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Abstract

A graph is k-choosable if it can be colored whenever every vertex
has a list of available colors of size at least k. It is a generalization
of graph coloring where all vertices do not have the same available
colors. We show that every triangle-free plane graph without 6-, 7-,
and 8-cycles is 3-choosable.

1 Introduction

List coloring is a generalization of graph coloring where every vertex v has
its own list of colors L(v). The coloring c assigns every vertex v a color from
L(v). Moreover colors of vertices joined by an edge must be different. The
concept of the list coloring was introduced independently by Vizing [7] and
Erdős et al. [2].

We say that a graph G is k-choosable if it allows a list coloring for every
list assignment where |L(v)| ≥ k for every vertex v. Observe that the graph
coloring problem is a special case of the list coloring problem where all lists
have the same content.

Thomassen [5] proved that every planar graph is 5-choosable. Voigt [8]
showed that not all planar graphs are 4-choosable. Kratochv́ıl and Tuza [3]
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observed that every planar triangle-free graph is 4-choosable, and Voigt [9]
exhibited an example of a non-3-choosable triangle-free planar graph.

There are several sufficient conditions for 3-choosability of planar triangle-
free graphs. Alon and Tarsi [1] proved that every planar bipartite graph is
3-choosable. Thomassen [6] gave a proof showing that every planar graph
without 3- and 4-cycles is 3-choosable. Lam, Shui and Song [4] proved that
every planar graph without 3-, 5- and 6-cycles is 3-choosable. Zhang and
Xu [11] proved that every planar graph without 3-, 6-, 7- and 9-cycles is
3-choosable. Zhang [10] proved that every planar graph without 3-, 5-, 8-
and 9-cycles is 3-choosable.

We show that every planar graph without 3-, 6-, 7- and 8-cycles is 3-
choosable. The result is derived as a corollary of Theorem 3 which restricts
adjacency of small cycles in a graph.

The proof is done by the well known discharging method. We apply
the method in the following manner. We consider a hypothetical smallest
counterexample and identify some configurations which cannot occur in the
smallest counterexample. Then faces and vertices are assigned charges such
that sum of all charges is negative. Discharging rules redistribute charges
between vertices and faces such that the resulting charge of every face and
every vertex is non-negative. Hence we get a contradiction with assumption
that the sum of the charges is negative.

We use the following notation. A cycle of length k is said to be a k-cycle
and a vertex of degree k is said to be a k-vertex. Analogously a cycle of
length at least k is said to be a (≥ k)-cycle and a vertex of degree at least k
is said to be a (≥ k)-vertex. A similar notation is also used for faces.

2 Reducible configurations

A configuration R is (H, d) where H is a simple graph and d is a function
V (H) → N. A graph G contains R if G contains a subgraph K such that
there is an isomorphism f : H → K and for every vertex v from V (H) holds
that degG(f(v)) = d(v).

We say that a configuration R is reducible if removing R from any graph
G does not affect the property of 3-choosability of G.

Note that removing any configuration R from a 3-choosable graph G does
not make G non-3-choosable since we only delete edges and vertices. On the
other hand removing R from a non-3-choosable graph G can turn G into
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Figure 1: C4-arbor

a 3-choosable graph but this is not the case when the configuration R is
reducible.

Observe that an isolated vertex v and a function d(v) = 1 or d(v) = 2
form a reducible configuration since adding a vertex of degree 1 or 2 to a
graph G does not turn G into a non-3-choosable graph.

Next we describe a bigger reducible configuration. Let Z = {C1
4 , C

2
4 , . . . , C

n
4 }

be a connected graph which is created as a union of 4-cycles such that two
4-cycles are allowed to share at most one vertex and one vertex can be con-
tained in at most two 4-cycles. Moreover C1

4 , C
2
4 , . . . , C

n
4 are the only cycles

in F . Observe that the 4-cycles must form some kind of a tree structure.
Refer to the black drawing in Figure 1.

We create H from Z by adding some edges joining vertices of degree
two in distance more than two. Moreover every vertex can be in at most
one added edge. We call such graph H a C4-arbor. We show that H with a
suitable d is a reducible configuration. Note that we do not require C4-arbors
to be planar but we need only planar C4-arbors in this paper. Refer to Figure
1 for an example of a planar C4-arbor.

Lemma 1. Let H be a C4-arbor and let d : V (H) → N be defined as follows:

d(v) =

{
degH(v) if degH(v) ≥ 3;

3 if degH(v) = 2.

Then R = (H, d) is a reducible configuration.
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Proof. Let G be a graph and let H be a C4-arbor subgraph with degrees
according to d. Assume that G − H is 3-choosable. Our goal is to show
that G is also 3-choosable. More precisely we want to extend a list coloring
c of G−H to a list coloring c′ of G. We assume that every vertex v of still
uncolored H has L(v) of size 3.

The proof proceeds by induction on n. Let H be formed by a union of 4-
cycles Z = {C1

4 , C
2
4 , . . . , C

n
4 } and some additional edges. Observe that every

vertex v in H with degH(v) = 2 has degG(v) = 3 and the other vertices of
H have the same degree in G as in H. Since v of degH(v) = 2 has exactly
one neighbor u in G − H, it has a forbidden color c(u). We alter L(v) to
L(v) \ {c(u)} to avoid conflict during extending c.

|L(v)| =

{
2 if degH(v) = 2;

3 otherwise.

First we consider case Z = {C1
4} for starting the induction. Then H =

F since we are not allowed to add any new edge and d(v) = 2 for every
vertex v from V (H). The discussion why C4 can be colored is analogous
to the discussion for the induction step or we could use the fact that C4 is
2-choosable.

If all 4-cycles have at least two shared vertices, then we can find a long
cycle which is forbidden by the definition of C4-arbor. Thus there is a 4-cycle
C with exactly one shared vertex x.

We color the non-shared vertices u, v, w of C such that there will remain
two possible colors for x. Then we remove u, v and w from H. This decreases
the number of 4-cycles and the shared vertex x becomes a vertex of degree 2
with L(x) of size 2. Hence we can apply the induction hypothesis.

Let the shared vertex x be adjacent to vertices u and v; refer to Figure
2. We distinguish two cases.

If a is a common color of L(u) and L(v) then we color u and v by a. Since
u and v have the same color a, there are still at least two colors left in L(x)
and at least one color is left in L(w). Thus we can assign such remaining
color to w and preserve a color list of size 2 for x.

In the other case the color lists of u and v are disjoint. Their color lists
have 4 different colors together while L(x) contains only 3 colors. Hence
there is a color b which is not in L(x). Without loss of generality assume
that b is in L(u). We color u by the color b. Then we color w by a color
distinct from b. Finally we color v by a color different from the color of w.
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(a)

(a)

(d) {b, c}

Figure 2: The 4-face in the induction step.

The color of v may be present in L(x), but there are still at least 2 different
colors left in L(x).

We also need to deal with vertices of H joined to vertices u, v, and w by
edges, if there are any. Let z be a vertex connected to vertex u. The vertex
z has a color list of size 3. So we can remove the color of u from L(z) to
avoid conflict. The vertex z is then treated as a vertex of degree two.

3 Initial charges

In this section we define the initial charges for faces and vertices. We start
with defining that for a plane graph G the degree of a face f is the number
of incident edge sides. We denote it by deg(f). Observe that one edge can
raise deg(f) by two if both sides of the edge are incident with f .

Recall that for every plane graph G holds that
∑

v∈V deg(v) = 2|E| and
observe that also holds that

∑
f∈F deg(f) = 2|E| since every edge is counted

twice.
The initial charge of a face f and the initial charge of a vertex v are

defined by

ch(f) := deg(f)− 6 and ch(v) := 2 deg(v)− 6.

Refer to Table 1 for the initial charges of faces and vertices of small degrees.
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deg 3 4 5 6 7
ch(f) -3 -2 -1 0 1
ch(v) 0 2 4 6 8

Table 1: Initial charges of a face f and a vertex v depending on their degree.

Lemma 2. If G = (V, E) is a plane connected graph, then the sum of all
initial charges is negative.

Proof. The idea of the proof is based on counting with Euler’s formula, which
says that |E| − |V | − |F | = −2 where F is the set of faces. Counting with
the charges gives:∑

f∈F

ch(f) +
∑
v∈V

ch(v) =
∑
f∈F

(deg(f)− 6) +
∑
v∈V

(2 deg(v)− 6)

= (2|E| − 6|F |) + (4|E| − 6|V |)
= −12.

The goal is to show that the sum of all charges is non-negative in the
assumed counterexample and hence it violates the Euler’s formula. In Table
1 we observe that 3-, 4- and 5-faces have negative initial charge hence we need
to deal with these negative charges. We satisfy 3-faces by the condition that
our graph is triangle-free. Hence we have to deal only with 4- and 5-faces.
Observe that forbidding C3, C4 and C5 is a sufficient condition for a planar
graph to be 3-choosable.

4 Discharging 4-faces and 5-faces

We denote by Cx|y a graph constructed from a cycle on x + y− 2 vertices by
adding a single edge to form two cycles of lengths x and y. We say that cycles
are touching if they share exactly one vertex. We call two cycles adjacent if
they form Cx|y.

A 4-vertex v is called non-shared if it is incident to only one 4-face with
negative charge. We say that a 4-vertex v is shared if it is incident to two
4-faces with negative charges. It may seem superfluous to require that the
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4-faces have a negative charge since they all have it at the beginning. But
during the discharging process a shared vertex may become non-shared if one
of its incident 4-faces receives charge from someone else.

We say that a 5-face is isolated if it does not share any vertex with another
5-face.

-2

-2

-2 -26-24
-1

-2 4

Figure 3: Illustration of Rule 1. The grey vertices have a sufficient charge to
eliminate the negative charges of the incident 4-faces and 5-faces.

-2
-2

-2

-2
-2

-2

2

2 2

2

22

Figure 4: Illustration of Rule 2. A cycle of touching 4-faces. The arrows
illustrate sending charges along the cycle.

Theorem 3. Every planar graph without C3, C4|4, C4|5, C5|5, and C5|6 is
3-choosable.

Proof. Assume for a contradiction that G is a minimal counterexample. By
minimality G does not contain vertices of degree two or configurations from
Lemma 1. Moreover G is a connected graph.
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Figure 5: Illustration of Rule 3. The grey vertex eliminates the negative
charge of the incident 4-face. The other white shared vertices then become
non-shared. Note that the negative charge of the 5-face is not discharged.

We claim that there are no two 4-faces, or a 4-face and a 5-face, or two
5-faces or a 5-face and a 6-face that would share two edges because G does
not contain any vertices of degree two or triangles; refer to Figure 7.

Note that two 5-faces or a 5-face and a 6-face can share an edge and one
extra vertex. Let v be a vertex. A 5-face f is proper with respect to v if
either f does not share an edge with another 5-face or it shares an edge e
with another 5-face but v 6∈ e; refer to Figure 8. Observe that a 5-face can
share no edge with two 5-faces.

4.1 The discharging rules

We claim that we are able to raise charge of all 4-faces and 5-faces in G to a
non-negative value by subsequent application of the following rules:

Rule 1. A (≥ 5)-vertex v sends charge 2 to all incident 4-faces and charge
1 to all incident proper 5-faces; refer to Figure 3.

Rule 2. On a cycle of touching 4-faces with negative charges the shared
vertices send charge 2 along the cycle to the 4-faces; refer to Figure 4.

Rule 3. A non-shared 4-vertex sends charge 2 to its 4-face with negative
charge; refer to Figure 5.

Rule 4. A 4-vertex which was not used in Rule 3 sends charge 1 to every
incident proper 5-face; refer to Figure 6.

8



-1
1/5
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1/5
-1

1/5

-12-1

1

Figure 6: Illustration of Rules 4 and 5. Discharging touching 5-faces and
distributing charge 1 from a 7-face to adjacent 5-faces.

Figure 7: Two small cycles drawn as faces that share two edges require
a vertex of degree two or triangles.

Rule 5. A (≥ 7)-face sends charge 1
5

through every edge which is shared
with an isolated 5-face; refer to Figure 6.

The rules are applied sequentially from Rule 1 to Rule 5. Note that in
Rule 5 a big face can send charge to the same 5-face through several edges.

Next we check that the final charge of all faces and vertices is non-
negative.

Let v be a k-vertex. Regarding its degree we consider following cases:

k ≥ 5: Only Rule 1 can apply on v. Charge transfered from v in is at most
2bk

2
c. Hence we compute ch(v)− 2bk

2
c = 2k − 2bk

2
c − 6 ≥ 0.

k = 4: Only one of the Rules 2,3 or 4 can apply on v. Charge at most two
is transferred from v hence the resulting charge is non-negative.
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Figure 8: Two 5-faces and a 5-face with a 6-face sharing an edge and one
more vertex. The 5-faces are considered proper with respect to the black
vertices.

-1

-1
1/5

-1

1/5 -1

2
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1/5 1/5

1/5

1/5
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1

Figure 9: A big face is sending charges only to isolated 5-faces and incoming
charges to an isolated 5-face.

k = 3: The initial zero charge is not changed.

Let f be a k-face. We consider cases regarding k:

k ≥ 7: Only Rule 5 applies on f . Note that the number of edges shared with
isolated 5-faces is at most bk

2
c since these 5-faces share no vertices; refer

to Figure 9. Hence the resulting charge of f is k − 6 − 1
5
bk

2
c which is

non-negative.

k = 6: The initial zero charge is not changed.

k = 5: If Rule 1 or Rule 4 applies then the resulting charge of f is non-
negative. Hence assume that they do not apply.

If f shares an edge with another 5-face or a 6-face f ′ then f also shares
a (≥ 4)-vertex v with f ′. Observe that f is proper with respect to v.
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If v is a 4-vertex then it is not incident to any 4-face. Hence Rule 4
applies on f . If v is a (≥ 5)-vertex then Rule 1 applies. Therefore we
can assume that f is proper with respect to all vertices of G.

If f shares a vertex v with another 5-face then Rule 1 or Rule 4 applies
on v and f . Hence f is isolated.

Every isolated 5-face is adjacent to five (≥ 7)-faces. Hence Rule 5
applies five times on f and the incoming charge is 5

5
. Thus the resulting

charge is non-negative.

k = 4: If any of the Rules 1,2 or 3 applies on f then the incoming charge is
2 and the resulting charge is 0. Hence assume that none of the Rules
applies. Since G is a minimal counterexample, f must be incident to
least one 4-vertex v. We create a bipartite graph B = (VB = V 1

B ∪
V 2

B, EB) where vertices of V 1
B correspond to 4-faces of G with negative

charge and the vertices of V 2
B correspond to 4-vertices of the faces.

An edge uv where u ∈ V 1
B and v ∈ V 2

B is present if the vertex of G
corresponding to v is incident to the 4-face of G corresponding to u. If
B is not connected we process each connected component separately.

If B contains a cycle, then Rule 2 applies. Hence B is a forest. If
v ∈ V 2

B is a leaf, then the corresponding 4-vertex in G is non-shared
and Rule 3 applies. Hence the faces corresponding to V 1

B induce a C4-
arbor and Lemma 1 applies. It is a contradiction with the assumption
that G is minimal.

Therefore after redistribution of charges every face and every vertex have
a non-negative charge and we have a contradiction with Lemma 2.

Observe that graphs without C6 does not contain C4|4. We can also use
absence of C4|5 in graphs without C7 and absence of C5|5 in graphs without C8.
Hence Theorem 3 implies result of Lam et. al [4] that planar graphs without
C3, C5 and C6 are 3-choosable as well as the following two corollaries.

Corollary 4. Every planar graph without C3, C6, C7 and C8 is 3-choosable.

Corollary 5. Every planar graph without C3, C5 and C4|4 is 3-choosable.
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