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Abstract. It is known that every planar graph has a planar embedding where edges are rep-
resented by non-crossing straight-line segments. We study the planar slope number, i.e., the
minimum number of distinct edge-slopes in such a drawing of a planar graph with maximum
degree A. We show that the planar slope number of every planar partial 3-tree and also every
plane partial 3-tree is at most O(A®). In particular, we answer the question of Dujmovié et al.
[Computational Geometry 38 (3), pp. 194-212 (2007)] whether there is a function f such that
plane maximal outerplanar graphs can be drawn using at most f(A) slopes.
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1. Introduction

The slope number of a graph G was introduced by Wade and Chu [13]. It is defined as
the minimum number of distinct edge-slopes in a straight-line drawing of G. Clearly, the
slope number of G is at most the number of edges of GG, and it is at least half of the
maximum degree A of G.

Dujmovié¢ et al. [2] asked whether there was a function f such that each graph with
maximum degree A could be drawn using at most f(A) slopes. In general, the answer
is no due to a result of Barat et al. [1]. Later, Pach and Pélvolgyi [12] and Dujmovié et
al. [3] proved that for every A > 5, there are graphs of maximum degree A that need an
arbitrarily large number of slopes.

On the other hand, Keszegh et al. [7] proved that every graph of maximum degree
three can be drawn using at most five slopes, and if we additionally assume that the
graph is connected and has at least one vertex of degree less than three then four slopes
suffice. Mukkamala and Szegedy [10] have shown that four slopes also suffice for every
connected cubic graph. It was further strengthened by Mukkamala and Pélvolgyi [11] by
showing that four basic slopes {0, /4, 7/2, 37 /4} suffice for every cubic graph. Dujmovié
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et al. [3] give a number of bounds in terms of the maximum degree: for interval graphs,
cocomparability graphs, or AT-free graphs. All the results mentioned so far are related to
straight-line drawings which are not necessarily non-crossing.

It is known that every planar graph GG can be drawn so that edges of GG are represented
by non-crossing segments [6]. We call such a planar drawing a straight-line embedding of G.
In this paper, we examine the minimum number of slopes in a straight-line embedding of
a planar graph.

In this paper, we make the (standard) distinction between planar graphs, which are
graphs that admit a plane embedding, and plane graphs, which are graphs accompanied
with a fixed prescribed combinatorial embedding, i.e., a prescribed face structure, includ-
ing a prescribed outer face. Accordingly, we distinguish between the planar slope number
of a planar graph G, which is the smallest number of slopes needed to construct any
straight-line embedding of GG, as opposed to the plane slope number of a plane graph G,
which is the smallest number of slopes needed to realize the prescribed combinatorial
embedding of G as a straight-line embedding.

The research of slope parameters related to plane embedding was initiated by Dujmovié¢
et al. [2]. In [4], there are numerous results for the plane slope number of various classes
of graphs. For instance, it is proved that every plane 3-tree can be drawn using at most
2n slopes, where n is its number of vertices. It is also shown that every 3-connected plane
cubic graph can be drawn using three slopes, except three edges on the outer face.

Recently, Keszegh, Pach and Palvélgyi [8] have shown that any plane graph of maxi-
mum degree A can be drawn with 2°(?) slopes. Their argument is based on a represen-
tation of planar graphs by touching disks.

In this paper, we study both the plane slope number and the planar slope number. The
lower bounds of [1,3,12] for bounded-degree graphs do not apply to our case, because the
constructed graphs with large slope numbers are not planar. Moreover, the upper bounds
of [7,10] give drawings that contain crossings even for planar graphs.

For a fixed k € N, a k-tree is defined recursively as follows. A complete graph on k
vertices is a k-tree. If G is a k-tree and K is a k-clique of GG, then the graph formed by
adding a new vertex to G and making it adjacent to all vertices of K is also a k-tree. A
subgraph of a k-tree is called a partial k-tree.

We present several upper bounds on the plane and planar slope number in terms of
the maximum degree A. The most general result of this paper is the following theorem,
which deals with plane partial 3-trees.

Theorem 1.1. The plane slope number of any plane partial 3-tree with mazimum degree
A is at most O(A).

Note that the above theorem implies that the planar slope number of any planar partial
3-tree is also at most O(A?).

Since every outerplanar graph is also a partial 3-tree, the result above answers a ques-
tion of Dujmovié et al. [4], who asked whether a plane maximal outerplanar graph can be
drawn using at most f(A) slopes.

Unlike the results of Keszegh, Pach and Palvélgyi [8], our arguments are only applicable
to a restricted class of planar graphs. On the other hand, our bound is polynomial in A
rather than exponential, and moreover, our proof is constructive.

A weaker version of our results has been announced in an extended abstract that was
presented at Graph Drawing 2009 [5].
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2. Preliminaries

Let us introduce some basic terminology and notation that will be used throughout this
paper.

Let s be a segment in the plane. The smallest angle a € [0, 7) such that s can be made
horizontal by a clockwise rotation by «, is called the slope of s. The directed slope of a
directed segment is an angle o/ € [0, 27) defined analogously.

A plane graph is called a near triangulation if all its faces, except possibly the outer
face, are triangles.

3. Plane partial 3-trees

In this section we present the proof of Theorem 1.1. We start with some observations
about the structure of plane 3-trees. Throughout this section, we assume that A is a fixed
integer.

It is known that any plane 3-tree can be generated from a triangle by a sequence of
vertex-insertions into inner faces. Here, a vertex-insertion is an operation that consists of
creating a new vertex in the interior of a face, and then connecting the new vertex to all
the three vertices of the surrounding face, thus subdividing the face into three new faces.

For a plane partial 3-tree G we define the level of a vertex v as the smallest integer
k such that there is a set Vj of k vertices of G with the property that v is on the outer
face of the plane graph G — V}. Let G be a plane partial 3-tree. An edge of G is called
balanced if it connects two vertices of the same level of G. An edge that is not balanced
is called tilted. Similarly, a face of G whose all vertices belong to the same level is called
balanced, and any other face is called tilted. In a plane 3-tree, the level of a vertex v can
also be equivalently defined as the length of the shortest path from v to a vertex on the
outer face. However, this definition cannot be used for plane partial 3-trees.

Note that whenever we insert a new vertex v into an inner face of a 3-tree, the level of
v is one higher than the minimum level of its three neighbors; note also that the level of
all the remaining vertices of the 3-tree is not affected by the insertion of a new vertex.

Let u, v be a pair of vertices forming an edge. A bubble over uv is an outerplanar plane
near triangulation that contains the edge uv on the boundary of the outer face. The edge
uv is called the root of the bubble. A trivial bubble is a bubble that has no other edge
apart from the root edge. A double bubble over uv is a union of two bubbles over uv which
have only u and v in common and are attached to uv from its opposite sides. A leg is a
graph L created from a path P by adding a double bubble over every edge of P. The path
P is called the spine of L and the endpoints of P are also referred to as the endpoints of
the leg. Note that a single vertex is also considered to form a leg.

A tripod is a union of three legs which share a common endpoint. A spine of a tripod
is the union of the spines of its legs. Observe that a tripod is an outerplanar graph. The
vertex that is shared by all the three legs of a tripod is called the central vertex.

Let G be a near triangulation, let @ be an inner face of G. Let T' be a tripod with
three legs X, Y, Z and a central vertex c. An insertion of tripod T into the face @ is the
operation performed as follows. First, insert the central vertex c¢ into the interior of &
and connect it by edges to the three vertices of @. This subdivides @ into three subfaces.
Extend ¢ into an embedding of the whole tripod 7', by embedding a single leg of the tripod
into the interior of each of the three subfaces. Next, connect every non-central vertex of
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Fig. 1. An example of a tripod consisting of vertices of level 1 in a plane 3-tree.

the spine of the tripod to the two vertices of @ that share a face with the corresponding
leg. Finally, connect each non-spine vertex v of the tripod to the single vertex of @ that
shares a face with v. See Figure 1. Observe that the graph obtained by a tripod insertion
into @ is again a near triangulation.

Lemma 3.1. Let G be a graph. The following statements are equivalent:

1. G is a plane 3-tree, i.e., G can be created from a triangle by a sequence of vertex
isertions into inner faces.

2. G can be created from a triangle by a sequence of tripod insertions into inner faces.

3. G can be created from a triangle by a sequence of tripod insertions into balanced inner
faces.

Proof. Clearly, (3) implies (2).

To observe that (2) implies (1), it suffices to notice that a tripod insertion into a face
@ can be simulated by a sequence of vertex insertions: first insert the central vertex of a
tripod into @, then insert the vertices of the spine into the resulting subfaces, and then
create each bubble by inserting vertices into the face that contains the root of the bubble
and its subsequent subfaces.

To show that (1) implies (3), proceed by induction on the number of levels in G. If
G only has vertices of level 0, then it consists of a single triangle and there is nothing
to prove. Assume now that G is a graph that contains vertices of k£ > 0 distinct levels,
and assume that any 3-tree with fewer levels can be generated by a sequence of balanced
tripod insertions by induction.

We will show that the vertices of level k£ induce in G a subgraph whose every connected
component is a tripod, and that each of these tripods is inserted inside a triangle whose
vertices have level k — 1.

Let C be a connected component of the subgraph induced in G by the vertices of level
k. Let vy, vg, ..., v, be the vertices of C, in the order in which they were inserted when
G was created by a sequence of vertex insertions. Let @ be the triangle into which the
vertex v; was inserted, and let x,y and z be the vertices of @. Necessarily, all three of
these vertices have level kK — 1. Each of the vertices v, . . ., v,, must have been inserted into
the interior of @, and each of them must have been inserted into a face that contained at
least one of the three vertices of @.

Note that at each point after the insertion of vq, there are exactly three faces inside
@ that contain a pair of vertices of @; each of these three faces is incident to an edge of
®. Whenever a vertex v; is inserted into such a face, the subgraph induced by vertices of
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level k grows by a single edge. These edges form a union of three paths that share the
vertex v; as their common endpoint.

On the other hand, when a vertex v; is inserted into a face formed by a single vertex
of @ and a pair of previously inserted vertices v;, vg, then the graph induced by vertices
of level k grows by two new edges v;v; and v;v, as well as a new triangular face with
vertices v;, vj, Uy.

With these observations, it is easy to check (e.g., by induction on ) that for every
1 > 1, the subgraph of G induced by the vertices vq,...,v; is a tripod inserted into &.
From this fact, it follows that the whole graph G may have been created by a sequence
of tripod insertions into balanced faces. O

Note that when we insert a tripod into a balanced face, all the vertices of the tripod
will have the same level (which will be one higher than the level of the face into which
we insert the tripod). In particular, each balanced face we create by this insertion is an
inner face of the inserted tripod.

Recall that a plane partial 3-tree is a plane graph that is a subgraph of a 3-tree.
Kratochvil and Vaner [9] have shown that every plane partial 3-tree G is in fact a subgraph
of a plane 3-tree. Furthermore, if a plane partial 3-tree G has at least three vertices, it is
in fact a spanning subgraph of a plane 3-tree, i.e., it can be extended into a plane 3-tree
by only adding edges.

Unfortunately, the plane 3-tree that contains a plane partial 3-tree G may in general
require arbitrarily large vertex-degrees, even if the maximum degree of G is bounded.
Thus, the result of Kratochvil and Vaner does not allow us to directly simplify the problem
to drawing plane 3-trees.

To overcome this difficulty, we introduce the notion of ‘plane semi-partial 3-tree’, which
can be seen as an intermediate concept between plane 3-trees and plane partial 3-trees.

Definition 3.1. A graph G is called a plane semi-partial 3-tree if G is obtained from a
plane 3-tree H by erasing some of the tilted edges of H.

Our goal is to prove that every plane partial 3-tree of maximum degree A can be drawn
with at most O(A%) slopes. We obtain this result as a direct consequence of two main
propositions, stated below.

Proposition 3.1. Any connected plane partial 3-tree of mazimum degree A is a subgraph
of a plane semi-partial 3-tree of mazimum degree at most 37A.

Proposition 3.2. For every A there is a set S of at most O(A®) slopes with the property
that any plane semi-partial 3-tree of mazimum degree A has a straight-line embedding
whose edge-slopes all belong to S.

We begin by proving Proposition 3.1.

3.1. Proof of Proposition 3.1

We begin by a simple lemma, which shows that the deletion of tilted edges from a plane
3-tree does not affect the level of vertices.

Lemma 3.2. Let H = (V, E) be a plane 3-tree, let T be a set of tilted edges of H, let
G = (V,E\T) be a semi-partial 3-tree. Let v be a vertex of level k with respect to H.
Then v has level k in G as well.
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Proof. Fix a vertex v of level k£ in H. Of course, the deletion of an edge may only decrease
the level of a vertex, so v has level at most k£ in GG. On the other hand, it follows from
Lemma 3.1 that every vertex of level k in H is separated from the outer face by k nested
triangles Cy, C1, ... Ck_1, where C; is a triangle formed by balanced edges that belong to
level 7. Since every balanced edge of H belongs to GG as well, we know that all the triangles
Cy, C4,...Ck_1 belong to GG, showing that v has level at least k. It follows that the level
of v is preserved by the deletion of tilted edges. m

Let G = (V, E) be a plane semi-partial 3-tree obtained from a plane 3-tree H = (V, E’)
by the deletion of several tilted edges. As a consequence of the previous lemma, we see
that an edge e € F is tilted in G if and only if it is tilted in H.

Assume now that F' is a connected plane partial 3-tree with maximum degree A > 1
and at least three vertices. Our goal is to show that there is a plane semi-partial 3-tree GG
with maximum degree at most 37A that contains F as a spanning subgraph. The following
definition introduces the key notion of our proof.

Definition 3.2. Let F' be a connected plane partial 3-tree with mazimum degree A, and
let k be an integer. We say that a 3-tree H correctly covers F up to level k, if the following
conditions are satisfied:

— F is a spanning subgraph of H.
— Let V=F denote the set of vertices that have level at most k in H. For every vertex
v € V=F there are at most 36 A balanced edges of H that are incident to v.

Furthermore, we say that H correctly covers F at all levels if, for any k, H correctly
covers F up to level k.

As mentioned before, Kratochvil and Vaner [9] have shown that every plane partial
3-tree F' is a spanning subgraph of a plane 3-tree H. Note that such a 3-tree H correctly
covers F' up to level 0, because every vertex at level 0 is adjacent to two balanced edges.

Our proof of Proposition 3.1 is based on the following lemma.

Lemma 3.3. For every connected partial 3-tree F' there is a 3-tree H that correctly covers
F at all levels.

Before we prove the lemma, let us show how it implies Proposition 3.1.

Proof. (Proof of Proposition 3.1 from Lemma 3.3) Let F be a plane partial 3-tree of
maximum degree A, and let H be the 3-tree that correctly covers F' at all levels. Define
a semi-partial 3-tree G which is obtained from H by erasing all the tilted edges of H
that do not belong to F'. By construction, G is a semi-partial 3-tree that contains F' as a
subgraph. Moreover, every vertex of GG is adjacent to at most A tilted edges and at most
36 A balanced edges, so G has maximum degree at most 37A. m

Let us now turn to the proof of Lemma 3.3.

Proof. Let F be a partial 3-tree with maximum degree A, and assume for contradiction
that there is no graph H that would correctly cover F'. Let k be the largest integer such
that there is a graph H that correctly covers F' up to level k. We have seen that k£ > 0.
On the other hand, we clearly have k < |V (F)|. Thus, k is well defined.

Fix a graph H correctly covering F' up to level k. By our assumption, H has vertices
of level greater than k. We will now define a 3-tree H' that correctly covers F' up to level
k + 1, which contradicts the maximality of k.
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Note that it is sufficient to ensure that H’ is constructed by a sequence of balanced
tripod insertions in which all the tripods inserted at level at most k£ 4+ 1 have degrees
bounded by 36 A.

We construct H' in such a way that it coincides with H on vertices of level at most
k; more precisely, if u and v are two vertices of level at most k in H, then u and v are
connected by an edge of H' if and only if they are connected by an edge of H. Notice that
this property guarantees that the vertices at level at most k£ in H are at the same level
in H' as in H. Let H=* be the subgraph of H induced by the vertices of level at most k.
H<F is a 3-tree.

Let @ be a balanced face of H<F formed by vertices at level k£ which contains at least
one vertex of H at level k + 1 in its interior. Note that at least one such face exists, since
we assumed that at least one vertex has level greater than k£ in H. For any such face @,
we will modify the sequence of tripod-insertions performed inside @, such that the tripod
inserted into this face has maximum degree at most 364, while the modified graph will
still contain F' as a subgraph. By doing this modification inside every nonempty balanced
face at level k, we will eventually obtain a graph H’ that correctly covers F' up to level
kE+1.

Fix @ to be a balanced face at level k with nonempty interior. Let T' C H be the
tripod that has been inserted into @ during the construction of H. Let Vpr and Ep be
the vertices and the edges of T. We will now define a modified tripod 7" on the vertex
set Vp, satisfying the required degree bound. We will then show that the sequence of
tripod insertions that have been performed inside 7' during the construction of H can
be transformed into a sequence of tripod insertions inside 7", where the new sequence of
insertions yields a graph H’ that contains F' as a subgraph.

We define T by the following rules.

1. All the edges of T that belong to F' are also in T".
2. All the edges of T that belong to the boundary of the outer face of T" also belong to T".
These edges form the boundary of the outer face of T".

. All the edges that form the spine of T" also belong to 7" and they form its spine.

4. Let ¥ be an internal face of the tripod T'. Let u, v and w be the three vertices of ¥.
Assume that both u and v are connected by an edge of F' to a vertex in the interior of
¥ (not necessarily both of them to the same vertex). In such case, add the edge uv to
T

5. Let Tj be the graph formed by all the edges added to 7" by the previous four rules.
Note that 7§ is an outerplanar graph with the same outer face as T'. However, not all
the inner faces of T{ are necessarily triangles, so T} is not necessarily a tripod. Assume
that 7§ has an inner face with more than three vertices, and that vy, vy, ..., v, are the
vertices of this face, listed in cyclic order. We form the path vy, v,., v, v,_1,v3, 0,9, ...
whose edges triangulate the face of Tj;. We add all the edges of this path into 7". We
do this for every internal face of T{) that has more than three vertices. The resulting
graph T" is clearly a tripod.

w

Let us now argue that the tripod 7" has maximum degree at most 36 A. Let v € V be
any vertex of this tripod. Let us estimate deg (v), by counting the edges adjacent to v
that were added to 7" by the rules above. Clearly, there are at most A such edges that
were added by the first rule, and at most nine such edges that were added by the second
and third rule.
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We claim that there are at most 2A edges incident with v added by the fourth rule.
To see this, notice that if e = uv is an edge added by this rule, then at least one of the
two faces of T' that are incident to e must contain in its interior an edge €’ of F' that is
incident to v. In such situation, we say that ¢’ is responsible for the insertion of e into 1".
Clearly, an edge of F' may be responsible for the insertion of at most two edges incident
with v. Since v has degree at most A in F'| this shows that at most 2A edges incident
with v are added to Tj by the fourth rule. Consequently, 7] has maximum degree at most
3A+09.

To estimate the number of edges added to T” by the fifth rule, it is sufficient to observe
that in every internal face of T whose boundary contains v there are at most two edges
of T" incident to v added by the fifth rule. Thus, A(7T") < 3A(T}) < 9A 427 < 364, as

claimed.

Having thus defined the tripod 7", we modify the graph H as follows. We remove all the
vertices appearing in the interior of the face @ of H=*; that is, we remove the tripod 7" as
well as all the vertices inserted inside T'. Instead, as a first step towards the construction
of H', we insert 7" inside .

To finish the construction of H’', we need to insert the vertices of level greater than
k + 1 into the faces of 7", so that the resulting graph contains F' as a subgraph. We
perform this insertion separately inside every face of 7. Note that T} is a subgraph of T’
as well as a subgraph of 7", and that each internal face of T is a union of several faces of
T'. Let ¥ be a face of T{). If ¥ is a triangle, then ¥ is in fact a face of 7" as well as a face
of T. If T' contains a subgraph Hy inside ¥, we define H' to contain the same subgraph
inside ¥ as well. Since Hy has been created by a sequence of tripod insertions inside ¥,
we can perform the same sequence of tripod insertion again inside the same face during
the construction of H'.

Assume now that ¥ is not a triangle. In the graph H, the face ¥ is subdivided into a
collection of triangular faces ¥, W,, ..., W,. Let H; be the subgraph of H appearing inside
the face ¥; in H. We know that each H; is a result of a sequence of tripod insertions.

Let us use the following terminology: if there is an edge of F' that connects a vertex of
H; to a vertex v on the boundary of ¥, we say that H; is adjacent to v. Since the graph
F' is connected, each nonempty graph H; must be adjacent to at least one vertex on the
boundary of ¥. Observe that if H; is adjacent to two distinct vertices v and v on the
boundary of ¥, then the edge that connects u and v must belong to 7j by the fourth rule
in the construction of 7”. In particular, u and v appear consecutively on the boundary of
V. This also shows that H; cannot be adjacent to three distinct vertices of ¥, since we
assumed that ¥ is not a triangle.

Consider now the tripod 7”. In this tripod, the face ¥ is triangulated into a collection
of faces ¥, ¥, ..., ¥,. Each of these triangular faces has at least one edge of Tj) on its
boundary. We will insert the graphs Hy, Ho, . .., Hy into these faces, by performing for each
H; a sequence of tripod insertions which generates H; inside one of the faces ¥, ¥, ..., ¥;.

To ensure that the resulting graph will contain F' as a subgraph, it suffices to guarantee
that whenever H; is adjacent to a vertex v € ¥, it will be inserted into a face ¥} that
contains v on its boundary. Such a face always exists, since each H; is adjacent to at most
two vertices of ¥, and if it is adjacent to two vertices u, v, then the two vertices must be
connected by an edge on the boundary of ¥, which implies that there is a face WJ/ that
contains both u and v on its boundary.



The Planar Slope Number of Planar Partial 3-Trees of Bounded Degree 9

It may happen that two distinct graphs H; and H; need to be inserted into the same
face ¥;. In such case, the first graph is inserted directly into ¥;, thus partitioning it into
several smaller triangular subfaces, while all subsequent graphs that need to be inserted
into ¥, are inserted into an appropriately chosen subface of ¥;. This subface need not be
balanced. We choose this subface in such a way that we preserve the cyclic order of edges
of F' around every vertex v on the boundary of V.

After we perform the construction above inside every face ¥ of T}, we obtain a plane
3-tree H' that correctly covers F' up to level k + 1. This completes the proof of the
lemma. O

3.2. Proof of Proposition 3.2

To complete the proof of our main result, it remains to show that every plane semi-partial
3-tree of bounded maximum degree has a straight-line embedding with a bounded number
of slopes.

We start with a brief overview of the construction. We will use the fact that a plane
semi-partial 3-tree G can be decomposed into tripods formed by vertices of the same level,
with each tripod T of level £ > 1 being inserted into a triangle @ formed by vertices of
level k£ — 1. The triangle @ is itself an inner face of a tripod of level k — 1.

The tripods appearing in this decomposition of G may be arbitrarily large. However,
a tripod T of level £ > 1 has only a bounded number of vertices that are adjacent to a
vertex of the triangle @ of level k — 1. These vertices of T" will be called relevant vertices.

Given a tripod 7" in the decomposition of G, we will construct an embedding of T" that
only uses edge-slopes from a set of slopes S’ and moreover, all the relevant vertices of T’
are embedded on points from a set of points P’, where the sets S’ and P’ are independent
of T and their size is polynomial in A.

We will then show that these embeddings of tripods (after a suitable scaling) can be
nested into each other to provide the embedding of the whole graph G. We will argue
that the number of edge-slopes in this embedding of G is bounded. This will follow from
the fact that the balanced edges of G belong to a tripod and their slope belongs to 5,
while the slopes of the tilted edges only depend on the positions of the relevant vertices of
a tripod T" and on the shape of the triangle ¢ surrounding 7. Since the relevant vertices
can only have a bounded number of positions, and the triangle @ is formed by balanced
edges and hence may have only a bounded number of shapes, we will conclude that the
tilted edges may only determine a bounded number of slopes.

Let us now describe the construction in detail. We recall that A is a fixed constant
throughout this section, and we let ST(A) denote the set of plane semi-partial 3-trees
of maximum degree at most A. Any graph G € ST(A) can be created by a sequence of
partial tripod insertions into balanced faces, where a partial tripod insertion is defined in
the same way as an ordinary tripod insertion, except that some of the tilted edges are
omitted when the new tripod is inserted.

Choose a graph G € ST(A), and assume that T is a tripod that is used in the con-
struction of G by a sequence of partial tripod insertions. Let {x,y, z} be the triangle in G
into which the tripod 7" has been inserted. We say that a vertex v of T is relevant if v is
connected by an edge of G to at least one of the vertices x,y or z. Since each of the three
vertices x, y and z has degree at most A, the tripod T has at most 3A relevant vertices.
Let us further say that a bubble of T is relevant if it contains at least one relevant vertex.
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Since every vertex of T is contained in at most six bubbles, we see that T" has at most
18 A relevant bubbles.

We will use the term labelled tripod of degree A to denote a tripod T with maximum
degree at most A, together with an associated set of at most 3A relevant vertices of T'.
Let Tr(A) be the (infinite) set of all the labelled tripods of degree A. Similarly, a labelled
bubble of degree A is a bubble of maximum degree at most A, together with a prescribed
set of at most 3A relevant vertices. B(A) denotes the set of all such labelled bubbles.

Let & be an embedding of a tripod in the plane, and let v be a vertex of &p. Let
a € (0,27) be a directed slope. We say that the vertex v has wvisibility in direction «, if
the ray starting in v and having direction o does not intersect £ in any point except v.

Throughout the rest of this section, let € denote the value 7/100 (any sufficiently small
integral fraction of 7 is suitable here).

Our proof of Proposition 3.2 is based on the following key lemma.

Lemma 3.4. (Tripod Drawing Lemma) For every A there is a set of slopes S of size
O(A3), a set of points P of size O(A?), and a set of triangles R of size O(A?), such
that every labelled tripod T € Tr(A) has a straight-line embedding Er with the following
properties:

1. The slope of any edge in the embedding Er belongs to S.

2. Fach relevant vertex of Er is embedded on a point from P.

3. Each internal face of Er is homothetic to a triangle from R.

4. The central vertex of Er is embedded in the origin of the plane.

5. Any vertex of Ep is embedded at a distance at most 1 from the origin.

6. Each spine of T is embedded on a single ray starting from the origin. The three rays
containing the spines have directed slopes 0, 2w/3 and 4w /3. Let these three rays be
denoted by r1, ro and r3, respectively.

7. Let r;1; denote the closed conver region whose boundary is formed by the rays r; and r;.
Any relevant vertex of Er embedded in the region 1o (or Tars, or 11r3) has visibility in
any direction from the set (¢,2w/3 —¢) (or (2n/3+¢,4n/3 —¢), or (4n/3+¢,2m —¢),
respectively).

Note that the three regions 1T, T3 and 7115 are not disjoint. For instance, if a relevant
vertex of T is embedded on the ray 7y, it belongs to both riry and 13, and hence it
must have visibility in any direction from the set (¢,2m/3 —e) U (47 /3 + ¢,2m — ¢).

Before we prove Lemma 3.4, we show how the lemma implies Proposition 3.2.

Proof. (Proof of Proposition 3.2 from Lemma 3.4)

Let S be the set of slopes, P be the set of points and R be the set of triangles from
Lemma 3.4. Let S’ be the set of all the slopes that differ from a slope in S by an integer
multiple of . Note that |S'| < Z|S|. Let P’ be the (finite) set of points that can be
obtained by rotating a point in P around the origin by an integral multiple of €. Let R’ be
the (finite) set of triangles that is obtained by rotating the triangles in R by an integral
multiple of €.

We will show that any graph G € ST(A) has a straight-line embedding where the
slopes of balanced edges belong to S’ and the slopes of tilted edges also belong to a finite
set which is independent of G.

Let T be a labelled tripod used in the construction of the graph G. Assume that T’
is inserted into a triangle formed by three vertices x,y, z (see Figure 2). Let 7 be the
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Fig. 2. Illustration of the proof of Proposition 3.2

triangle formed by the three points x,y, z. Assume that the three vertices are embedded
in the plane. Without loss of generality, assume that the triangle 7 has acute angles by
the vertices y and z, and the three vertices xryz appear in counterclockwise order around
the boundary of 7. Thus the altitude of 7 from the vertex x intersects the segment yz on
a point p which is in the interior of the segment yz. Let n be the slope of the (directed)
segment yz.

We can find a point ¢ in the interior of the triangle 7, and a positive real number

= r(7), such that for any point v at a distance at most r from ¢, the following holds:

r

1. v is in the interior of 7

2. the slope of the segment vz differs from the slope of the segment px (which is equal to
n+ m/2) by less than

3. the slope of the segment vy differs from the slope of the segment py (which is equal to
—n) by less than ¢

4. the slope of the segment vz differs from the slope of the segment pz (which is equal to
n) by less than e

Indeed, it suffices to choose ¢ sufficiently close to the point p and set r sufficiently small,
and all the above conditions will be satisfied.

Consider now the embedding £ of T'. Place the center of the tripod on the point c,
and scale the whole embedding by the factor r, so that it fits inside the triangle 7. In
view of the four conditions above, and in view of the seventh part of Lemma 3.4, it is not
difficult to observe that we may rotate the (scaled) embedding of 7" around the point ¢
by an integral multiple of £ in such a way that every relevant vertex v € T has visibility
towards all its neighbors among the three vertices z,y, z. Thus, we are able to embed all
the necessary tilted edges of G between xyz and T' as straight line segments.

Note that in our embedding, all the balanced edges of T have slopes from the set S’,
and all its internal faces are homothetic to the triangles from the set R’. Furthermore, any
tilted edge has one endpoint in the set {x,y, 2z} and another endpoint in the set ¢ + P’
(the set P’ scaled r-fold and translated in such a way that the origin is moved to c¢).
Hence any labelled tripod T" € Tr(A) can be inserted inside the triangle zyz in such a
way that the slopes of the edges always belong to the same finite set which depends on
the triangle xyz but not on the tripod T'. Note that the triangle xyz may be arbitrarily
thin, in particular it can have inner angles smaller than €.

Let us now show how the above construction yields an embedding of the whole graph
G. For every such triangle 7 € R', fix the point ¢ = ¢(7) and the radius r = r(7) from the
above construction. Any scaled and translated copy of 7 will have the values of ¢ and r
scaled and translated accordingly.

We now embed the graph G recursively, by embedding the outer face as an arbitrary
triangle from R’, and then recursively embedding each tripod into the appropriate face
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by the procedure described above. Since we only insert tripods into balanced faces, it is
easily seen that every tripod is being embedded inside a triangle of R’

Overall, the construction uses at most |S’| = O(A?) distinct slopes for the balanced
edges, and at most |R'||P'| = O(A?) distinct slopes for the tilted edges. The total number
of slopes is then O(A?%); as claimed. O

In the rest of this section, we prove the Tripod Drawing Lemma. Let T be a labelled
tripod and let B be a bubble of T'. Recall that the root edge of B is the edge that belongs
to a spine of 7. Note that the same root edge is shared by two bubbles of T'. Recall also
that a bubble is called trivial if it only has two vertices.

We now introduce some terminology that will be convenient for our description of the
structure of a given bubble.

Definition 3.3. Let B be a nontrivial bubble in a tripod T'. The unique internal face of
B adjacent to its oot edge will be called the root face of B. The dual of a bubble B is
the rooted binary tree B whose nodes correspond bijectively to the internal faces of B, and
two nodes are adjacent if and only if the corresponding faces of B share an edge. The root
of the tree B is the node that represents the root face of B.

When dealing with the internal faces of B, we will employ the usual terminology of
rooted trees; for instance, we say that a face @ is the parent (or child) of a face W if
the node representing @ in B is the parent (or child) of the node representing ¥. For
every internal face @ of B, the three edges that form the boundary of ® will be called the
top edge, the left edge and the right edge, where the top edge is the edge that @ shares
with its parent face (or the root edge, if ¢ is the root face), while left and right edges are
defined in such a way that the top, left, and right edge form a counterclockwise sequence
on the boundary of ®. With this convention, we may speak of a left child face or right child
face of @ without any ambiguity. Our terminology is motivated by the usual convention
of embedding rooted binary trees with their root on the top, and the parent, the left child
and the right child appearing in counterclockwise order around every node of the tree.
Furthermore, for a given face @, the bottom vertex of @ is the common vertex of the left
edge and right edge of ®.

Let us explicitly state the following simple fact which directly follows from our defini-
tions.

Observation 3.1. Let @1, P, ..., D, be a sequence of internal faces of a bubble B, such
that for any j < k, @41 is the left child of ;. Then all the faces ®1,..., Py share a
common vertex. In particular, if B has mazimum degree A, then k < A. An analogous
observation holds for right children as well.

We now describe an approach that allows us to embed an arbitrary bubble with max-
imum degree A inside a bounded area using a bounded number of slopes.

Lemma 3.5. Let xyz be an equilateral triangle with vertexr coordinates x = (0,0), y =
(1,0) and z = (1/2,—+/3/2). Fiz two sequences of slopes a1, ag, ..., a1 and By, Ba,
vy Bast, with0> a1 >ag > - >ap 1 >—7/3and0< B < [y < -+ < fag <7/3.
Let S be the set of 2A — 1 slopes {0} U {ay,az,...,an 1} U{P1,02,...,8a-1}. Let B
be a bubble of mazrimum degree A. Then B has a straight line embedding Eg inside xyz
that only uses the slopes from the set S, the root edge of Eg corresponds to the segment
xy, and moreover the triangular faces of Eg form at most 2A — 3 distinct triangles up to
homothetic equivalence.



The Planar Slope Number of Planar Partial 3-Trees of Bounded Degree 13

T

Fig. 3. Illustration of the proof of Lemma 3.5.

Proof. Proceed by induction on the size of B. If B is trivial, the statement holds. Assume
now that B is a nontrivial bubble. Let @y be the root edge of B. See Figure 3.

Define the maximal sequence of faces @1,®,,..., P, in such a way that &;,, is the
left child of @;, with @; being the left child of the root edge ®,. The maximality of the
sequence means that @, has no left child. Symmetrically, define a maximal sequence of
faces ¥y, ..., ¥, such that ¥, is the right child of &y, and ¥, is the right child of ¥;. By
Observation 3.1, we know that / < A —1and r < A — 1.

Let (p, ) denote the ray starting at a point p and heading in direction .

Let B be an arbitrary bubble. Let v; be the intersection of the rays (x, ;) and (y, 51).
The root face @y will be embedded as the triangle xyv;. Define points vy, ..., v by
specifying v; as the intersection of (z, ;) and (vq, 7). The face @; is then embedded as
the triangle zv;v; ;1. Similarly, define points ws, ..., w,+; where w; is the intersection of
(y, B;) with (v1,0). Then ¥, is embedded as the triangle yvjws, while for £ > 1 we embed
¥, as the triangle ywiwgq.

Note that when we remove the two vertices incident to the root edge from the bubble
B, the remaining edges and vertices form a union of /+r bubbles B;U- - -UB,UB{U...UBy,
where B; is a bubble whose root edge is the right edge of ®; while B is rooted at the left
edge of ¥;. Using induction, we know that each B; has a straight line embedding inside the
equilateral triangle whose top edge is the horizontal segment v;v;,; (and symmetrically
for BY).

This completes the proof. n

Corollary 3.1. Let zyz be an arbitrary triangle and B a bubble of maximum degree A.
There are sets S of 2A —1 slopes and R of 2A — 3 triangles that depend on xyz but not on
B, such that B can be embedded inside xyz using only slopes from S and triangles from
R for triangular faces, in such a way that the root edge of B coincides with the segment

zy.
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Fig. 4. An adder. The bold edges form the zigzag path.

Proof. This follows from Lemma 3.5, using the fact that for any triangle there is an affine
transform that maps it to an equilateral triangle, and that affine transforms preserve the
number of distinct slopes used in a straight-line embedding. O

The construction from Lemma 3.5 can be applied to embed all the irrelevant bubbles
of a given labelled tripod T'. Unfortunately, the construction of Lemma 3.5 is not suitable
for the embedding of relevant bubbles, because it provides no control about the position
of the relevant vertices. Indeed, inside the triangle xyz of the previous lemma, there are
infinitely many points where a vertex may be embedded by the construction described in
the proof of the lemma. Thus, we can give no upper bound on the number of potential
embeddings of relevant vertices.

For this reason, we now describe a more complicated embedding procedure, which
allows us to control the position of the relevant vertices. We first need some auxiliary
definitions.

Definition 3.4. An adder A is a bubble with a root edge h and another edge t # h, such
that the dual tree of A is a path, and the edge t is an external edge adjacent to the single
leaf face of A. See Figure 4. The edges h and t are called head and tail of the adder. It is
easy to see that every adder contains a unique path Z whose first edge is h, its last edge
1s t and no other edge of Z belongs to the outer face of A. The path Z will be called the
zigzag path of the adder A. The length of the adder is defined to be the number of edges
of its zigzag path. By definition, each adder has length at least 2. An adder of length 2
will be called degenerate.

We will now show that adders of bounded degree can be embedded inside a prescribed
quadrilateral using a bounded number of slopes and triangles.

Lemma 3.6. For every convex quadrilateral () = abcd and for every A there is a set S
of O(A) slopes, a set Sy C S of O(1) slopes, and a set R of O(A) triangles such that any
nondegenerate adder A of maximum degree A has a straight line embedding E4 with the
following properties:

1. All the edge-slopes of E4 belong to the set S.

2. All the edges on the outer face of £4 have slopes from the set Sy.

3. Each internal face of £4 is homothetic to a triangle from R.

4. The head of A coincides the edge ab of Q and the tail of A coincides with cd.
5. The embedding €4 is contained in the convex hull of abed.

Proof. Note that the lemma is clearly true when restricted to adders of length at most
four (or any other bounded length). In the rest of the proof, we assume that A is an adder
of length at least five.

We first deal with the case when the edges ab and cd are parallel (i.e., @ is a trapezoid),
and the adder A has odd length ¢ = 2k + 1. Without loss of generality, assume that
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a = vg b= a =Yg b=

Fig. 5. Embedding an adder with prescribed head and tail. These figures illustrates the embed-
ding of the adder of odd length 2k + 1. The two figures correspond to the two cases depending
on the parity of k.

the segments ab and cd are horizontal and that the line containing cd is above the line
containing ab. Let « be the slope of the diagonal ac and 3 the slope of the diagonal bd,
with 0 < a < 8 < 7. Let e be the point where the two diagonals intersect. Notice that the
two triangles abe and cde are homothetic. Let r = ||ab||/||cd|| = ||ae]|/||ce]| be the dilation
factor of the homothecy.

Let Z be the zigzag path of A. Let us identify the head of A with the segment ab and
the tail of A with cd, in such a way that the cyclic order of the four points abcd on the
boundary of () is the same as the cyclic order in which the corresponding vertices appear
on the outer face of A.

Since A has odd length, the endpoints of its zigzag path are diagonally opposite in @,
see Figure 5. We lose no generality by assuming that a and c are the endpoints of the
zigzag path. Let vy, v1,va, . .., Uk, Wk, Wk—1, Wiy, - . . , w1, Wy be the sequence of the vertices
of Z, in the order in which they appear on the path Z, with vy = a, v1 = b, wy = ¢,
and w; = d. Fix an arbitrary slope v such that § < v < 7. All the vertices of Z will be
embedded on the two diagonals ac and bd. Since the first two and last two vertices have
already been embedded, let us proceed by induction, separately in each half of Z. If, for
some ¢ > 0, the vertex v; has already been embedded on the diagonal ac, then we embed
vi+1 on bd in such a way that the segment v;v;11 is horizontal. If v; has been embedded
on the diagonal bd, then v;,; is embedded on ac and the slope of v;v;,; is equal to 7.

We proceed similarly with the vertices w;: if w; is on ac then w;;, is on bd and the
segment w;w; 1 has slope v; otherwise w; is on bd and w;; is on ac and the corresponding
segment is horizontal.

We may easily show by induction that for any ¢, the triangles ev;v;,1 and ew;w; 1 are
similar, all of them with the same ratio r = ||ev;||/||ew;||. Furthermore, we see that ev;v; 1
is similar to ev;;ov;13, with a ratio g that is independent of i. From these facts, we see
that all the segments of the form v;w; 1 have at most two distinct slopes (depending on
the parity of i), and similarly for the segments of the form w;v; .

Let us consider all the triangles formed by triples of vertices xyz where x,y and z are
three consecutive vertices of the path Z. Note that these triangles are internally disjoint,
and their edges form at most six distinct slopes, namely 0, a, 3, v, the slope of the segment
vpwg_1 and the slope of the segment vy_jwy. Furthermore, the latter two slopes belong
to a set of at most four slopes that are independent of k£, and hence independent of the



16 Vit Jelinek et al.

adder A. The union of the above-described triangles will form the outer boundary of our
embedding of A. It remains to place the vertices of A that do not belong to Z to this
boundary.

Let us fix A — 2 additional slopes 71 < 72 < --+ < ya_92 which are all greater than ~
but smaller than 7. Note than any vertex u of A that does not belong to Z is incident
to exactly one edge that does not belong to the outer face of A, and this edge connects
u to a vertex of Z. Thus, to complete the description of the embedding of A, it suffices
to specify, for every vertex v of Z, the slopes of all the edges that do not belong to the
outer face of A and that connect v to a vertex not belonging to Z. Thus, let us fix an
arbitrary vertex v of Z. Let us assume that v has been embedded on the diagonal ac and
that v = v; for some ¢ < k (the cases when v belongs to bd or v = w; are analogous). Let
uq, ..., uy be the vertices not belonging to Z and adjacent to v by an internal edge of A.
Note that if v has at least one such neighbor u;, then v # vy, because vy is not incident
to any edge not belonging to the outer face. Let v™ be the vertex that follows after v on
Z (typically, v = vy, 1, unless v = vy, when v = wy). Assume that the vertices uq, ... uy
are listed in their counterclockwise order with respect to the neighborhood of v. Let us
place each w; at the intersection of the line v; v+ and the ray (v, 7 + ;). This choice
guarantees that the edge vu; has slope ;.

We have thus found a straight line embedding of A that has all the required properties
and uses at most A+ O(1) slopes. This completes the case when A is an odd-length adder
and (@) is a trapezoid.

Assume now that A is an arbitrary nondegenerate adder of length ¢ > 5, and @ is
an arbitrary convex quadrilateral. Our goal is to reduce this situation to the cases solved
above. Note that the adder A can be written as a union of two non-degenerate sub-adders
A; and A, where A; has odd length, As has length three or four, A; has the same head
as A, A, has the same tail as A, the tail of A; is the head of A,, and the adders A; and A,
are otherwise disjoint. Accordingly, the convex quadrilateral () = abcd can be decomposed
into a union of two internally disjoint quadrilaterals 1 = abcd’d’ and @y = d'c’cd, where
@, is a trapezoid. We may now use our previous arguments to construct an embedding of
Aj inside (Q1, and an embedding of A, inside ()3, and combine the two embeddings into
an embedding of () satisfying the conditions of the lemma. O

We will use adders as basic building blocks in a procedure that embeds any given bubble
with prescribed relevant vertices in such a way that the embedding of all the relevant
vertices is chosen from a finite set of points. The following technical lemma summarizes
all the key properties of the bubble embedding that we are about to construct.

Lemma 3.7. Let T = abc be an isosceles triangle with base ab, and with internal angles
£/2,e/2 and ™ — €. Assume that the line ab is horizontal and the point ¢ is below the
line ab. For every A > 0 there is a set S of O(A3) slopes, a set P of O(A) points, and a
set R of O(A3) triangles, such that every labelled bubble B € B(A) has an embedding Ep
with the following properties.

1. All the edge-slopes of Eg belong to S.

2. Any relevant vertex of B is embedded at a point from P.

3. Bvery internal face of g is homothetic to a triangle from R.

4. The root edge of B coincides with the segment ab.

5. The whole embedding Ep is inside the triangle T .

6. Any relevant vertex of Eg has visibility in any direction from the set (m 4,21 — ¢€).
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Fig. 6. An example of a labelled bubble B with its dual tree B. Relevant vertices are represented
by large black disks. The large gray disks of the bottom figure represent the non-relevant priority
vertices.

Proof. Let us first introduce some terminology (see Figure 6). Let B € B(A) be a labelled
bubble. Recall from Definition 3.3 that the dual of B, denoted by B , i1s a rooted binary
tree whose root corresponds to the root face of B. For an internal face @ of B, we let ¢
denote the corresponding node of B. We distinguish several types of nodes in B. A node
P is called relevant node, if the bottom vertex of the face @ is a relevant vertex of B. A
node @ of B is called peripheral if the subtree of B rooted at ¢ does not contain any
relevant node, in other words, neither @ nor any descendant of @ is relevant. A node is
central if it is not peripheral. Note that the central nodes induce a subtree of B; we let
B’ denote this subtree. By construction, all the leaves of B’ are relevant nodes (but there
may be relevant nodes that are not leaves).

A node @ of B’ is a branching node if both its children belong to B’ as well. A node of B’
is a connecting node if it is neither relevant nor branching. By definition, each connecting
node has a unique child in B’, and the connecting nodes induce in B’ a disjoint union of
paths. We call these paths the connections.

We say that a face @ of B is a relevant face if the corresponding node ® is a relevant
node. Peripheral faces, branching faces and connecting faces are defined analogously. Let
B’ be the subgraph of B whose dual is B'. If B’ is empty, define B’ to be the trivial bubble
consisting of the root edge of B. In any case, B’ is a subbubble of B and has the same
root edge as B.

Note that since every leaf of Bisa relevant node, and since B has at most 3A relevant
vertices by definition of B(A), the tree B’ has at most O(A) leaves and consequently at
most O(A) branching nodes.
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Let us now describe the basic idea of the proof. We begin by specifying the set P of
points. The points of P will form a convex cup inside the triangle T'. For a given bubble
B € B(A), we construct the embedding g in three steps. In the first step, we take all
the vertices of B that belong to relevant faces and branching faces, and embed them to
the points of P. In the second step, we embed all the connecting faces. Each connection
in B’ corresponds to a (possibly degenerate) adder contained in B’, whose head and tail
have been embedded in the first step. Using the construction from Lemma 3.6, we insert
these adders into the embedding. Thus, in the first two steps, we construct an embedding
of B’. In the third step, we extend this embedding into an embedding of B by adding the
peripheral faces. These faces form a disjoint union of subbubbles, each of them rooted at
an edge belonging to the outer face of B’. We use Corollary 3.1 to embed each of these
subbubbles into a thin triangle above a given root edge.

Let us describe the individual steps in detail. Set D = 18A. Recall that T is an
isosceles triangle with base ab. Let C' be any circular arc with endpoints a and b, drawn
inside 7. Choose a sequence py,ps,...,pp of distinct points of ', in such a way that
p1 = a, pp = b, and the remaining points are chosen arbitrarily on C in order to form a
left-to-right sequence. Let P be the set {p1,...,pp}.

Let us say that a vertex v of B is a priority vertex if it either belongs to a relevant
face, or it belongs to a branching face, or it belongs to the root edge of B. Note that all
priority vertices actually belong to B’, and that each relevant vertex is a priority vertex
as well. Let ¢ be the number of priority vertices. We know that B has at most 3A relevant
faces. Since every leaf of B’ represents a relevant face, we see that B’ has at most 3A — 1
branching faces. This implies that ¢ < D = 18A.

Let vy, v9,...,v, be the sequence of all the priority vertices of B, listed in counter-
clockwise order of their appearance on the outer face of B, in such a way that v; and v,
are the vertices of the root edge of B. For each i € {1,...,¢ — 1}, we embed the vertex
v; on the point p;, while the vertex v, is embedded on the point vp = b. Note that this
embedding guarantees that the root edge of B coincides with the segment ab = pipp.
Moreover, since this embedding preserves the cyclic order of the vertices on the boundary
of the outer face, we know that the edges induced by the priority vertices do not cross.
This completes the first step of the embedding.

In the second step, we describe the embedding of the connecting faces of B. Let
D1, Py, ..., Py be a sequence of faces of B corresponding to a connection in B where
we assume that for each ¢ < k, the node 915 is the parent of ¢Z+1 in B. See Figure 7. Let
x be the left vertex of @; and let y be the right vertex of @,. The vertices x and y either
form the root edge of B, or they belong to the parent face of @, which is either a relevant
face or a branching face. In either case, both x and y are priority vertices. In particular,
x corresponds to a point p,,, € P, and y corresponds to p, € P, for some m < n.

Consider now the face @;. Since it is neither relevant nor branching, it has a unique
child face @' in B’. The face &' is relevant or branching, so all its vertices are priority
vertices. Let u be the left vertex of @ and let v be its right vertex. The edge wv is the
intersection of @ and @,. Let A be the adder formed by the union of the faces @1, ..., @y,
with head xy and tail uv. Note that this adder does not contain any other priority vertices
apart from z, y, u and v. In particular, the vertex u is either equal to x, or it corresponds
t0 Pyt For the vertex v, we have three possibilities: either v = y, or v = p,_1, 0r v = pp_4

and y = pp.
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Fig. 8. The auxiliary points from the set Q.
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Fig. 9. The embedding of a degenerate connection adder.

Let us first deal with the case when the adder A is degenerate, i.e., either x = u or
y = v. We first define a set @) of auxiliary points (see Figure. 8. For every i < D, consider
the segment p;p;;1, and subdivide this segment with A — 2 new points ¢}, b, ..., ¢%_o-
Next, for ¢ < D — 1, consider also the segment p;pp and subdivide it with A — 2 points
@i, - - -, @a_s Let @ be the set of all the points ¢} and ¢, for all ¢ and j.

Assume now that A is a degenerate adder with x = wu (the case when y = v is
analogous). Recall that A has k internal faces @1, ..., ®@,. All these faces share the vertex
x, and in particular, = has degree k + 1 in A. This shows that £k < A, and consequently
there are at most A — 2 non-priority vertices in A, all of them on a path from v to y. See
Figure 9. If v = p,_;, we embed these non-priority vertices on the points ¢ ', . .. ,qgjll.
On the other hand, if v = p,_; and y = pp, we embed the non-priority vertices of A on
the points ¢¢ . .. ,@f;:ll. This determines the embedding of A.

Consider now the case when A is non-degenerate. The four vertices z, y, v and v form
a convex quadrilateral, and we embed A inside this quadrilateral, using the construction
of Lemma 3.6. This again determines the embedding of A.

Using the constructions described above, we embed all the adders representing connec-

tions in B. Note that each adder is embedded inside the convex hull of its head and tail.
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Moreover, if A and A’ are adders representing two different connections, the convex hull
of the head and tail of A is disjoint from the convex hull of the head and tail of A’, except
for at most one vertex shared by the two adders. This shows that the embedding is indeed
a plane embedding of the graph B’, completing the second step of the construction.

Before we describe the last step, let us estimate the number of vertices, edge-slopes
and internal faces that may arise in the first two steps. Clearly, any relevant vertex is
embedded on a point from the set P, which has size O(A) and does not depend on the
bubble B.

Any edge e embedded in the first two steps may have one of the following forms.

— The edge e connects two points from P. Such edges can take at most O(A?) slopes.

— The edge e connects a vertex from P to a vertex from Q. This yields O(A?) possible
slopes.

— The edge e connects two vertices of (). This is only possible when both vertices of e
belong to a segment determined by a pair of points in P. The slope of e is then equal
to a slope determined by two points from P.

— The edge e belongs to a non-degenerate adder A representing a connection in B. In
the embedding from Lemma 3.6, the edges of a given adder A determine at most O(A)
slopes, and these slopes only depend on the four vertices forming the head and tail
of A. This fourtuple of vertices has the form {p;, pi+1,pj—1,p;} or {pi, Pi+1,Pj—1,PD}-
There are O(A?) such fourtuples and hence O(A?) possible slopes for the edges of this

type.

Overall, there is a set of O(A?) slopes, independent of B, such that any edge embedded
in the first two steps has one of these slopes.

Next, we count homothecy types of internal faces. Any internal face @ embedded in
the first two steps has one of the following types.

— All the vertices of @ belong to P. There are O(A3) such faces.

— @& has two vertices from P and one vertex from (). In such case the triple of vertices of @
must be of one of these forms, for some values of ¢, j and k: {p;, p;, ¢}, or {pi, s, qi_l},
or {pi,pp,qL}. There are O(A?) such triples.

— & has two vertices from () and one vertex from P. In such case the two vertices from
Q are of the form {g},qj,,} or {¢}, ¢y} for some i and j. This again gives O(A?)
possibilities for @.

— @ is an internal face of a non-degenerate adder, embedded by Lemma 3.6. Lemma 3.6
shows that the internal faces of such an adder form O(A) homothecy types depending
only on the position of head and tail. Since there are O(A?) positions for head and
tail, this gives O(A?) triangle types up to homothecy.

We conclude that each internal face of B’ is homothetic to one of O(A?) triangles, and
these triangles do not depend on B'.

As we will need it later, we now estimate the number of slopes formed by edges on the
outer face of B’. For e on the outer face of B’ there are two possibilities.

— If both endpoints of e are priority vertices, or if e belongs to a connection represented
by a degenerate adder, then the line determined by the segment e passes through two
points of P. In particular, such a segment e must have one of O(A?) slopes determined
by P.
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— Suppose e belongs to the outer face of a non-degenerate adder A. By Lemma 3.6, the
edges of the outer face of A have O(1) distinct slopes, depending on the head and tail
of A. Overall, such edges have at most O(A?) slopes.

This shows that the slopes of the edges of the outer face of B’ all belong to a set of O(A?)
slopes.

To finish the proof, it remains to perform the third step of the construction, where we
embed the peripheral faces. Fix an angle § > 0 such that § < ¢/2 and any two distinct
edge-slopes used in the first two steps of the construction differ by more than 24. Let e
be an edge of the outer face of B’. Let T, be an isosceles triangle whose base is the edge
e, whose internal angles have size 9, §, and © — 29, and which lies in the outer face of B’.
It is easy to check that our choice of § guarantees that for any two edges e and f on the
outer face of B’, the triangles T, and T are disjoint, except for a possible common vertex
of e and f. ~

Let By be a maximal subtree of B formed entirely by peripheral nodes, and let By be
the dual of By. Note that By is a subbubble of B rooted at an edge of the outer face of B’.
Let e be the root edge of By. Using Corollary 3.1, we embed Bj inside T, in such a way
that the root edge of By coincides with e. This embedding of By uses O(A) edge-slopes
and O(A) triangle types for its internal faces, and these edge-slopes and triangle types
only depend on the slope of e.

Since the edges on the outer face of B’ may have at most O(A?) edge-slopes, we
may embed all the peripheral faces of B, while using only O(A?) edge-slopes and O(A?)
triangle types in addition to the edge-slopes and triangle types used in the first two steps
of the construction.

This completes the last step of the construction. It is easy to check that in the obtained
embedding of B, any relevant vertex has visibility in any direction from the set (m+¢, 2w —
e), and the remaining claims of the lemma have already been verified. m

We are finally ready to give the proof of the Tripod Drawing Lemma from page 10.

Proof. (Proof of Lemma 3.4) Fix a tripod T' € Tr(A). Let X, Y, and Z be the three legs
of the tripod T'. The center ¢ of the tripod will coincide with the origin of the coordinate
system, and the spines of the three legs will be embedded onto three rays with slopes 0,
27 /3 and 47 /3 starting at the origin. We will now describe how to embed the leg X onto
the horizontal ray (c,0). The embeddings of the remaining two legs are then built by an
analogous procedure, rotated by 27 /3 and 47/3.

Let X be a fixed leg of the tripod, represented as a sequence Dy, Do, ..., Dy of double
bubbles, ordered from the center outwards. Recall that a bubble is called relevant if it
contains at least one relevant vertex. We will also say that a double bubble is relevant if
at least one of its two parts is relevant.

Define a parameter D by D = 13A. The leg X can have at most 6A relevant double
bubbles. A maximal consecutive sequence of the form D;, D;i4,...,D; in which each
element is an irrelevant double bubble will be called an irrelevant run. We partition X into
a sequence of parts Py, P,, ..., P, where a part is either a single relevant double bubble,
or a nonempty irrelevant run. Since by definition no two irrelevant runs are consecutive,
we see that X has at most 124 + 1 < D parts.

Let T. be an isosceles triangle with internal angles of size €/2, €/2 and m — ¢ whose
base edge is horizontal. From Lemma 3.7, we know that there is a set of points P. C T;
of size O(A), a set of slopes S. of size O(A3) and set of triangles R. of size O(A?) such
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that any bubble of B € B(A) can be embedded inside 7. using slopes from S; in such a
way that each relevant vertex of B coincides with a point from the set P. and the internal
faces of the embedding are homothetic to triangles in R. Let £ denote this embedding.

We will combine these embeddings to obtain an embedding of the whole leg X. To each
of the at most D parts of X we will assign a segment of length L = % on the horizontal
ray (c,0).

Assume first that P, is a part of X consisting of a single relevant double bubble, formed
by a pair of bubbles B and C'. We will embed P; in such a way that the common root
edge of B and C' coincides with a horizontal segment e; of length L, whose endpoints have
horizontal coordinates (¢ — 1)L and iL. The two bubbles B and C' are then embedded
inside two scaled and translated copies of 7. that share a common base e;, using the
embeddings £ and &g, possibly reflected along the horizontal axis.

Now assume that P; is a part of X that consists of an irrelevant run of k irrelevant
double bubbles D;, D1, ..., Diyr—1. We embed the root edge of each double bubble onto
a segment of length L/k, and embed the rest of the double bubble into a scaled and
translated copy of T.. We then concatenate these embeddings to obtain an embedding of
the whole irrelevant run, which will occupy a segment of length exactly L on the spine
of X.

Overall, since the leg has at most D parts, the whole leg will be embedded at distance
at most 1 from the origin. It is easy to see that the embedding of X uses at most 2|5,
slopes and 2| R.| triangles for faces (up to scaling). The embedding of the whole tripod will
then require at most 6]S.| = O(A3?) slopes and 6| R.| = O(A?) non-homothetic triangles.

Let us estimate the number of possible points where a relevant vertex may be embed-
ded. For every relevant double bubble, there are at most D possibilities where its root
edge may be embedded within the embedding of X. Since a bubble may be either above
or below the spine, each relevant bubble has at most 2D possibilities where it may appear
within X, and at most 6D possibilities within the whole tripod. As soon as we fix the
embedding of the root edge and the relative position of the bubble with respect to its
spine, we are left with at most | P.| possibilities where a relevant vertex may be embedded.
There are overall at most 6D|P.| = O(A?) possible embeddings of relevant vertices.

Using Lemma 3.7, it is straightforward to check that the embedding satisfies the re-
quired visibility properties. Lemma 3.4 (and hence also Proposition 3.2 and Theorem 1.1)
is now proved. O

4. Conclusion and open problems

We have presented an upper bound of O(A®) for the planar slope number of planar
partial 3-trees of maximum degree A. It is not obvious to us if the used methods can be
generalized to a larger class of graphs, such as planar partial k-trees of bounded degree.
Since a partial k-tree is a graph of tree-width at most &, it would mean generalizing our
result to graphs of a larger, yet constant, tree-width.

In view of the results of Keszegh et al. [7] and Mukkamala and Szegedy [10] for the
slope number of (sub)cubic planar graphs, it would also be interesting to find analogous
bounds for the planar slope number.

This paper does not address lower bounds for the planar slope number in terms of A;
this might be another direction worth pursuing.
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