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Abstract

A (k, d)-list assignment L of a graph G is a mapping that assigns to each vertex
v a list L(v) of at least k colors and for any adjacent pair xy, the lists L(x) and L(y)
share at most d colors. A graph G is (k, d)-choosable if there exists an L-coloring of
G for every (k, d)-list assignment L. This concept is also known as choosability with
separation.

It is known that planar graphs are (4, 1)-choosable but it is not known if planar
graphs are (3, 1)-choosable. We strengthen the result that planar graphs are (4, 1)-
choosable by allowing an independent set of vertices to have lists of size 3 instead of
4.

1 Introduction

Given a graph G, a list assignment L is a mapping assigning to each vertex v ∈ V (G) a list
of colors L(v). An L-coloring is a vertex coloring ϕ such that ϕ(v) ∈ L(v) for each vertex
v and ϕ(x) 6= ϕ(y) for each edge xy. A graph G is said to be k-choosable if there is an
L-coloring for each list assignment L where |L(v)| ≥ k for each vertex v. The minimum such
k is known as the choosability of G, denoted χ`(G). A graph G is said to be (k, d)-choosable
if there is an L-coloring for each list assignment L where |L(v)| ≥ k for each vertex v and
|L(x) ∩ L(y)| ≤ d for each edge xy.

This concept is called choosability with separation, since the second parameter may force
the lists of adjacent vertices to be somewhat separated. If G is (k, d)-choosable, then G is
also (k′, d′)-choosable for all k′ ≥ k and d′ ≤ d. A graph is (k, k)-choosable if and only if it is
k-choosable. Clearly, all graphs are (k, 0)-choosable for k ≥ 1. Thus, for a graph G and each
1 ≤ k < χ`(G), there is some threshold d ∈ {0, . . . , k − 1} such that G is (k, d)-choosable
but not (k, d+ 1)-choosable.
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The concept of choosability with separation was introduced by Kratochv́ıl, Tuza, and
Voigt [4]. They used the following, more general definition. A graph G is (p, q, r)-choosable,
if for every list assignment L with |L(v)| ≥ p for each v ∈ V (G) and |L(u) ∩ L(v)| ≤ p − r
whenever u, v are adjacent vertices, G is q-tuple L-colorable. Since we consider only q = 1
in this paper, we use a simpler notation. They investigate this concept for both complete
graphs and sparse graphs. The study of dense graphs were extended to complete bipartite
graphs and multipartite graphs by Füredi, Kostochka, and Kumbhat [2, 3].

Thomassen [5] proved that planar graphs are 5-choosable, and hence they are (5, d)-
choosable for all d. Voigt [7] constructed a non-4-choosable planar graph, and there are also
examples of non-(4, 3)-choosable planar graphs. Kratochv́ıl, Tuza, and Voigt [4] showed that
all planar graphs are (4, 1)-choosable and asked:

Question 1 ([4]). Are all planar graphs (4, 2)-choosable?

Voigt [6] also constructed a non-3-choosable triangle-free planar graph. Škrekovski [8]
observed that there are examples of triangle-free planar graphs that are not (3, 2)-choosable,
and posed:

Question 2 ([8]). Are all planar graphs (3, 1)-choosable?

Kratochv́ıl, Tuza and Voigt [4] proved a partial case of Question 2 by showing that every
triangle-free planar graph is (3, 1)-choosable.

Choi et. al [1] proved that every planar graph without 4-cycles is (3, 1)-choosable and
that every planar graph without 5-cycles and 6-cycles is (3, 1)-choosable.

In this paper we give a strengthening of the result that every planar graph is (4, 1)-
choosable by allowing some vertices to have lists of size three. In a (4, 1)-list assignment L
on G, for every uv ∈ E(G) holds that |L(u) ∪ L(v)| ≥ 7. In a (3, 1)-list assignment L, for
every uv ∈ E(G) holds that |L(u) ∪ L(v)| ≥ 5. An intermediate step is to investigate the
case where for every uv ∈ E(G) holds that |L(u) ∪ L(v)| ≥ 6.

A (∗, 1)-list assignment is a list assignment L where |L(v)| ≥ 1 and |L(u)∩L(v)| ≤ 1 for
every pair of adjacent vertices u, v.

The main result of this paper is the following theorem.

Theorem 3. Let G be a planar graph and I ⊆ V (G) be an independent set. If L is a (∗, 1)-
list assignment such that |L(v)| ≥ 3 for every v ∈ I and |L(v)| ≥ 4 for every v ∈ V (G) \ I
then G has an L-coloring.

The following theorem shows it is not possible to strengthen Theorem 3 by allowing
|L(v)| ≥ 2 for every vertex v ∈ V (G) and requiring that |L(u) ∪ L(v)| ≥ 6 for every
uv ∈ E(G).

Theorem 4. For every k there exists a planar graph G and a (∗, 1)-list assignment L such
that |L(v)| ≥ 2 for every v ∈ V (G), |L(u) ∪ L(v)| ≥ k for every uv ∈ E(G), and G is not
L-colorable.

We first give some notation. In the next section, we prove Theorem 3 using Thomassen’s
precoloring extension method. In the last section we show a construction proving Theorem 4.
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1.1 Notation

Given a graph G and a cycle K ⊂ G, an edge uv of G is a chord of K if u, v ∈ V (K), but uv
is not an edge of K. If G is a plane graph, then let IntK(G) be the subgraph of G consisting
of the vertices and edges drawn inside the closed disc bounded by K, and let ExtK(G) be
the subgraph of G obtained by removing all vertices and edges drawn inside the open disc
bounded by K. In particular, K = IntK(G) ∩ ExtK(G). Finally, denote the characteristic
function of a set S by ιS. So ιS(x) = 1 if x ∈ S; else ιS(x) = 0.

2 Main theorem

In this section, we prove Theorem 3 by proving a slightly stronger theorem that is more
amenable to induction. Observe that any list assignment satisfying the assumptions of
Theorem 3 also satisfies the conditions of the following theorem.

Theorem 5. Let G be a plane graph with outer face F and let P be a subpath of F containing
at most two vertices. Let I ⊆ V (G−P ) be an independent set. If L is a (∗, 1)-list assignment
satisfying the following conditions:

(i) |L(v)| ≥ 4− ιI(v)− ιV (F )(v)− 2ιV (P )(v) for v ∈ V (G),

(ii) P is L-colorable,

(iii) for every v ∈ I there is at most one p ∈ N(v) ∩ V (P ) with (L(p) ∩ L(v)) 6= ∅,

then G is L-colorable.

Proof. Let G = (V,E) and L be a counterexample where |V | + |E| is as small as possible.
Moreover, assume that the sum of the sizes of the lists is also as small as possible subject to
the previous condition. Define L(uv) = L(u) ∩ L(v) if uv ∈ E; else L(uv) = ∅. Since G is
minimal, we have:

Claim 1. For all edges uv, vw, uw ∈ E \ E(P )

(1) |L(uv)| = 1;

(2) L(u) =
⋃

v∈N(u) L(uv); and

(3) L(uv) = L(vw) implies L(uv) = L(uw) for every triangle uvwu.

Proof. For (1), note that |L(uv)| ≤ 1, and if L(uv) = ∅ then it suffices to L-color G − uv,
which is possible by minimality. For (2), the definitions imply L(u) ⊇ ⋃

v∈N(u) L(uv), and

if γ ∈ L(u) \⋃v∈N(u) L(uv) then L-coloring G− u, and then coloring u with γ yields an L-

coloring of G. Finally consider (3). By (1), there exists a color γ with L(uv) = {γ} = L(vw).
Thus γ ∈ L(u) ∩ L(w), so by definition and (1), L(uw) = {γ}.

Claim 2. G is 2-connected. In particular, F is a cycle.
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Proof. Suppose not. Then there exists v ∈ V and two induced connected subgraphs G1 and
G2 of G where G1 ∩ G2 = v and G1 ∪ G2 = G. Moreover, both G1 and G2 have at least
two vertices. By symmetry assume that P ⊆ G1. By the minimality of G, there exists an
L-coloring ϕ of G1. Let L2 be a list assignment on V (G2) such that L2(u) = {ϕ(v)} if u = v,
and L2(u) = L(u) otherwise. Since L2 and G2 satisfy the assumptions of Theorem 5, there
exists an L2-coloring ψ of G2. Colorings ϕ and ψ coincide on v; hence ϕ∪ψ is an L-coloring
of G, a contradiction.

Claim 3. (1) |N(v) ∩ V (P )| ≤ 1 for all v ∈ I, and (2) V (F ) \ (I ∪ V (P )) 6= ∅.

Proof. The minimality of G and (iii) imply (1). Using Claim 2, F − P is a path. Since I is
independent, if V (F ) ⊆ I ∪ V (P ) then |I ∩ V (F )| = 1, contradicting (1).

Claim 4. G does not contain a separating triangle with a vertex in I.

Proof. Let T = xyz be a separating triangle in G and let x ∈ I. Assume that P ⊆ ExtT (G)
and |V (IntT (G))| ≥ 4. By the minimality of G, there exists an L-coloring ϕ of ExtT (G).

Let G′ := IntT (G)− z, I ′ := I \ V (ExtT (G)) and P ′ = xy. Define a list assignment L′ on
vertices u ∈ V (G′) in the following way:

L′(u) =


ϕ(u) if u ∈ {x, y},
L(u)− ϕ(z) if uz ∈ E(G− P ′),
L(u) otherwise.

Since x ∈ I, no neighbor of x is in I ′. Thus condition (iii) of Theorem 5 is satisfied for
G′, I ′, P ′ and L′. Condition (ii) is witnessed by ϕ. Since each vertexu ∈ NG′(z) is on the
outer face of G′, but not G, it is straightforward to check that (i) is satisfied. Hence G′ has
an L′-coloring ϕ. The coloring ϕ ∪ ψ is an L-coloring of G, a contradiction.

Claim 5. If xy is a chord of F then neither x nor y is in V (P ), and there exists z ∈ I∩V (F )
such that |L(z)| = 2 = d(z), L(zx) 6= L(zy), and xzy ⊆ F .

Proof. Suppose xy ∈ E is a chord of F . Let G1 and G2 be subgraphs of G where G1∩G2 = xy
and G1 ∪ G2 = G. Since xy is a chord, both G1 and G2 have at least three vertices. By
symmetry assume that P ⊂ G1.

First suppose G2 contains exactly three vertices, say x, y, z. Using Claim 1, 2 ≤ |L(z)| =
|L(zx) ∪ L(zy)| ≤ d(z) ≤ 2. So |L(z)| = 2 = d(z) and L(zx) 6= L(zy). By condition (i),
|L(z)| = 2 implies z ∈ I ∩ V (F ). Thus xzy ⊆ F , since x and y are the only possible
neighbors of z. Finally, since L(zx) 6= L(zy), Claim 1.3 implies L(xy) * L(zx) ∪ L(zy).
Thus |L(x)|, |L(y)| ≥ 2, and so x, y /∈ P .

Now suppose for a contradiction that G2 has at least four vertices. Define G′1 in the
following way. If there exists a vertex v ∈ V (G2) ∩ I such that v is adjacent to both x and
y then G′1 is obtained from G1 by adding a new vertex v′ adjacent to x and y to the outer
face of G. Moreover, let I ′ = (I ∩ G1) ∪ {v′} and let L′ be an extension of L by defining
L′(v′) = L(vx) ∪ L(vy). Notice that v is unique if it exists, since Claim 4 implies G has no
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separating triangles that contain a vertex of I. If no such v exists, let G′1 = G1, L
′ = L, and

I ′ = I ∩ V (G1). If G′1 contains v′, neither x nor y is in I. Hence I ′ is indeed an independent
set. Using that v′ ∈ I ′ is on the outer face, L′ satisfies conditions (i,ii,iii).By the minimality
of G, there exists an L′-coloring ϕ of G′ which gives an L-coloring of G1.

Define a list assignment L2 on V (G2) by L2(u) = {ϕ(u)} if u ∈ {x, y}, else L2(u) = L(u).
We wish to use xy as P . Conditions (i,ii) of Theorem 5 hold since G satisfies them. For
(iii), consider a vertex w ∈ I with {x, y} ⊆ N(w). As remarked above, w = v. Since L′(v) =
L(vx) ∪ L(vy), and ϕ is an L′-coloring of G′, there exists u ∈ {x, y} with ϕ(v) ∈ L(vu).
Then ϕ(v) 6= ϕ(u) implies ϕ(u) /∈ L(v), and (iii) holds. By the minimality of G, there exists
an L2-coloring ψ of G2. Colorings ϕ restricted to G1 and ψ coincide on xy; hence φ ∪ ψ is
an L-coloring of G, a contradiction.

By the minimality of the sum of the sizes of the lists, we can assume |V (P )| ≥ 1. Let F =
v0v1v2v3 . . . vt, where v0 ∈ V (P ) ⊆ {v0, v1}, identifying index i with index i+ t+ 1. Choose
vi ∈ V (F ) \ (I ∪ V (P )) with minimum index i. Such an index exists by Claim 3. Claim 5
implies vivi−2 is not a chord, and condition (i) implies L(vi)− L(vivi−1)− L(vivi+1) 6= ∅.

Select a set X ⊆ {vi, vi+1, vi+2} and an L-coloring ϕ of X by the following rules:

(X1) If vivi+2 is not a chord then set X = {vi} and pick ϕ(vi) ∈ L(vi) \ (L(vi−1) ∪ L(vi+1)).

(X2) Else, if there is c ∈ L(vi)\(L(vi−1)∪L(vi+1)∪L(vi+2)), then set X = {vi} and ϕ(vi) = c.

(X3) Else set X = {vi, vi+1, vi+2}. Pick:

(a) ϕ(vi+2) ∈ L(vi+2) \ (L(vi+3) ∪ L(vi+3vi+4));

(b) ϕ(vi) ∈ L(vivi+2), if ϕ(vi+2) /∈ L(vivi+2); else ϕ(vi) ∈ L(vivi+1);

(c) ϕ(vi+1) ∈ L(vi+1)− ϕ(vi)− ϕ(vi+2).

See Figure 1 for an illustration of these rules. Observe that exactly one of (X1), (X2), or
(X3) applies and X is well defined. Also, in cases (X2) and (X3), Claim 5 implies vi+1 ∈ I,
and so vi+2 /∈ I. Thus the sizes of their lists are as claimed in Figure 1. In (X3) either
ϕ(vi) ∈ L(vivi+2) or ϕ(vi+2) ∈ L(vivi+2). Also, by Claims 1(3) and 5, L(vivi+2) 6⊆ L(vi+1).
Hence ϕ is also well defined. Moreover, d(vi+1) = 2, and so N(vi+1) = {vi, vi+1}.

Let G′ = G−X, I ′ = I \X, and L′ be the list assignment on V (G′) defined by

L′(v) = L(v) \ {ϕ(x) : x ∈ N(v) ∩X}.

It suffices to show that G′, L′, I ′ and P satisfy the assumptions of Theorem 5. Then by the
minimality of G, there is an L′-coloring ψ of G′, and by the choice of L′, the function ψ ∪ ϕ
is an L-coloring of G, a contradiction.

Now we verify that G′, L′, I ′ and P satisfy the assumptions of Theorem 5. Since I is an
independent set, so is I ′. Let M = {v ∈ V (G′) : L′(v) 6= L(v)}. Clearly condition (i) holds
for vertices in V \M . By Claim 5, all chords have the form vjvj+2. Thus ϕ was chosen so
that M ∩ V (F ) = ∅. Hence the condition (i) is satisfied for v ∈ V (F ). Condition (ii) holds
since P did not change. Since I ′ ⊆ I, Claim 3(1) implies condition (iii).
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It remains to show that every v ∈ M satisfies condition (i). Let F ′ be the outer face
of G′. Since each vertex of M has a neighbor in X ⊆ F , M ⊆ F ′ \ F . Thus it suffices
to show that |L′(v)| ≥ |L(v)| − 1. If |N(v) ∩ X| = 1 then |L′(v)| ≥ |L(v)| − 1. Otherwise
|N(v) ∩X| ≥ 2. Then v is handled by rule (X3). So N(v) ∩X = {vi, vi+2} and L(vivi+2) ⊂
C := {ϕ(vi), ϕ(vi+2)}. If L(vvi) 6= L(vvi+2) then Claim 1(3) implies L(vivi+2) 6⊂ L(v).
Anyway, |L(v) ∩ C| ≤ 1, and we are done.

vi−2 vi−1

(X1)

vi vi+1 vi+2

vi−2 vi−1

(X2)

vi vi+1 vi+2

a b

a

vi−2 vi−1

(X3)

vi vi+1 vi+2 vi+3 vi+4

a b

c

Figure 1: Rules (X1), (X2), and (X3). A black circle is a vertex with arbitrary list size, a
white circle is a vertex with list size two, and a triangle is a vertex with list size at least
three. The dashed box indicates X and a label on an edge is the common color of lists of its
endpoints.

3 Lists of size 3 are necessary

In this section we give a proof of Theorem 4. The construction is analogous to the construc-
tion that bipartite graphs are not 2-choosable.

Proof of Theorem 4. Let k be given. Let G be a complete bipartite graph with part X of
size (k−1)2 and another part of size 2 formed by vertices a and b. Let L be a list assignment
assigning to a a list of colors {a1, . . . , ak−1} and to b a list of colors {b1, . . . , bk−1}. To the
other vertices, L assigns distinct lists of form {ai, bj} where 1 ≤ i, j ≤ k − 1. There are
(k − 1)2 such lists which is exactly the size of X. Notice that |L(u) ∪ L(v)| = k for every
edge uv. See Figure 2 for a sketch of G and L.
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{b1, b2, . . . , bk−1}

{a1, a2, . . . , ak−1}

{a1, b1} {ak−1, bk−1}· · ·

Figure 2: Construction from Theorem 4.

Suppose that there is an L-coloring of G. It assigns colors ai to a and bj to b for some
1 ≤ i, j ≤ k − 1. However, there is a vertex with list {ai, bj}, a contradiction. Hence G is
not L-colorable.
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