHom problem, else we reduce
NAE-3-SAT to T -LIHom.

Suppose, that T is a-positive and there exists a locally injective homomor-
phism f : Gφ → T . Then we prove, that formula φ is satisfiable. Let us fix one
copy X of the variable gadget β of order d. We know that gf (v0, v1) ∈ {a, b} (be-
cause of (a+ b)Ta,b,c : a−k b). If gf (v0, v1) = a then gf (v1, v0) = b, gf (v1, v2) =
c = gf (v2, v1) (because a’s are blocked on the vertex v2), gf (v2, v

′
0) = b =

gf (v′0, v2) and necessarily gf (v′0, v
′
1) = a and we can continue this way in the

clockwise order. Then it is not hard to prove, that ∀i ∈ {0, . . . , d − 1}, if there
exists a simple path from v3i to Z(u0) for some copy Z of the clause gadget,
then gf (v3i, Z(u0)) = c (the corresponding literal is false) and analogously for a
simple path from v3i+1 to Z(u0), for which holds that gf (v3i+1, Z(u0)) = a (the
corresponding literal is true). In this case we say, that the variable corresponding
to X is false.

If gf (v0, v1) = b, then we can continue in the same way in the counterclock-
wise order and we get gf (v1, v0) = a, gf (v1, v2) = b = gf (v2, v1), gf (v2, v

′
0) = c =

gf (v′0, v2) and necessarily gf (v′0, v
′
1) = b and so on. Then it is not hard to prove,

that ∀i ∈ {0 . . . , d− 1}, if there exists a simple path from v3i to Z(u0) for some
copy Z of the clause gadget, then gf (v3i, Z(u0)) = a (the corresponding literal
is true) and analogically for a simple path from v3i+1 to Z(u0), for which holds
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gf (v3i+1, Z(u0)) = c (the corresponding literal is false). In this case we say that
the variable corresponding to X is true.

It is an easy exercise to show, that such an evaluation of the variables
s1, s2, . . . , sr is well defined and satisfy the formula φ (by Proposition 5).

On the other side, if T is a-positive and formula φ is satisfiable, then we
show that there exists locally injective homomorphism f : Gφ → T . Suppose
that e : {s1, . . . , sr} → {true, false} is satisfying evaluation of variables of
formula φ and we predefine a function f : Gφ → T in a following way. For every
i ∈ [r] let ni be number of occurrences of the variable si in φ and let Xi be a
copy of the variable gadget β of order ni corresponding to the variable si, for
every j = 0, . . . , ni − 1 define f(Xi(v3j)) = f(Xi(v3j+1)) = A and

– if e(si) = true then for all j ∈ {0, .., ni − 1}; gf (v3j , v3j+1) = b,
gf (v3j+1, v3j) = a, gf (v3j+1, v3j+2) = b = gf (v3j+2, v3j+1), gf (v3j+2, v

′
3j) =

= c = gf (v′3j , v3j+2), gf (v′3j , v
′
3j+1) = b, gf (v′3j+1, v

′
3j) = a,

gf (v′3j+1, v
′
3j+2) = b = gf (v′3j+2, v

′
3j+1), gf (v′3j+2, v3j+3) =

= c = gf (v3j+3, v
′
3j+2), or

– if e(si) = false then for all j ∈ {0, .., ni − 1}; gf (v3j , v3j+1) = a,
gf (v3j+1, v3j) = b, gf (v3j+1, v3j+2) = c = gf (v3j+2, v3j+1), gf (v3j+2, v

′
3j) =

= b = gf (v′3j , v3j+2), gf (v′3j , v
′
3j+1) = a, gf (v′3j+1, v

′
3j) = b,

gf (v′3j+1, v
′
3j+2) = c = gf (v′3j+2, v

′
3j+1), gf (v′3j+2, v3j+3) =

= b = gf (v3j+3, v
′
3j+2)

Now it is an easy exercise (with respect to the definition of the graph Gφ),
that such predefined function f can be extended to a proper locally injective
homomorphism from Gφ to T .

If T is not a-positive, the proof is very similar to the previous case with the
only difference, that in any locally injective homomorphism f : Gφ → T for
every copy Z of the clause gadget at least one of the values gf (Z(u1), Z(u0)),
gf (Z(u2), Z(u0)) and gf (Z(u3), Z(u0)) must be c, what correspond to the sit-
uation, that in every clause there exists at least one literal evaluated by false.
Hence we can reduce NAE-3-SAT to the T -LIHom. ut

Lemma 3. Let T be a Θ-graph such that a+ b 6= c and
(a + b)Ta,b,c : a− b, (a− a)

(c)Ta,b,c : a− b, c− c, (a− a)
then T -LIHom is NP-complete.

Proof. The proof is very similar to the proof of Lemma 2 with too differences.
Instead of asking if (c)Ta,b,c allows a decomposition b −c b, we ask if (c)Ta,b,c
allows a decomposition a −c b and instead of asking, if T is a-positive, we ask
if T is b-positive. Then we define a graph Gφ in the same way as in the proof
of Lemma 2, where φ = ∨pi=1(c1i ∧ c2i ∧ c3i ) is a boolean formula in conjunctive
normal form (CNF) with variables s1, s2, . . . , sr, where every clause has exactly
3 literals.
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Now suppose that T is b-positive and let φ be a formula in CNF. We prove
that φ is satisfiable if and only if there exists a locally injective homomorphism
f : Gφ → T . Suppose that such mapping f exists. Take one copy X of the the
variable gadget β of order d. We know, that gf (v1, v0) ∈ {a, b} (because (a +
b)Ta,b,c : a−b, (a−a)). If gf (v1, v0) = a, then gf (v1, v2) = c = gf (v2, v1) (because
all a’s are blocked on the vertex v2), gf (v2, v

′
0) = b, gf (v′0, v2) = a and necessary

gf (v′0, v
′
1) = b and we can continue in this way in the clockwise order (and finally

gf (v0, v1) = b). Then it is not hard to prove, that ∀i ∈ {0, . . . , d − 1}, if there
exists a simple path from v3i to Z(u0) for some copy Z of the clause gadget,
then gf (v3i, Z(u0)) = c (the corresponding literal is false) and analogically for a
simple path from v3i+1 to Z(u0), for which holds that gf (v3i+1, Z(u0)) = b (the
corresponding literal is true). In this case we say that the variable corresponding
to X is false.

If gf (v1, v0) = b then gf (v0, v1) = a and we can continue in the same way
as in the previous paragraph in the counterclockwise order and we get that
∀i ∈ {0, . . . , d − 1}, if there exists a simple path from v3i to Z(u0) for some
copy Z of the clause gadget, then gf (v3i, Z(u0)) = b (the corresponding literal
is true) and analogically for a simple path from v3i+1 to Z(u0), for which holds
that gf (v3i+1, Z(u0)) = c (the corresponding literal is false). In this case we say
that the variable corresponding to X is true.

It is easy an exercise to show, that such evaluation of the variables s1, . . . , sr
is a satisfying evaluation of formula φ.

On the other side, if T is b-positive and the formula φ is satisfiable, then we
show, that there exists a locally injective homomorphism f : Gφ → T . Suppose
that e : {s1, . . . , sr} → {true, false} is a satisfying evaluation of the variables
of formula φ and we predefine a function f : Gφ → T in the following way. For
every i ∈ {1, . . . , r}, let ni be the number of occurrences of the variable si in φ
and let Xi be the copy of the variable gadget β of order ni corresponding to the
variable si, for every j = 0, . . . , ni − 1, define f(Xi(v3j)) = f(Xi(v3j+1)) = A
and

– if e(si) = true, then for all j ∈ {0, .., ni − 1}; gf (v3j , v3j+1) = a,
gf (v3j+1, v3j) = b, gf (v3j+1, v3j+2) = a, gf (v3j+2, v3j+1) = b,
gf (v3j+2, v

′
3j) = c, gf (v′3j , v3j+2) = c, gf (v′3j , v

′
3j+1) = a, gf (v′3j+1, v

′
3j) = b,

gf (v′3j+1, v
′
3j+2) = a, gf (v′3j+2, v

′
3j+1) = b, gf (v′3j+2, v3j+3) = c,

gf (v3j+3, v
′
3j+2) = c,

– if e(si) = false, then for all j ∈ {0, .., ni − 1}; gf (v3j , v3j+1) = b,
gf (v3j+1, v3j) = a, gf (v3j+1, v3j+2) = c, gf (v3j+2, v3j+1) = c,
gf (v3j+2, v

′
3j) = b, gf (v′3j , v3j+2) = a, gf (v′3j , v

′
3j+1) = b, gf (v′3j+1, v

′
3j) = a,

gf (v′3j+1, v
′
3j+2) = c, gf (v′3j+2, v

′
3j+1) = c, gf (v′3j+2, v3j+3) = b,

gf (v3j+3, v
′
3j+2) = a.

Now it is an easy exercise (with respect to the definition of the graph Gφ),
that the predefined function f can be extended to a locally injective homomor-
phism of the graph Gφ to T .

If T is not b-positive, then the only difference is that for every locally in-
jective homomorphism f : Gφ → Θ and for every copy Z of the clause gadget
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gf (Z(u1), Z(u0)) 6= b, gf (Z(u2), Z(u0)) 6= b or gf (Z(u3), Z(u0)) 6= b, what corre-
sponds to the situation, that in every clause exists at least one literal evaluated
by false, and so we can reduce NAE-3-SAT to the Θ-LIHom. ut

Lemma 4. Let T be a Θ-graph where
(c)Ta,b,c : a−k b, c− c, (b− b) or (c)Ta,b,c : a−k b, c− c, (a− a)

then T -LIHom is NP-complete.

Proof. We prove only the case, where (c)Ta,b,c : a−k b, c− c, (b− b). Since the
only fact, we will use about a, b and c is that a 6= b 6= c 6= a, we can easily change
this proof to a proof of the other the case where (c)Ta,b,c : a−k b, c− c, (a− a).

Let H = (VH , EH) be a (simple) cubic graph with vertices VH = {u1,
u2, . . . , uh}. For this graph we create a graph GH in the following way: we
take h copies X1, X2, . . . , Xh of the (a, b, c)-blocking gadget and for every edge
uiuj ∈ EH of H, we add a path of length c between vertices Xi(w) and Xj(w).
Denote the vertices X1(w), X2(w), . . . , Xh(w) simply by v1, v2, . . . , vh.

To prove Lemma 4, it is sufficient to show, that the graph H covers the
weight graph if and only if there exists a locally injective homomorphism from
GH to T .

Suppose that f : GH → T is a locally injective homomorphism. For every
i ∈ [h] let ui1, ui2 and ui3 be the distinct neighbors of the vertex ui in the
graph H. Since there is a copy of the (a, b, c)-blocking gadget on every vertex
vi, it is clear that {gf (vi, vi1), gf (vi, vi2), gf (vi, vi3)} = {a, b, c}. Since (c)Ta,b,c :
a−kb, c−c, (b−b), an easy counting shows, that for every i, j such that uiuj ∈ EH ,
gf (vi, vj) 6= b or gf (vj , vi) 6= b (decomposition b− b can not occur on any SPc).

Now we can define a partition of vertices of the graph H in the following
way V1 = {u ∈ VH , f(u) = A} and V2 = {u ∈ VH , f(u) = B}. Since every c− c
decomposition of (c)Ta,b,c changes the parity (Lemma 1), it is clear, that using
such partition of V , we can easily construct a covering projection of H to the
weight graph.

On the other side suppose, that there exists a covering projection from H to
the weight graph. Fix one such cover and let V1 and V2 be the corresponding
partitions of VH and predefine a function f : GH → T in the following way:

– if u ∈ V1 then f(u) = A
– if u ∈ V2 then f(u) = B
– if ui ∈ V1, uj ∈ V2;uiuj ∈ EH , then gf (vi, vj) = c = gf (vj , vi)

It is an easy exercise to show, that such predefined function f can be extended
to a locally injective homomorphism from GH to T . ut

Lemma 5. Let T be a Θ-graph for which l ≥ 2. If there exists a positive integer
p such that

(p)Ta,b : a−c a, b−k b
then T -LIHom is NP-complete.
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Proof. We prove this Lemma similarly as Lemma 4 (reducing the cover to the
weight graph to T -LIHom). Let H = (VH , EH) be a (simple) cubic graph with
vertices VH = {u1, u2, . . . , uh}. We take h copies X1, X2, . . . , Xh of the (a, b, b)-
blocking gadget and for every edge uiuj ∈ EH of H, we add a path of length p
between the vertices Xi(w) and Xj(w) and denote such graph by GH .

Now it is an easy exercise (similar to the one in the proof of Lemma 4) to
show that H covers the weight graph if and only if there exists a locally injective
homomorphism from GH to T . ut

Lemma 6. Let T be a Θ-graph where
(a + c)Ta,b,c : a− c, b−c b, (a− a), (a− b)

then T -LIHom is NP-complete.

Proof. We prove this Lemma similarly as Lemma 4 (reducing the cover to the
weight graph to T -LIHom). Let H = (VH , EH) be a (simple) cubic graph with
vertices VH = {u1, u2, . . . , uh}. Then we take h copies X1, X2, . . . , Xh of the
(a, b, c)-blocking gadget and for every edge uiuj ∈ EH of H, we add a path of
length a + c between the vertices Xi(w) and Xj(w) and denote such graph by
GH .

Similarly as in Lemma 4, but using the fact, that neither decomposition a−a
nor a− b of (a+ c)Ta,b,c can occur in any locally injective homomorphism from
GH to T , it is not hard to prove, that H covers the weight graph if and only if
there exists a locally injective homomorphism from GH to T . ut

Lemma 7. Let T be a Θ-graph where
(c)Ta,b,c : a−k a, a−k b, b−k b, c− c

then T -LIHom is NP-complete.

Proof. We prove this Lemma similarly as Lemma 4 (reducing the cover to the
weight graph to T -LIHom). Let H = (VH , EH) be a (simple) cubic graph with
vertices VH = {u1, u2, . . . , uh}. Take h copies X1, X2, . . . , Xh of the (a, b, c)-
blocking gadget and for every edge uiuj ∈ EH of H, we add a path of length c
between the vertices Xi(w) and Xj(w). Denote such graph by GH .

Similarly as in Lemma 4, it is not hard to prove, that in every locally injective
homomorphism f : GH → T , every vertex u ∈ VH has exactly two neighbors
mapped to the vertex f(u) ∈ T (by mapping f). So if there exists a locally injec-
tive homomorphism from GH to T , then H covers the weight graph. On the other
side if H covers the weight graph, then we can easily find a locally injective ho-
momorphism from GH to the T (similarly as in the proof of Lemma 4). ut

Lemma 8. Let T be a Θ-graph where
(c)Ta,b,c : a−c b, c− c, (b− b)

then T -LIHom is NP-complete.
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Proof. Let H = (VH , EH) be a (simple) cubic bipartite graph with parts V1 =
{u1, u2, . . . , uh} and V2 = {u′1, u′2, . . . , u′h}. Then we take 2h copiesX1, X

′
1, X2, X

′
2, . . . , Xh, X

′
h

of the (a, b, c)-blocking gadget and denote the verticesX1(w),X ′1(w), X2(w), X ′2(w), . . . , X ′h(w)
simply by v1, v

′
1, v2, v

′
2, . . . , v

′
h. Let E1, E2, E3 ⊂ EH be disjoint sets of precolored

edges (without loss of generality, we can assume, that we use colors 1, 2 and 3
and that Ei is the set of edges precolored by color i), then:

– ∀uiu′j ∈ E1: take a copy X of the gadget BTa and a copy Y of the gadget

BTb and identify vi with X(w) and v′j with Y (w)

– ∀uiu′j ∈ E2: take a copy X of the gadget BTb and a copy Y of the gadget

BTa and identify vi with X(w) and v′j with Y (w)

– ∀uiu′j ∈ E3: take two copies X,Y of the gadget BTc and identify vi with
X(w) and v′j with Y (w)

– ∀uiu′j ∈ EH \ (E1 ∪E2 ∪E3): add a path of length c between vertices vi and
v′j

Denote this graph by GH . To prove Lemma 8, it is enough to show, that
the edge precoloring of the graph H with 3 colors can be extended to a proper
3-edge coloring of the graph H if and only if there exists a locally injective
homomorphism from GH to T .

Suppose that f : GH → T is a locally injective homomorphism. Then we
extend the precoloring in the following way:

– if uiu
′
j ∈ EH \ (E1 ∪ E2 ∪ E3), gf (vi, v

′
j) = a and gf (v′j , vi) = b, then color

the edge uiu
′
j by color 1

– if uiu
′
j ∈ EH \ (E1 ∪ E2 ∪ E3), gf (vi, v

′
j) = b and gf (v′j , vi) = a, then color

the edge uiu
′
j by color 2

– if uiu
′
j ∈ EH \ (E1 ∪ E2 ∪ E3), gf (vi, v

′
j) = c and gf (v′j , vi) = c, then color

the edge uiu
′
j by color 3

From the construction of graph GH and allowed decompositions of (c)Ta,b,c
(recall that since there is a copy of the (a, b, c)-blocking gadget on every vertex
vi and v′i, the only occurred decompositions of SPc can be a− b and c− c) it is
an easy exercise to show, that every edge in the graph H has exactly one color
and all edges incident to one vertex in the graph H have different colors.

Now suppose that a 3-edge precoloring of the cubic bipartite graph H can be
extended to a proper 3-edge coloring with colors {1, 2, 3} and fix such extension
function col : EH \ (E1 ∪E2 ∪E3)→ {1, 2, 3}. We fix one SPa, one SPb and one
SPc path in T and predefine a function f : GH → T in the following way:

– ∀i ∈ {1, 2, . . . , h}: f(vi) = A and f(v′i) = B
– if uiu

′
j ∈ EH \ (E1 ∪ E2 ∪ E3) and col(uiu

′
j) = 1, then gf (vi, v

′
j) = a and

gf (v′j , vi) = b
– if uiu

′
j ∈ EH \ (E1 ∪ E2 ∪ E3) and col(uiu

′
j) = 2, then gf (vi, v

′
j) = b and

gf (v′j , vi) = a
– if uiu

′
j ∈ EH \ (E1 ∪ E2 ∪ E3) and col(uiu

′
j) = 3, then gf (vi, v

′
j) = c and

gf (v′j , vi) = c
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It is again an easy exercise to show, that f can be extended to a locally
injective homomorphism from GH to T . ut

Lemma 9. Let T be a Θ-graph where
(a + c)Ta,b,c : a− c, b−k b, (a− a), (a− b), (b−c b)

then T -LIHom is NP-complete.

Proof. If (a + c)Ta,b,c : a−k c, b−k b then we can prove Lemma 9 in a similar
way as Lemma 8, with the difference that instead of simple paths SPa, SPb, SPc,
we will use simple paths SPa, SPc and SPb (recall that in the proof of Lemma 8
the only fact about a, b and c we used, was that a 6= b 6= c 6= a) and we have to
be a little bit more careful, when we predefine a function f : GH → T , because
now we need for all i ∈ [h]: f(vi) = A = f(v′i) (all other steps are exactly the
same).

If (a + c)Ta,b,c allows decompositions b−c b, a− a or a− b, then necessarily
k ≥ 2 or l ≥ 2 (since these decompositions can only use SPa and SPb paths and
there exists a decomposition b−k b). Take the graph GH from the previous case
(when (a + c)Ta,b,c : a −k c, b −k b), substitute all copies of (a, b, c)-blocking

gadget by copies of the (a2, b, c)-blocking gadget (if k ≥ 2) or by copies of the
(a, b2, c)-blocking gadget (if k = 1) and use the appropriate a-parity controller

(if k ≥ 2) or b-parity controller (if k = 1) to create a graph GH such, that in

every locally injective homomorphism from f : GH → T , ∀i, j : f(vi) = f(v′j).

Now it is an easy exercise to show, that if f : GH → T is a locally injective
homomorphism, then decompositions of all Θ-paths between the vertices vi and
v′j must be a −k c or b −k b, and these decompositions define a proper 3-edge
coloring of the graph H (similarly as in the proof of Lemma 8). On the other
side, if a partial 3-edge precoloring of the graph H can be extended to a proper
3-edge coloring, then it is not hard to find a locally injective homomorphism
from GH to T (again analogically as in the proof of Lemma 8). ut

Lemma 10. Let T be a Θ-graph where k = 1 and
(c)Ta,b,c : a−c a, a−c b, b−c b, c− c

then T -LIHom is NP-complete.

Proof. Since (c)Ta,b,c : a −c a, a−c b, b−c b, c− c, it is easy to show that l ≥ 2
(because if l = 1, then there cannot be two consecutive paths neither of length
a nor b in any decomposition of SPc ). Then it is clear that (c + b)Ta,b,c allows
a −k a (just take a −c a decomposition of SPc and insert one path of length
b to this decomposition) and c −k b. On the other side (c + b)Ta,b,c does not
allow c − c and c − a (because c − c is too short, resp. too long and if it allows
decomposition c− a, then (b)Ta,b,c must allow a decomposition a− a, which is
not possible since k = 1) and we have

(b + c)Ta,b,c : a−k a, b−k c, (a−c a), (a− b), (b− b)
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And now we can prove this Lemma in the same way as Lemma 9. The only
difference is that instead of simple paths SPa, SPb and SPc, we use simple paths
SPb, SPa, and SPc (recall, that in the proof of Lemma 9 we used only fact, that
a 6= b 6= c 6= a). ut

Theorem 2. Let T be a Θ-graph where k = 1. Then T -LIHom is NP-complete.

Proof. If c = a+ b then clearly (c)Ta,b,c : a−k b, c−c c, (a− a) (Proposition 1)
and using Lemma 4 we have, that T -LIHom is NP-complete. For the rest of the
proof, we assume, that c 6= a+ b.

By analysis of possible decompositions it is not hard to prove, that:
(a + b)Ta,b,c : a−k b, (a− a)

(a + c)Ta,b,c : a−k c, (a− a), (a− b), (b− b)
If (a + c)Ta,b,c does not allow any decomposition a− b, then (a + c)Ta,b,c :

a −k c, (a − a), (b − b) and T -LIHom is NP-complete by Lemma 1. So we can
assume, that (a + c)Ta,b,c always allows some decomposition a− b.

If (a+c)Ta,b,c does not allow any decomposition a−a, then (a+c)Ta,b,c : a−k
c, a− b, (b− b). It can be shown, that in this case (c)Ta,b,c allows decompositions
c−c and b−b (because in every decomposition a−b of SPa+c, the only convenient
simple path of T following the former SPa is SPb). On the other side, (c)Ta,b,c
neither allows decompositions a− c, b− c (because of its total length) nor a− b
(because (a+c)Ta,b,c does not allow a−a), so we have (c)Ta,b,c : b−b, c−c, (a−a)
and T -LIHom is NP-complete by Lemma 2.

Now we can assume, that (a + c)Ta,b,c : a−k c, a− a, a− b, (b− b) and by a
similar argument, as in the previous paragraph, we have:

(c)Ta,b,c : a− b, b− b, c− c, (a− a)
We continue by distinguishing two cases depending on the existence of de-

composition a− a of (c)Ta,b,c:

1. If (c)Ta,b,c : a− b, b− b, c− c, then we know that there exists a− b decom-

position of (c)Ta,b,c , but there is no a − a decomposition. It means (using

c 6= a + b), that there is only one decomposition a − b of (c)Ta,b,c (and
necessarily c = a+ b+ b+ · · ·+ b) and this decomposition either changes or
keeps the parity. Using the fact, that every c − c decomposition of (c)Ta,b,c
changes the parity (Proposition 1), we have two possibilities:

(a) If decomposition a− b of (c)Ta,b,c changes the parity, then T -LIHom is
NP-complete by Lemma 8.

(b) If decomposition a − b of (c)Ta,b,c keeps the parity, then T -LIHom is
NP-complete by Lemma 4.

2. If (c)Ta,b,c : a − a, a − b, b − b, c − c, then we have the following three
possibilities:

(a) If all a − a, a − b, b − b decompositions keep the parity, then T -LIHom
is NP-complete by Lemma 7.
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(b) If all a−a, a− b, b− b decompositions change the parity, then T -LIHom
is NP-complete by Lemma 10.

(c) If there exists (at least one) parity changing a − a, a − b or b − b de-
composition and (at least one) parity keeping a − a, a − b or b − b de-
composition, then there must exist numbers i, j, i′, j′ ∈ N0 such that
c = ia + jb = i′a + j′b; i > i′, i ≤ j + 1, i′ ≤ j′ + 1 and i + j have
different parity than i′ + j′ (these couples i, j, resp. i′, j′ correspond to
the appropriate decompositions, because these decompositions can use
only simple paths SPa and SPb) and necessarily l ≥ 2 (because k = 1).
From all such quadruples i, j, i′, j′, we choose the one with minimal i− i′
and define p = (i − i′)a + (i − i′ − 1)b = (j′ − j + i − i′ − 1)b. It is
clear, that (i− i′) + (i− i′ − 1) is odd and j′ − j + i− i′ − 1 is even, so
(p)Ta,b allows decompositions a−c a and b−k b. If (p)Ta,b allows one of
the decompositions a −k a, b −c b or a − b, it means, that there exists
i′′, j′′ ∈ N0 such that p = i′′a + j′′b, i′′ ≤ j′′ + 1, 0 < i′′ < i − i′. But
in this case, we can find a quadruple i0, j0, i

′
0, j
′
0, with smaller i0 − i′0 -

which is a contradiction to our choice of the quadruple i, j, i′, j′. So we
have:

(p)Ta,b : a−c a, b−k b
and T -LIHom is NP-complete by Lemma 5.

ut

Theorem 3. Let T be a Θ-graph where k ≥ 2. Then T -LIHom is NP-complete.

Proof. If c = a + b, then similarly as in the previous proof of Theorem 2,
(c)Ta,b,c : a −k b, c −c c, (a − a) and by Lemma 4 we get, that T -LIHom is
NP-complete. For the rest of the proof, we assume, that c 6= a+ b.

By a case analysis, it is not hard to prove, that:

(a + b)Ta,b,c : a−k b, (a− a)

(a + c)Ta,b,c : a−k c, (a− a), (a− b), (b− b)
If (a + c)Ta,b,c does not allow any decomposition a− b, then (a + c)Ta,b,c :

a −k c, (a − a), (b − b) and T -LIHom is NP-complete by Lemma 1. So we can
assume, that (a + c)Ta,b,c always allows some decomposition a− b.

If (a + c)Ta,b,c does not allow any decomposition b − b, then

(a + c)Ta,b,c : a −k c, a − b, (a − a). It can be shown, that in this case (c)Ta,b,c
neither allows decompositions a − c, b − c nor b − b (because if (c)Ta,b,c allows

b − b, then (a + c)Ta,b,c allows b − b as well - contrary) and (c)Ta,b,c allows

decompositions c−c c and a− b (because in decomposition a− b of (a + c)Ta,b,c
the only convenient simple path of T following the former SPa is SPa, because
in the other case (c)Ta,b,c allows decomposition b − b). So we have (c)Ta,b,c :
a− b, c− c, (a− a) and T -LIHom is NP-complete by Lemma 3.

Now we can assume, that (a + c)Ta,b,c allows some decomposition b − b. If
there exists such b− b decomposition which keeps the parity, then T -LIHom is
NP-complete by Lemma 9, else we have
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(a + c)Ta,b,c : a− b, a−c, b−c b, (a− a)
and then T -LIHom is NP-complete by Lemma 6. ut


