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Abstract. An irreversible k-threshold process is a process on a graph
where vertices change color from white to black if they have at least k
black neighbors. An irreversible k-conversion set is a subset S of vertices
of a graph G such that the irreversible k-threshold process changes all
vertices of G to black if S is the initial set of black vertices. We show
that deciding the existence of an irreversible 2-conversion set of a given
size is NP-complete which answers a question of Dreyer and Roberts.
Moreover, we show an optimal irreversible 3-conversion set for a toroidal
grid, which simplifies constructions of Pike and Zou.
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1 Introduction

Mathematical modelling of the spread of infectious diseases was recently studied
by Roberts [6] and by Dreyer and Roberts [2]. They used the following model.

Let G = (V,E) be a graph with vertices colored white and black. An irre-
versible k-threshold process is a process where vertices change color from white
to black. More precisely, a white vertex becomes black at time t+ 1 if at least k
of its neighbors are black at time t.

An irreversible k-conversion set S is a subset of V such that the irreversible
k-threshold process starting with vertices of S set to black and all other white
will result in a graph G with all vertices black after finite number of steps.

More general models of spread of infectious diseases and the complexity of
the related problems were studied by Boros and Gurwich [1].

A natural question to ask is what is the minimum size of an irreversible
k-conversion set in a graph G.

Problem IkCS(G, s):
Input: a graph G and a positive integer s
Output: YES if there exists an irreversible k-conversion set of size s in G

NO otherwise
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It is proved in [2] that IkCS is NP-complete for a fixed k ≥ 3 by an easy
reduction from the independent set problem. For k = 1 the problem is trivially
polynomial since one black vertex per connected component is necessary and
sufficient. Dreyer and Roberts [2] asked what is the complexity of the IkCS
problem if k = 2. As the first result of this paper we resolve this open question.

Theorem 1. The problem I2CS is NP-complete even for graphs of maximum
degree 4.

A subset W of vertices of a graph G = (V,E) is a vertex feedback set if
V \W is acyclic. For 3-regular graphs, the I2CS problem is equivalent to finding
a vertex feedback set, which can be solved in polynomial time [7].

Note that the problem I2CS(G, s) is trivially polynomial if the maximum
degree of G is at most two as a path of length l requires d l+1

2 e black vertices and

a cycle of length l requires d l2e vertices. However, we do not know the complexity
of I2CS for graphs of maximum degree three. Boros and Gurwich [1] proved that
if every vertex has its own threshold, then determining the minimum size of the
conversion set is NP-complete.

The second result presented in this paper is a construction of an optimal
irreversible 3-conversion set for a toroidal grid T (m,n) which is the Cartesian
product of the cycles Cm and Cn. Previously known lower and upper bounds
differ by a linear O(m + n) term [2,3,4]. Recently, we have found that Pike and
Zou [5] gave an optimal construction. We present a simpler optimal construction.

Theorem 2. Let T be a toroidal grid of size m × n, where m,n ≥ 3. If n = 4
or m = 4 then T has an irreversible 3-conversion set of size at most 3mn+4

8 .
Otherwise, T has an irreversible 3-conversion set of size at most mn+4

3 .

2 Irreversible 2-conversion set

In this section we give a proof of Theorem 1.
The problem is trivially in NP. A verification that S ⊆ V is an irreversible

2-conversion set can be done by iterating the threshold process. It is enough to
check only the first |V | steps. Hence the verification can be done in a polynomial
time.

In the rest of the proof we show that I2CS(G, s) is NP-hard by a polynomial-
time reduction from 3-SAT. We introduce a variable gadget, a clause gadget and
a gadget which checks if all clause gadgets are satisfied.

Since a white vertex needs two black neighbors to become black, we have the
following observation.

Observation 3 Every irreversible 2-conversion set contains all vertices of de-
gree one.

According to this observation, in the figures of the gadgets we draw vertices
of degree one black.



Let F be an instance of 3-SAT. We denote the number of variables by n and
the number of clauses by m. We construct a graph GF and give a number s such
that F is satisfiable if and only if GF has an irreversible 2-conversion set of size
s.

v uv u
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Fig. 1. A one-way gadget.

First we introduce a one-way gadget; see Figure 1. The gadget contains two
vertices u and v which are called start and end of the one-way gadget. Vertices
w1, w2, w3 and w4 are called internal vertices of the gadget.

Observation 4 Let u and v be start and end of the one-way gadget. If internal
vertices are white at the beginning then the following holds:

1. If v is black then u gets a black neighbor from the gadget in three steps.
2. The color of u has no influence on colors of the other vertices of the gadget.

We refer to the one-way gadget by a directed edge in the following figures.
Later, we set s such that S cannot contain any internal vertices of one-ways.
Thus, in the rest of the proof we assume that all internal vertices are white at
the beginning.

Variable gadget

A gadget g(Xi) for a variable Xi, where 1 ≤ i ≤ n, consists of a triangle xiyizi
and two antennas; see Figure 2. The length of the antenna connected to xi (resp.
yi) is equal to the number of occurrences of Xi (resp. ¬Xi) in the clauses of F .
We call the white vertices of xi antenna positive outputs and the vertices of yi
antenna negative outputs. One-way gadgets with starts in the outputs have ends
in clause gadgets. The vertex zi is adjacent to ui lying on a distributing path,
which we define later.

We show that exactly one of xi and yi is black at the beginning. This repre-
sents the value of the variable Xi. The vertex xi corresponds to the true and yi
to the false evaluation of Xi. The purpose of the connection between ui and zi
is to convert all vertices of the gadget to black if F is satisfiable.
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Fig. 2. A variable gadget g(Xi) connected to a vertex ui of a distributing path.

Observation 5 Let S be an irreversible 2-conversion set. The gadget g(Xi) has
the following properties.

(a) If xi is black then all positive outputs will become black in the process. Sim-
ilarly for yi and negative outputs.

(b) If two of xi, yi, zi are black then all vertices of the gadget will become black
in the process.

(c) S must contain at least one vertex of xi, yi and zi.
(d) If S contains exactly one vertex of the gadget (except the vertices of degree

one) then it must be xi or yi.
(e) If S contains exactly one vertex of the gadget then zi gets black only if ui

gets black.

Proof. The first two properties are easy to check and hence we skip them.
First we check the property (c). Every vertex of the triangle xiyizi has only

one neighbor outside the triangle. Hence if all three vertices are white, they
remain white forever since each of them has at most one black neighbor. Hence
S must contain at least one of them.

Now we check the property (d). If S is allowed to contain only one of
{xi, yi, zi} then all positive and negative outputs are white at the beginning.
Moreover, the positive outputs may become black only if xi gets black. Similarly
for negative outputs and yi.

Suppose for contradiction that zi ∈ S. Then both xi and yi have only one
black neighbor (zi) at the beginning. During the process the other black neighbor
has to be some output vertex which is not possible. Hence S must contain xi or
yi.

Finally, we check the property (e). By (d) we know that zi is white at the
beginnig and assume without loss of generality that yi is also white while xi is
black. The vertex zi can get black if yi or ui gets black. So assume for contra-
diction that yi gets black before zi. The only possibility is that the vertex from
the antenna adjacent to yi gets black. But it is not possible since output vertices
are white at the beginning and they are connected to the rest of the graph by
one-ways. ut



Note that if xi or yi is in S then there is still a chance that the process
converts all vertices of the gadget to black, as the vertex ui may become black
during the process.

Let L be a set of all degree one vertices in GF . We set parameter s to |L|+n.
Thus every variable gadget has exactly one of xi and yi black at the beginning
and all other vertices of GF of degree at least two are white. We compute |L|
after we describe all the remaining gadgets.

viai

Fig. 3. A clause gadget g(Ci) connected to a vertex vi of a collecting path.

Clause gadget

The gadget g(Ci) for a clause Ci = (Lo ∨Lp ∨Lq), where 1 ≤ i ≤ m and Lo, Lp,
and Lq are literals, is depicted in Figure 3. It consists of a path on three vertices
which correspond to the literals in the clause. We call it the spine of the clause
gadget. Each vertex of the spine has one neighbor of degree one and is connected
to the gadget of the corresponding variable by a one-way. The vertex of a clause
corresponding to a literal Xi is connected to a positive output of g(Xi) and the
vertex corresponding to a literal ¬Xi is connected to a negative output of g(Xi).
Finally, one vertex of the spine denoted by ai is connected to a vertex vi of a
collecting path, which is defined later.

Observation 6 If one vertex of the spine is black, then all vertices of the clause
gadget get black in the process.

Collecting and distributing gadget

A collecting path is a path on m vertices v1, . . . , vm where each vi is connected to
a clause gadget. Moreover, the vertex v1 is also connected to a vertex of degree
one. A distributing path is a path on n vertices u1, . . . , un. Each ui is connected
to a vertex of degree one and to the vertex zi of the variable gadget g(Xi).
Finally, vm is connected to u1; see Figure 4.

Observation 7 If the vertices of the distributing and collecting paths are white
at the beginning they will become all black in the process only if all the clause
gadgets get black during the process.
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Fig. 4. A collecting path v1, . . . , vm and a distributing path u1, . . . , un

Proof. If all spines of clause gadgets are black then it is easy to observe that the
vertices of the collecting path get black in at most m steps from v1 to vm. Once
vm is black all the vertices of the distributing path get black in at most n steps
from u1 to un. It remains to check that vi cannot get black before a neighboring
vertex ai gets black.

We start by checking the vertices of the distributing path. By Observa-
tion 5(e), the vertex zn cannot get black before un. Thus un cannot get black
before un−1 because un−1 is one of the two remaining neighbors which can be
black before un. Similarly, for 0 < i < n, the vertices zi and ui+1 cannot get
black before ui. Thus ui cannot get black before ui−1. Similarly, u0 cannot get
black before vm.

Analogously, no vertex vi, 0 < i ≤ m, of the collecting path can get black
before vi−1 and ai are both black. For i = 0 we get that a0 must get black before
v0. ut

The graph GF = (V,E) corresponding to the 3-SAT instance F constructed
from these gadgets has a linear size in the size of F . The size of L is 15m+n+1.
Thus s is set to n + |L| = 15m + 2n + 1.

Lemma 8. If F is satisfiable then there exists an irreversible 2-conversion set
S of size n + |L| in GF .

Proof. The set S consists of |L| leaves and from every variable gadget g(Xi) we
choose either xi or yi if Xi is evaluated true or false, respectively. Since F is
satisfiable then after a finite number of steps every gadget for a clause has at least
one black vertex. Then in at most two steps all clause gadgets are completely
black. Next the collecting path gets black in at most m steps and the distributing
path gets black in next n steps. Now, for 0 ≤ i ≤ n, the vertex zi has two black
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Fig. 5. A graph GF for the formula F = (X1 ∨ ¬X1 ∨ ¬X2).

neighbors and it gets black. The remaining white vertex of the pair xi, yi gets
black in the next step. Finally, also the remaining antennas for every variable
get black. Hence all vertices of GF get black in the process. ut

Lemma 9. If F is not satisfiable then there is no irreversible 2-conversion set
of size n + |L|.

Proof. Assume for contradiction that there exists an irreversible 2-conversion
set S of size n+ |L|. By Observation 3, L ⊆ S. Moreover, due to Observation 5,
S must contain one of {xi, yi} for each i ∈ [n]. Hence there are no other black
vertices. We derive the truth assignment of the variables in the following way.
We set Xi true if xi ∈ S and false if yi ∈ S.

Let C = (Lo ∨ Lp ∨ Lq) be a clause of F . The gadget corresponding to C
gets black after finite number of steps of the process. By Observation 7, g(C)
got black because of one of g(Xo), g(Xp) or g(Xq). Hence C is evaluated as true
in F . Therefore all clauses of F are evaluated as true which is a contradiction
with the assumption that F is not satisfiable. ut

The proof of Theorem 1 is now finished.

3 Irreversible 3-conversion set in toroidal grids

In this section we show a construction of an irreversible 3-conversion set S which
proves Theorem 2. We denote the toroidal grid of size n×m by T (n,m). When
the dimensions of the grid are clear from the context or not important, we simply
write T instead of T (m,n). We assume that the entries of the grid are squares
and two of them are neighboring if they share an edge. First we discuss the
general case where m 6= 4 and n 6= 4.

We define a coordinate system on T such that the left bottom corner is [0, 0].
A pattern is a small and usually rectangular piece of a grid where squares are
black and white. Placing a pattern P at position [i, j] in T means that the left



bottom square of P is at [i, j] in T . If a vertex of T has color defined by several
patterns then it is white only if it is white in all the patterns. We describe a
rectangle of a grid by the coordinates of its left bottom and right top squares.
By tiling a rectangle R by a pattern P we mean placing several non-overlapping
copies of P to R such that every square of R is covered.

Let m = 3k + a and n = 3l + b, where a, b ∈ {0, 2, 4}. By g we denote the
greatest common divisor of k and l.

For 0 ≤ i ≤ g− 2 we place a pattern at [0, 3i]. Next we tile the rest of the
rectangle [0, 0][3k − 1, 3l − 1] by a pattern . The remaining part of the grid
can be decomposed into three rectangles of dimensions 3k × b, a× 3l and a× b
(some of them may be empty).

We distinguish several cases depending on a and b. They are depicted in
Figure 6 and their description follows.

(D) 3k + 2, 3l + 2 (E) 3k + 2, 3l + 4 (F) 3k + 4, 3l + 4

(C) 3k, 3l + 4(B) 3k, 3l + 2(A) 3k, 3l

Fig. 6. The cases for T (m,n).

(A) a = 0, b = 0 We do not add anything now.
(B) a = 0, b = 2 We tile the rectangle 3k × 2 with .

(C) a = 0, b = 4 We tile the rectangle 3k × 4 with .
(D) a = 2, b = 2 We tile the rectangle 3k×2 with , the rectangle 2×3l with

and place at [3k, 3l].

(E) a = 2, b = 4 We tile the rectangle 3k×4 with , the rectangle 2×3l with

and place at [3k, 3l].



(F) a = 4, b = 4 We tile the rectangle 3k×4 with , the rectangle 4×3l with

and place at [3k, 3l].

The construction is finished for cases (D), (E) and (F). Cases (A), (B) and
(C) require an extra black square. We place it at [0,0] or [1,1]. It is colored grey
in Figure 6.

Let S be the set of black squares in our construction. In the cases (A), (B)
and (C) the size of S is mn

3 + 1 = mn+3
3 . In the cases (D) and (F) the size of S

is mn+2
3 and in the last case (E) the size of S is mn+4

3 .
Now we check the correctness of the construction. We start with the case (A)

where m = 3k and n = 3l.
By a white cycle we denote a connected set of white squares W ⊆ T where

every square in W has at least two neighbors in W . Note that T cannot contain
any white cycle if the squares of an irreversible 3-conversion set are black.

Observation 10 Let T (3k, 3l) be filled with . Then it contains g disjoint ll-
white cycles.

Fig. 7. Merging three white cycles into one.

Let the whole grid be filled by . By Observation 10, there are g white cycles
after the filling. First we merge the cycles into one long cycle by changing to

in the first column and the first g− 1 rows; see Figure 7. Finally, we add one
more black vertex to break the resulting cycle.

Observe that the small patterns used in (B) – (F) just extend the size of the
toroidal grid but do not change the structure of white cycles from the 3k × 3l
rectangle. Thus the argument for the case (A) can be easily extended to all the
other cases.

This finishes the construction for the general case.
Now we assume without loss of generality that n = 4. Let m = 2k+a, where

a ∈ {1, 2}. We tile the rectangle [0, 0][2k − 1, 3] by a pattern . If a = 1 we

place at [2k − 1, 0] and if a = 2 we place at [2k, 0]. The resulting grids are
depicted in Figure 8.



2k, 4 2k + 1, 4

Fig. 8. The cases for T (m, 4).
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