
The k-in-a-path problem for claw-free graphs ?

Jiřı́ Fiala1, Marcin Kamiński2, Bernard Lidický1, and Daniël Paulusma3

1 Charles University, Faculty of Mathematics and Physics,
DIMATIA and Institute for Theoretical Computer Science (ITI)

Malostranské nám. 2/25, 118 00, Prague, Czech Republic+

{fiala,bernard}@kam.mff.cuni.cz
2 Computer Science Department, Université Libre de Bruxelles,

Boulevard du Triomphe CP212, B-1050 Brussels, Belgium
marcin.kaminski@ulb.ac.be

3 Department of Computer Science, University of Durham,
Science Laboratories, South Road,

Durham DH1 3LE, England++

daniel.paulusma@durham.ac.uk

Abstract. The k-IN-A-PATH problem is to test whether a graph contains an in-
duced path spanning k given vertices. This problem is NP-complete in general
graphs, already when k = 3. We show how to solve it in polynomial time on
claw-free graphs, when k is an arbitrary fixed integer not part of the input. As
a consequence, also the k-INDUCED DISJOINT PATHS and the k-IN-A-CYCLE

problem are solvable in polynomial time on claw-free graphs for any fixed k. The
first problem has as input a graph G and k pairs of specified vertices (si, ti) for
i = 1, . . . , k and is to test whether G contain k mutually induced paths Pi such
that Pi connects si and ti for i = 1, . . . , k. The second problem is to test whether
a graph contains an induced cycle spanning k given vertices. When k is part of
the input, we show that all three problems are NP-complete, even for the class of
line graphs, which form a subclass of the class of claw-free graphs.

Keywords. induced path, claw-free graph, polynomial time algorithm

1 Introduction

Many interesting graph classes are closed under vertex deletion. Every such
class can be characterized by a set of forbidden induced subgraphs. One of the
best-known examples is the class of perfect graphs. A little over 40 years after
Berge’s conjecture, Chudnovsky et al. [3] proved that a graph is perfect if and
only if it contains neither an odd hole (induced cycle of odd length at least five)
nor an odd antihole (complement of an odd hole). This motivates the research
of detecting induced subgraphs such as paths and cycles, which is the topic of
+ Supported by the Ministry of Education of the Czech Republic as project 1M0021620808 and

GACR 201/09/0197.
++ Supported by EPSRC (EP/D053633/1 and by the Royal Society (JP090172).

? An extended abstract of this paper will be presented at STACS 2010.

this paper. To be more precise, we specify some vertices of a graph called the
terminals and study the computational complexity of deciding if a graph has an
induced subgraph of a certain type containing all the terminals. In particular, we
focus on the following problem.

k-IN-A-PATH

Instance: a graph G with k terminals.
Question: does there exist an induced path of G containing the k terminals?

Note that in the problem above, k is a fixed integer. Clearly, the problem is
polynomially solvable for k = 2. Haas and Hoffmann [15] consider the case
k = 3. After pointing out that this case is NP-complete as a consequence of
a result by Fellows [11], they prove W[1]-completeness (where they take as
parameter the length of an induced path that is a solution for 3-IN-A-PATH).
Derhy and Picouleau [8] proved that the case k = 3 is NP-complete even for
graphs with maximum degree at most three.

A natural question is what will happen if we relax the condition of “being
contained in an induced path” to “being contained in an induced tree”. This
leads to the following problem.

k-IN-A-TREE

Instance: a graph G with k terminals.
Question: does there exist an induced tree of G containing the k terminals?

As we will see, also this problem has received a lot of attention in the last two
years. It is NP-complete if k is part of the input [8]. However, Chudnovsky
and Seymour [5] have recently given a deep and complicated polynomial time
algorithm for the case k = 3.

Theorem 1 ([5]) The 3-IN-A-TREE problem is solvable in polynomial time.

The computational complexity of k-IN-A-TREE for k = 4 is still open. So
far, only partial results are known, such as a polynomial time algorithm for k =
4 when the input is triangle-free by Derhy, Picouleau and Trotignon [9]. This
result and Theorem 1 were extended by Trotignon and Wei [25] who showed
that k-IN-A-TREE is polynomially solvable for graphs of girth at least k. Derhy,
Picouleau and Trotignon [9] also show that it is NP-complete to decide if a
graph G contains an induced tree T covering four specified vertices such that T
has at most one vertex of degree at least three.

In general, k-IN-A-PATH and k-IN-A-TREE are only equivalent for k ≤
2. However, in this paper, we study claw-free graphs (graphs with no induced
4-vertex star). Claw-free graphs are a rich and well-studied class containing,

2

e.g., the class of (quasi)-line graphs and the class of complements of triangle-
free graphs; see Faudree, Flandrin and Ryjáček [10] for a survey. Note that any
induced tree in a claw-free graph is in fact an induced path.

Observation 2 The k-IN-A-PATH and k-IN-A-TREE problem are equivalent
for the class of claw-free graphs.

Motivation. The polynomial time algorithm for 3-IN-A-TREE [5] has already
proven to be a powerful tool for several problems. For instance, it is used as
a subroutine in polynomial time algorithms for detecting induced thetas and
pyramids [5] and several other induced subgraphs [21]. The authors of [16] use
it to solve the PARITY PATH problem in polynomial time for claw-free graphs.
(This problem is to test if a graph contains both an odd and even length induced
paths between two specified vertices. It is NP-complete in general as shown by
Bienstock [1].)

Lévêque et al. [21] use the algorithm of Chudnovsky and Seymour [5] to
solve the 2-IN-A-CYCLE problem in polynomial time for graphs not containing
an induced path or subdivided claw on some fixed number of vertices. The k-
IN-A-CYCLE problem is to test if a graph contains an induced cycle spanning
k terminals. In general it is NP-complete already for k = 2 [1]. For fixed k, an
instance of this problem can be reduced to a polynomial number of instances
of the k-INDUCED DISJOINT PATHS problem, which we define below. Paths
P1, . . . , Pk in a graph G = (V,E) are said to be mutually induced if for any
1 ≤ i < j ≤ k, Pi and Pj have neither common vertices (i.e. V (Pi)∩V (Pj) =
∅) nor adjacent vertices (i.e. uv /∈ E for any u ∈ V (Pi), v ∈ V (Pj)).

k-INDUCED DISJOINT PATHS

Instance: a graph G with k pairs of terminals (si, ti) for i = 1, . . . , k.
Question: does G contain k mutually induced paths Pi such that Pi connects si

and ti for i = 1, . . . , k?

This problem is NP-complete for k = 2 [1]. Kawarabayashi and Kobayashi [19]
showed that, for any fixed k, the k-INDUCED DISJOINT PATHS problem is solv-
able in linear time on planar graphs and that consequently k-IN-A-CYCLE is
solvable in polynomial time on this graph class for any fixed k. The same au-
thors [20] improve the latter result by presenting a linear time algorithm for this
problem, and they even extend the results for both these problems to graphs
of bounded genus. As we shall see, we can also solve k-INDUCED DISJOINT

PATHS and k-IN-A-CYCLE in polynomial time in claw-free graphs. The version
of the problem in which any two paths are vertex-disjoint but may have adjacent
vertices is called the k-DISJOINT PATHS problem. For this problem Robertson
and Seymour [22] proved the following result.

3

Theorem 3 ([22]) For fixed k, the k-DISJOINT PATHS problem is solvable in
polynomial time.

Our Results and Paper Organization. In Section 2 we define some basic ter-
minology. Section 3 contains our main result: k-IN-A-PATH is solvable in poly-
nomial time in claw-free graphs for any fixed integer k. This, in fact, follows
from a stronger theorem proven in the same section; the problem is solvable in
polynomial time even if the terminals are to appear on the path in a fixed order.
Our polynomial time algorithm for the latter problem first performs “cleaning
of the graph”. This is an operation that has been introduced for claw-free graphs
in [16]. After cleaning the graph is free of odd antiholes of length at least seven.
Next we treat odd holes of length five that are contained in the neighborhood of
a vertex. The resulting graph is quasi-line. We then use a recent characterization
of quasi-line graphs by Chudnovsky and Seymour [4] and related algorithmic
results of King and Reed [18] to solve the problem for quasi-line graphs.

In Section 4 we show a number of consequences of our result. We first prove
that both the k-INDUCED DISJOINT PATHS and the k-IN-A-CYCLE problem
are polynomially solvable in claw-free graphs for any fixed integer k. We then
show how to solve for any fixed graph H the problem of finding a so-called
induced realization of H in a graph in polynomial time. This containment notion
introduced by Lévêque et al. [21] generalizes the notion of a topological minor
and will be explained later.

In Section 5 we prove that the three problems k-IN-A-PATH, k-INDUCED

DISJOINT PATHS and k-IN-A-CYCLE are NP-complete, even for the class of
line graphs, a subclass of the class of claw-free graphs, when k is part of the
input instead of being fixed. Section 6 contains the conclusions. There, we also
mention two relevant open problems regarding holes in graphs.

2 Preliminaries

All graphs in this paper are undirected, finite, and neither have loops nor mul-
tiple edges. Let G be a graph. We refer to the vertex set and edge set of G by
V = V (G) and E = E(G), respectively. The neighborhood of a vertex u in
G is denoted by NG(u) = {v ∈ V | uv ∈ E}. The subgraph of G induced
by U ⊆ V is denoted G[U]. Analogously, the neighborhood of a set U ⊆ V
is N(U) :=

⋃
u∈U N(u) \ U . We say that two vertex-disjoint subsets of V are

adjacent if some of their vertices are adjacent. The distance d(u, v) between
two vertices u and v in G is the number of edges on a shortest path between
them. The edge contraction of an edge e = uv removes its two end vertices u, v
and replaces it by a new vertex adjacent to all vertices in N(u)∪N(v) (without
introducing loops or multiple edges).

4

We denote the path and cycle on n vertices by Pn and Cn, respectively. Let
P = v1v2 . . . vp be a path with a fixed orientation. The successor vi+1 of vi

is denoted by v+
i and its predecessor vi−1 by v−i . The segment vivi+1 . . . vj is

denoted by vi
−→
P vj . The reverse segment vjvj−1 . . . vi is denoted by vj

←−
P vi.

A hole is an induced cycle of length at least 4 and an antihole is the comple-
ment of a hole. We say that a hole is odd if it has an odd number of edges. An
antihole is called odd if it is the complement is an odd hole.

A claw is the graph ({x, a, b, c}, {xa, xb, xc}), where vertex x is called the
center of the claw. A graph is claw-free if it does not contain a claw as an
induced subgraph. A clique is a subgraph isomorphic to a complete graph. A
diamond is a graph obtained from a clique on four vertices after removing one
edge. A vertex u in a graph G is simplicial if G[N(u)] is a clique.

Let s and t be two specified vertices in a graph G = (V,E). A vertex
v ∈ V is called irrelevant for vertices s and t if v does not lie on any induced
path from s to t. A graph G is clean if none of its vertices is irrelevant. We
say that we clean G for s and t by repeatedly deleting irrelevant vertices for
s and t as long as possible. In general, determining if a vertex is irrelevant is
NP-complete [1]. However, for claw-free graphs, the authors of [16] showed
the following (where they used Theorem 1 and Observation 2 for obtaining the
polynomial time bound).

Lemma 4 ([16]) Let s, t be two vertices of a claw-free graph G. Then G can be
cleaned for s and t in polynomial time. Moreover, the resulting graph contains
no odd antihole of length at least seven.

The line graph of a graph G with edges e1, . . . , ep is the graph L = L(G)
with vertices u1, . . . , up such that there is an edge between any two vertices ui

and uj if and only if ei and ej share an end vertex in H . We note that mutu-
ally induced paths in a line graph L(G) are in one-to-one correspondence with
vertex-disjoint paths in G. Combining this observation with Theorem 3 leads to
the following result.

Corollary 5 For fixed k, the k-INDUCED DISJOINT PATHS problem can be
solved in polynomial time in line graphs.

A graph G = (V,E) is called a quasi-line graph if for every vertex u ∈ V
there exist two vertex-disjoint cliques A and B in G such that N(u) = V (A) ∪
V (B) (where V (A) and V (B) might be adjacent). Clearly, every line graph is
quasi-line and every quasi-line graph is claw-free. The following observation
is useful and easy to see by looking at the complement of a neighborhood in a
graph.

5

Observation 6 A claw-free graph G is a quasi-line graph if and only if G does
not contain a vertex that has an odd antihole in its neighborhood.

A clique in a graph G is called nontrivial if it contains at least two vertices.
A nontrivial clique A is called homogeneous if every vertex in V (G)\V (A) is
either adjacent to all vertices of A or to none of them. Note that it is possible to
check in polynomial time if an edge of the graph is a homogeneous clique. This
justifies the following observation.

Observation 7 The problem of detecting a homogeneous clique in a graph is
solvable in polynomial time.

Two disjoint cliques A and B form a homogeneous pair in G if the following
two conditions hold. First, at least one of A, B contains more than one vertex.
Second, every vertex v ∈ V (G)\(V (A)∪V (B)) is either adjacent to all vertices
of A or to none vertex of A as well as either adjacent to all of B or to none of
B. The following result by King and Reed [18, Section 3] will be useful.

Lemma 8 ([18]) The problem of detecting a homogeneous pair of cliques in a
graph is solvable in polynomial time.

Let V be a finite set of points of a real line, and I be a collection of intervals.
Two points are adjacent if and only if they belong to a common interval I ∈ I.
The resulting graph is a linear interval graph. Analogously, if we consider a set
of points of a circle and set of intervals (angles) on the circle we get a circular
interval graph. Graphs in both classes are claw-free.

As we shall see, linear interval graphs and circular interval graphs are closely
related to interval graphs and circular arc graphs, respectively. A graph is an in-
terval graph if intervals of the real line can be associated with its vertices such
that two vertices are adjacent if and only if their corresponding intervals overlap.
An interval graph is proper interval if it has an interval representation in which
no interval is properly contained in any other interval. The class of (proper)
circular arc graphs is defined analogously.

Linear interval graphs coincide with proper interval graphs. In order to see
this we need two results from the literature. First, let G be a connected graph
with maximal cliques K1, . . . ,Kp, and letKv denote the set of maximal cliques
in G containing vertex v ∈ V (G). Then G is an interval graph if and only if G
has a path decomposition that is a clique path [12], i.e., a path P = K1 · · ·Kp

such that for each v ∈ V (G) the set Kv induces a connected subpath in P .
Second, an interval graph is a proper interval graph if and only if it is claw-
free [23]. The above two results enable us to show that a graph is a linear interval
graph if and only if it is a proper interval graph.

6

Suppose G is a linear interval graph resulting from a set of points V and
a collection of intervals I. Then the maximal cliques of G are in 1-to-1 corre-
spondence with the intervals in I . Consequently, they form a clique path. Then,
by the result of Fulkerson and Gross [12], G is an interval graph. Because G is
claw-free, we use the result of Roberts [23] to find that G is proper interval.

To prove the reverse implication, suppose G is a proper interval graph. Then
we associate an interval with each maximal clique in G. Because the maximal
cliques of G form a clique path, this results in a desired collection of intervals I.

The result for circular interval graphs and proper circular arc graphs can
be proven analogously. Due to these two equivalences, we can make use of
the following result of Deng, Hell, and Huang [7] originally proven for proper
interval graphs and proper circular arc graphs.

b3 b2

a1

a3 S0

b′
3 b′

2

a′
1

a′
3

S ′
3

S ′
1

S ′
2S ′

3

S3

S1

S2S3

Fig. 1. Composition of three linear interval strips (only part of the graph is displayed).

Theorem 9 ([7]) Circular interval graphs and linear interval graphs can be
recognized in linear time. Furthermore, a corresponding representation of such
graphs can be constructed in linear time as well.

A linear interval strip (S, a, b) is a linear interval graph S where a and b are
the leftmost and the rightmost points (vertices) of its representation. Observe
that in such a graph the vertices a and b are simplicial. Let S0 be a graph with
vertices a1, b1, . . . , am, bm that is isomorphic to an arbitrary disjoint union of
complete graphs. Let (S′1, a′1, b′1), . . . , (S′m, a′m, b′m) be a collection of linear
interval strips. The composition Sm is defined inductively where Si is formed
from the disjoint union of Si−1 and S′i, where:

• all neighbors of ai are connected to all neighbors of a′i;
• all neighbors of bi are connected to all neighbors of b′i;
• vertices ai, a

′
i, bi, b

′
i are removed.

7

See Figure 1 for an example. We are now ready to state the structure of quasi-
line graphs as characterized by Chudnovsky and Seymour [4].

Theorem 10 ([4]) A connected quasi-line graph G with no homogeneous pair
of cliques is either a circular interval graph or a composition of linear interval
strips.

Finally, we need another algorithmic result of King and Reed [18]. They
observe that the composition of the final strip in a composition of linear interval
graphs is a so-called nontrivial interval 2-join and that every nontrivial interval
2-join contains a so-called canonical interval 2-join. In Lemma 13 of their paper
they show how to find in polynomial time a canonical interval 2-join in a quasi-
line graph with no homogeneous pairs of cliques and no simplicial vertices, or
else to conclude that none exists. Applying this result recursively leads to the
following lemma.

Lemma 11 ([18]) Let G be a quasi-line graph that contains no homogeneous
pairs of cliques and no simplicial vertices and that is a composition of linear
interval strips. Then the collection of linear interval strips that define G can be
found in polynomial time.

3 Main Result

Now we are ready to state our main result.

Theorem 12 For any fixed k, the k-IN-A-PATH problem is solvable in polyno-
mial time in claw-free graphs.

In order to prove Theorem 12 we define the following problem.

ORDERED-k-IN-A-PATH

Instance: a graph G with k terminals ordered as t1, . . . , tk.
Question: does there exist an induced path of G starting in t1 then passing
through t2, . . . , tk−1 and ending in tk?

We can resolve the original k-IN-A-PATH problem by k! rounds of the more
specific version defined above, where in each round we order the terminals by
a different permutation. Hence, since we assume that k is fixed, it suffices to
prove Theorem 13 in order to obtain Theorem 12.

Theorem 13 For any fixed k, the ORDERED-k-IN-A-PATHS problem is solv-
able in polynomial time in claw-free graphs.

8

We now prove Theorem 13 by presenting a polynomial time algorithm that
solves the ORDERED-k-IN-A-PATH problem on a claw-free graph G with ter-
minals in order t1, . . . , tk for any fixed integer k. We call an induced path P
from t1 to tk that contains the other terminals in order t2, . . . , tk−1 a solution of
this problem. Furthermore, an operation in this algorithm on input graph G with
terminals t1, . . . , tk preserves the solution if the following holds: the resulting
graph G′ with resulting terminals t′1, . . . , t′k′ for some k′ ≤ k is a YES-instance
of the ORDERED-k′-IN-A-PATH problem if and only if G is a YES-instance of
the ORDERED-k-IN-A-PATH problem. We call G convenient (for our purposes)
if G has the following three properties:

(i) t1, tk are of degree one in G and all other terminals ti (1 < i < k) are of
degree two in G, and the two neighbors of such ti are not adjacent;

(ii) for 1 < i < j < k, the distance between ti and tj is at least four;
(iii) G is connected.

THE ALGORITHM AND PROOF OF THEOREM 13

Let G be a claw-free graph with terminals t1, . . . , tk for some k ≥ 2.

If k = 2, we compute a shortest path from t1 to t2. Suppose k ≥ 3. As we will
see, our algorithm might create a set of new graphs that we must process one by
one. While doing so, we make the following two implicit assumptions.

A. The number of terminals in the graph under consideration is always at least
three; if the number of terminals drops to 2 in a newly created graph, we just try
to find the shortest path between the two terminals and do not process the graph
any further.

B. The graph under consideration is clean for t1 and tk. We can always ensure
this by running the polynomial time algorithm of Lemma 4 on top of every
operation we perform. If during a cleaning operation we remove a terminal,
then we do not process the graph any further. In particular, we note that cleaning
keeps properties (i)-(iii) intact.

Step 1. Reduce to a set of convenient graphs.
We apply Lemma 14 and obtain in polynomial time a set G that consists of a
polynomial number of convenient claw-free graphs of size at most |V (G)| such
that there is a solution for G if and only if there is a solution for one of the graphs
in G. We consider each graph in G. For simplicity, we denote such a graph by G
as well.

Step 2. Reduce to a quasi-line graph.
Because G is assumed to be clean for t1 and tk, we note that G contains no

9

antihole of length at least seven by Lemma 4. We apply Lemma 15 as long as
we can. This lemma removes a vertex, the neighborhood of which contains an
odd hole of length five. Because every time we apply Lemma 15 the number
of vertices in G decreases by one, this takes O(|V (G)|6) time in total. Note
that G stays connected, because we do not remove any cut-vertices due to the
claw-freeness. By property (i), we do not remove a terminal either. Then G has
become a convenient quasi-line graph due to Observation 6.

Step 3. Reduce to a circular interval graph or to a composition of linear
interval strips.
We first exhaustively search for homogeneous cliques by running the polyno-
mial time algorithm of Observation 7. Each time we find such a clique, we
reduce it in polynomial time to a single vertex by applying Lemma 16. By
Lemma 16, the resulting graph stays convenient and quasi-line, while we pre-
serve the solution. At some moment it contains no homogeneous cliques any-
more. We then exhaustively search for homogeneous pairs by running the poly-
nomial time algorithm of Lemma 8. Each time we find such a pair, we reduce its
two cliques in polynomial time to two single vertices by applying Lemma 17.
By Lemma 17, the resulting graph stays convenient and quasi-line, while we
preserve the solution. At some moment it contains no homogeneous pairs any-
more. Then, by Theorem 10, G is either a circular interval graph or a composi-
tion of linear interval strips. We use Theorem 9 to recognize in polynomial time
in which case we are.

Step 4a. Solve the problem for a circular interval graph.
Let G be a circular interval graph. Observe that the order of vertices in an in-
duced path must respect the natural order of points on the circle. Hence, deleting
all points that lie on the circle between tk and t1 preserves the solution. So, we
may assume that G is a linear interval graph. We solve the problem for these
graphs in Theorem 18.

Step 4b. Solve the problem for a composition of linear interval strips.
Let G be a composition of linear interval strips. We replace t1 and tk by their
unique neighbors and repeat this process until they get degree at least one. Then,
because G is assumed to be clean for t1 and tk, G contains no simplicial vertex.
This means that we can find these strips in polynomial time using Lemma 11
and use this information in Lemma 19. There we create a line graph G′ with
|V (G′)| ≤ |V (G)|, while preserving the solution. Moreover, this can be done in
polynomial time by the same theorem. In Theorem 20 we prove that the problem
is polynomially solvable for line graphs.

10

In order to finish the correctness proof and running time analysis of our
algorithm, it remains to state and prove Lemmas 14–17, Theorem 18, Lemma 19
and Theorem 20.

Lemma 14 Let G be a claw-free graph on n vertices with terminals ordered
t1, . . . , tk. Then there exists a set G of nO(k) convenient claw-free graphs, each
of size at most |V (G)|, such that G has a solution if and only if there exists a
graph in G that has a solution. Moreover, G can be constructed in polynomial
time.

Proof. Initially set G := ∅. We branch as follows. For i = 1, . . . , k, we guess
two ordered disjoint vertex subsets Ri and R′i of G; the vertices of Ri are sup-
posed to be the last |Ri| vertices preceding ti in a possible solution (path),
whereas the vertices of R′i are supposed to be the first |R′i| vertices following ti.
We require |R1| = |R′k| = 0 while all other sets Ri and R′i must have size three
with the following exceptions. First, |Ri| ≤ 2 is allowed for i = 2, 3, but in that
case we require t1 ∈ Ri. Second, |R′i| ≤ 2 is allowed for i = k − 2, k − 1, but
in that case we require tk ∈ Ri.

Note that we allow that two sets from {R1, . . . , Rk} ∪ {R′1, . . . , R′k} over-
lap. However, we do check if every component of the subgraph G∗ induced by⋃

i Ri∪
⋃

j R′j ∪{t1, . . . , tk} is a path. If this is not the case then we discard the
whole guess and start all over again. Otherwise, we observe that t1 and tk are end
vertices of path components in G∗, while all other terminals are inner vertices
of path components. Next, we consider the path components in G∗ containing
more than one terminal. If the order of the terminals on such a path component
is not ti, ti+1, . . . , tj for some i < j when passing through the path component,
we discard the whole guess. Otherwise, we remove ti+1, . . . , tj−1 from the list
of terminals. We also remove tj if i = 1 or ti if j = k. If we kept both ti and tj
then, if necessary, we replace ti and tj on this path component such that on the
path component (i) they are at distance at least four of each other and (ii) also
are of distance at least one of each end vertex of the path component. Because
the path component has length at least eight, such a replacement is possible.

We now do the following in the graph G. For every terminal and for every
non-terminal vertex in

⋃
i Ri ∪

⋃
j R′j that is not an end vertex of a path compo-

nent in G∗, we remove all its neighbors from G that are not vertices of G∗. The
resulting graph G′ is claw-free, because G is claw-free and we only removed
vertices. If there are two terminals in different components of G′, then we dis-
card G′. If not, then we put the component of G′ that contains all the terminals in
the set G, because this graph is convenient; we note that property (ii) also holds
with respect to i = 1 or j = k. We then try to extend G by taking a new guess.

11

Because k is fixed and the number of guesses is O(n6k), this procedure ends in
polynomial time with a set G that satisfies all conditions of the lemma. ut

Lemma 15 Let G be a convenient claw-free graph. Removing a vertex u ∈
V (G), the neighborhood of which contains an induced odd hole of length five,
preserves the solution.

Proof. Because G is convenient, u is not a terminal. We first show the following
claim.

Claim 1. Let G[{v, w, x, y}] be a diamond in which vw is a non-edge. If there
is a solution P that contains v, x, w, then there is another solution that contains
y (and that does not contain x).

In order to see this take the original solution P and note that by claw-freeness
any neighbor of y on P must be in the (closed) neighborhood of either v or w.
This way the solution can be rerouted via y, without using x. This proves Claim
1.

Now suppose that u is a vertex which has an odd hole C of length five in its
neighborhood. Obviously, G is a YES-instance if G − u is a YES-instance. To
prove the reverse implication, suppose G is a YES-instance. Let P be a solution.
If u does not belong to P then we are done. Hence, we suppose that u belongs
to P and consider three cases depending on |V (C) ∩ V (P)|.

Case 1. |V (C) ∩ V (P)| ≥ 2. Then |V (C) ∩ V (P)| = 2, as any vertex on P
will have at most two neighbors. We are done by Claim 1.

Case 2. |V (C) ∩ V (P)| = 1. Let w ∈ V (C) belong to P and let the other
neighbor of u that belongs to P be x. We note that x must be adjacent to at
least one of the neighbors of w in C due to the claw-freeness of G. Then we can
apply Claim 1 again.

Case 3. |V (C) ∩ V (P)| = 0. Let the two neighbors of u on P be x and y. To
avoid a claw at u, every vertex of C must be adjacent to x or y. If there is a
vertex in C adjacent to both, we apply Claim 1. Suppose there is no such vertex
and that the vertices of the C are partitioned in two sets X (vertices of C only
adjacent to x) and Y (vertices of C only adjacent to y). We assume without loss
of generality that |X| = 3, and hence contains a pair of independent vertices
which together with u and y form a claw. This is a contradiction. ut

Lemma 16 Let G be a convenient quasi-line graph with a homogeneous clique
A. Then contracting A to a single vertex preserves the solution and results in a
convenient quasi-line graph that has the same terminals as G.

12

Proof. Each vertex in A lies on a triangle, unless G is isomorphic to P2, which is
not possible. Hence, by property (i), A does not contain a terminal. We remove
all vertices of A except one. The resulting graph will be a convenient quasi-line
graph containing the same terminals, and we will preserve the solution. ut

Lemma 17 Let G be a convenient quasi-line graph with terminals ordered
t1, . . . , tk that has no homogeneous clique but that has a homogeneous pair
(A, B). If G is clean for t1 and tk, then contracting A and B to single vertices
preserves the solution and results in a convenient quasi-line graph.

Proof. We assume that G is clean for t1 and tk. Because G does not contain
a homogeneous clique, V (A) and V (B) must be adjacent. In all the cases dis-
cussed below we will actually not contract edges but only remove vertices from
A and B. Hence, the resulting graph will always be a quasi-line graph.

Case 1. A contains t1 or tk.
By property (i), t1 and tk are of degree one. Then A cannot contain t1 and tk.
We assume without loss of generality that A contains t1.

First suppose |V (A)| = 1, so A only contains t1. Then the (unique) neighbor
of t1 is in B. Because G is clean and |V (B)| ≥ 2, we find that G is isomorphic
to P3 = t1t2t3 and V (G) = {t1, t2, t3}. Hence, the statement of the lemma
holds if we remove t3 and set k = 2.

Now suppose |V (A)| ≥ 2. Because t1 is of degree one, A consists of two
vertices, namely t1 and its neighbor t′1. Note that t′1 has no neighbor outside
A and B, because t1 is of degree one. Suppose tk is in B. Then |V (B)| = 2,
because tk is of degree one. Because G is clean for t1 and tk, we find that G is
isomorphic to a 4-vertex path starting in t1 and ending in tk. By property (ii), G
can pass through at most one other terminal, so k = 3. Hence, the statement of
the lemma holds if we remove t1 and t3 and set k = 2.

Suppose tk is not in B. Because G is clean, t′1 is adjacent to all vertices in
B. This means that |V (B)| = 1, as otherwise B is a homogeneous clique. Then
deleting t1 and replace it by t′1 in the set of terminals results in a convenient
graph and preserves the solution.

Case 2. A contains a terminal ti for some 2 ≤ i ≤ k − 1.
We may assume that neither t1 nor tk is in A ∪ B, as otherwise we return to
Case 1. Then, by property (ii), ti is the only terminal in A ∪B.

First suppose |V (A) = 1, so A only contains ti. Because V (A) and V (B)
are adjacent, ti is adjacent to a vertex u in B. By property (i), u is the only vertex
in B adjacent to ti. We delete all vertices of B except u. Clearly, the resulting
graph is convenient and the solution is preserved.

13

Now suppose |V (A)| ≥ 2. By property (ii), A contains only one other vertex
t′i and ti, t

′
i do not have a common neighbor. Then A must be separated of the

rest of the graph by B. Because B is a clique, this means that every induced
path from t1 to tk does not contain ti (and t′i). Hence, this case is not possible,
because G is clean for t1 and tk.

Case 3. A contains no terminal.
Then we may assume that B contains no terminal either, as otherwise we return
to a previous case by symmetry. Let a′b′ ∈ E(G) with a′ ∈ V (A) and b′ ∈
V (B). Let G′ be the graph obtained from G by removing all vertices of A ∪ B
except a′ and b′. Note that we have kept all terminals and that the resulting graph
is convenient. Any solution P ′ for G′ is a solution for G.

Now assume we have a solution P for G. We claim that |P ∩ A| ≤ 1 and
|P ∩B| ≤ 1. Suppose otherwise, say |P ∩A| ≥ 2. Then |P ∩A| = 2, because
P is an indued path and A is a clique. Since t1 and tk are not in A, we find that
P contains a subpath xuvy with u, v ∈ A. Since x is adjacent to u ∈ A, but
non-adjacent to v ∈ A, we find that x ∈ B. Analogously we get that y ∈ B.
However, then xy ∈ E(G). This is a contradiction.

Suppose |P ∩ A| = 0 and |P ∩ B| = 0. Then P is a solution for G′ as
well. Suppose |P ∩ A| = 0 and |P ∩ B| = 1. Then we may without loss
of generality assume that b′ ∈ V (P). We find that P is a solution for G′ as
well. The case |P ∩ A| = 1 and |P ∩ B| = 0 follows by symmetry. Suppose
|P∩A| = |P∩B| = 1, say P intersects A in a and B in b. If ab ∈ E(G) then we
replace ab by a′b′ and obtain a solution for G′. Suppose ab /∈ E(G). Because a
is not a terminal, a has neighbors x and y on P . If x, y /∈ N(b) then {a′, x, y, b′}
induces a claw in G with center a′. This is not possible. Hence, we may assume
without loss of generality that y is adjacent to b. Since A or B contains at least
two vertices, y has degree at least three. Then y is not a terminal. Thus we can
skip y and exchange ayb in P with a′b′ to get the desired induced path P ′. ut

Theorem 18 The ORDERED-k-IN-A-PATH problem can be solved in polyno-
mial time in linear interval graphs.

Proof. Let G be a linear interval graph. We may assume without loss of gener-
ality that the terminals form an independent set. We use its linear representation
that we obtain in polynomial time by Theorem 9. In what follows the notions of
predecessors (left) and successors (right) are considered for the linear ordering
of the points on the line. Without loss of generality we may assume that t1 is the
first point and that tk is the last and that no two points coincide. By our assump-
tion, ti and ti+1 are nonadjacent. From the set of points belonging to the closed
interval [ti, ti+1] we remove all neighbors of ti except the rightmost one and all

14

neighbors of ti+1 except the leftmost. Then the shortest path between ti and ti+1

is induced. In addition, these partial paths combined together provide a solution
unless for some terminal ti its leftmost predecessor is adjacent to its rightmost
successor. Hence, no induced path may have ti among its inner vertices. ut

Lemma 19 Let G be a composition of linear interval strips. It is possible to
create in polynomial time a line graph G′ with |V (G′)| ≤ |V (G)|, while pre-
serving the solution.

Proof. Let G = Sm be a composition of linear interval strips. We first analyze
the structure of a possible solution. This includes checking a number of neces-
sary conditions that every linear interval strip (S′i, a

′
i, b
′
i) must satisfy should G

allow a solution.
Suppose S′i contains some terminals other than t1 and tk. Then a solution P

must enter S′i through one of the neighbors of a′i and leave through one neighbor
of b′i, or vice versa. Hence, we output No if the terminals on S′i do not form a
subsequence tj , tj+1, . . . , t`. Otherwise, the order of the terminals on the line
determines whether P should leave S′i through a neighbor of a′i or through a
neighbor of b′i. In the first case we solve ORDERED-(`− j + 3)-IN-A-PATH on
(S′i, a

′
i, tj , tj+1, . . . , t`, b

′
i) and in the second case on (S′i, b

′
i, tj , tj+1, . . . , t`, a

′
i).

Because S′i is an interval graph, we can do this in polynomial time due to The-
orem 18. If this does not yield an induced path Pi, then we output No.

Suppose S′i contains either t1 or tk together with at least one other terminal.
We treat this case in the same way as in the previous case.

Suppose S′i contains t1 and tk but not ti for some 1 < i < k. Then we sim-
plify G by removing all vertices of S′i between tk and t1 on the corresponding
line. Hence, we may assume that this case does not occur.

Suppose S′i contains either t1 or tk and no other terminals, say S′i only con-
tains t1. A solution P will either leave S′i through a neighbor of a′i or through a
neighbor of b′i. Then we may without loss of generality assume that the corre-
sponding subpath Pi is a shortest path from t1 to a′i or to b′i.

Suppose S′i contains no terminals. In that case a possible solution P can
still pass through S′i. Then we may without loss of generality assume that corre-
sponding subpath Pi is a shortest path between a neighbor of a′i and a neighbor
of b′i.

From now on, assume that we considered every linear interval strip and that
we did not output No. It remains to show how the partial solutions Pi on the
corresponding strips can be combined together. Without loss of generality we
assume that the labels of ai and bi in S0 conform the order of the terminals in
the strips as discussed above.

15

We create a graph G′ as follows. We connect any pair ai, bi by a path of
length two, involving an extra new vertex ci. If a strip S′i contains a single ter-
minal tj , we let t′j := ci. If such strip contains more terminals tj , . . . , tl, but
neither t1 nor tk we let t′j := t′j+1 := · · · := t′l−1 := ai and t′l := bi. Otherwise,
if t1, . . . , tl are in S′i we let t′1 := · · · := t′l−1 := ci and t′l := bi. The case of tk
being the last terminal in S′i is treated analogously. See Figure 2 for an example.

t1

t2
t3

t4

S ′
1 S ′

2

S ′
3

S ′
4

S ′
5

S ′
6

b5

c5 = t1

a5a2c2b2
a4 = t2

c4

b4 = t3

c2

a6 c6 = t4

b6

c3

b3

a3 b1

c1

a1

Fig. 2. A graph G′.

We claim that G has a solution P if and only if G′ has a solution P ′. This
can be seen as follows. Any solution of G can be directly translated into a so-
lution of G′. Suppose G′ has a solution P ′. We exchange subpaths aicibi by
corresponding induced paths Pi in G, as explained above. Note that this is pos-
sible indeed, because we did not output No at some stage and ensured that there
is no strip containing both t1 and tk. We conclude that creating G′ preserves the
solution.

What remains to show is that G′ is a line graph. Consider the graph H
constructed as follows.

• For every clique on S0 we take a star with edges corresponding to the ver-
tices of the clique.
• We connect the leaves incident with the edges corresponding to ai and bi by

a new edge for 1 ≤ i ≤ m representing ci.

Then G′ is the line graph of H . This completes the proof of Lemma 19. ut

Theorem 20 For fixed k, ORDERED-k-IN-A-PATH can be solved in polynomial
time for line graphs.

Proof. Let G be a line graph with k terminals ordered as t1, . . . , tk. Because we
only remove vertices in Lemma 14 we may without loss of generality assume
that G is convenient. For 1 < i < k, let si and ui be the two neighbors of ti. We

16

set a1 = t1 and bk−1 = tk. For 1 < i < k we choose bi−1 and ai from {si, ti}.
This leads to O(2k−2) equivalent instances of k-INDUCED DISJOINTS PATHS,
which we can solve in polynomial time for line graphs by Corollary 5. ut

4 Algorithmic Consequences

In this section we state some algorithmic consequences of our main result. We
first consider the k-INDUCED DISJOINT PATHS and the k-IN-A-CYCLE prob-
lem for any fixed k.

Corollary 21 For any fixed k, the k-INDUCED DISJOINT PATHS problem and
the k-IN-A-CYCLE problem are solvable in polynomial time for claw-free graphs.

Proof. Let G be a claw-free graph that together with terminals t1, . . . , tk is an
instance of k-IN-A-CYCLE. We fix an order of the terminals, say, the order
is t1, . . . , tk. We fix two neighbors ai and bi−1 of each terminal ti. This way
we obtain an instance of k-INDUCED DISJOINT PATHS with pairs of terminals
(ai, bi) where b0 = bk. Clearly, the total number of instances we have created is
polynomial. Hence, we can solve k-IN-A-CYCLE in polynomial time if we can
solve k-INDUCED DISJOINT PATHS in polynomial time.

Let G be a claw-free graph that together with k pairs of terminals (ai, bi) for
i = 1, . . . , k is an instance of the k-INDUCED DISJOINT PATHS problem. First
we add an edge between each pair of non-adjacent neighbors of every terminal
in T = {a1, . . . , ak, b1, . . . , bk}. We denote the resulting graphs obtained after
performing this operation on a terminal by G1, . . . , G2k, and define G0 := G.
We claim that G′ = G2k is claw-free and prove this by induction.

The claim is true for G0. Suppose the claim is true for Gj for some 0 ≤
j ≤ 2k − 1. Consider Gj+1 and suppose, for contradiction, that Gj+1 contains
an induced subgraph isomorphic to a claw. Let K := {x, a, b, c} be a set of
vertices of Gj+1 inducing a claw with center x. Let s ∈ T be the vertex of
Gj that becomes simplicial in Gj+1. Then x 6= s. Since Gj is claw-free, we
may without loss of generality assume that at least two vertices of K must be
in NGj+1(s) ∪ {s}. Since NGj+1(s) ∪ {s} is a clique of Gj+1 and {a, b, c}
is an independent set of Gj+1, we may without loss of generality assume that
K ∩ (NGj+1(s) ∪ {s}) = {x, a} and {b, c} ⊆ V (Gj+1) \ (NGj+1(s) ∪ {s}).
Then {x, b, c, s} induces a claw in Gj with center x, a contradiction. Hence, G′

is indeed claw-free.
We note that G with terminals (a1, b1), . . . , (ak, bk) forms a YES-instance

of k-INDUCED DISJOINT PATHS if and only if G′ with the same terminal pairs
is a YES-instance of this problem. In the next step we add a new vertex ci and
edges bici and ciai+1 for i = 1, . . . , k − 1. We call the resulting graph G′′ and

17

observe that G′′ is claw-free, because the neighborhood of every terminal in G′

forms a clique. We will show that G′ with terminal pairs (a1, b1), . . . , (ak, bk)
forms a YES-instance of the k-INDUCED PATHS problem if and only if G′′

with ordered terminals a1, b1, c1, a2, b2, c2, . . . , ak−1, bk−1, ck−1, ak, bk forms
a YES-instance of the ORDERED-(3k − 1)-IN-A-PATH problem. Then we can
apply Theorem 13 and are done.

In order to see the above claim, suppose G′ contains k mutually induced
paths Pi such that Pi connects ai to bi for 1 ≤ i ≤ k. Then

P = a1
−→
P1b1c1a2

−→
P2b2 . . . bk−1ck−1ak

−→
Pkbk

is an induced path passing through the 3k−1 terminals in prescribed order. Now
suppose G′′ contains an induced path P passing through the 3k − 1 terminals
in desired order. Then P contains segments biciai+1 for i = 1, . . . , k − 1. This
means that for i = 1, . . . , k we can define paths Pi = ai

−→
P bi, which are mutu-

ally induced. This completes the proof of Corollary 21. ut

We finish this section with a consequence of Corollary 21. We first need
some additional terminology. Let uw be an edge in a graph G. We say that we
subdivide uw if we replace uw by a new vertex v and two new edges uv and vw.
A graph G is said to contain a graph H as an induced topological minor if H
can be obtained from G by a sequence of vertex deletions and edge subdivisions.
The decision problem H-INDUCED TOPOLOGICAL MINOR is to test if a given
graph contains H as an induced topological minor. Here, H is fixed, so not part
of the input.

Lévêque et al. [21] generalize induced topological minors as follows. They
define a subdivisible graph (or s-graph) as a graph with two types of edges,
namely so-called subdivisible edges and so-called real edges. Let H be an s-
graph. Then a graph is a realization of H if it can be obtained from H by a
sequence of subdivisions of subdivisible edges, i.e., by replacing subdivisible
edges in H by paths of length at least one. This leads to the decision problem
H-INDUCED REALIZATION which has as input a graph G and asks whether G
contains a realization of H as an induced subgraph. Also here, H is to be consid-
ered as fixed. If H is an s-graph with only subdivisible edges, then H-INDUCED

REALIZATION is equivalent to H-INDUCED TOPOLOGICAL MINOR. Note that
in the other extreme, i.e., when H only contains real edges, the problem comes
down to testing if a graph has an induced subgraph isomorphic to H .

The complexity of H-INDUCED REALIZATION and H-INDUCED TOPO-
LOGICAL MINOR depends on the fixed graph H . Already for the second prob-
lem, many polynomially solvable and NP-complete cases are known. For ex-
ample, Lévêque et al. [21] show that K5-INDUCED TOPOLOGICAL MINOR is

18

NP-complete, whereas e.g. C3-INDUCED REALIZATION is polynomially solv-
able. We refer to their paper [21] for more results.

The complexity classification of H-INDUCED TOPOLOGICAL MINOR, and
consequently, of H-INDUCED REALIZATION is far from being finished for gen-
eral graphs. A notorious open problem is determining the complexity of 2C3-
INDUCED TOPOLOGICAL MINOR, where 2C3 denotes the disjoint union of two
3-vertex cycles. This problem is polynomially equivalent to the 2C4-INDUCED

TOPOLOGICAL MINOR problem. We note that the latter can also be formulated
as the problem that asks whether a graph G = (V,E) contains two mutually
induced holes, i.e., two holes C and D with V (C) ∩ V (D) = ∅ and uv /∈ E
for any u ∈ V (C) and v ∈ V (D). However, for claw-free graphs, we can solve
this case and any other case in polynomial time by applying Corollary 21.

Corollary 22 For any fixed s-graph H , the H-INDUCED REALIZATION prob-
lem can be solved in polynomial time for claw-free graphs.

Proof. We first slightly modify the k-INDUCED DISJOINT PATHS problem. Fix
an integer k, and let G = (V,E) be a claw-free graph with terminal pairs (ai, bi)
for i = 1, . . . , k. Then we allow ai = aj , ai = bj or bi = bj for any 1 ≤ i ≤
j ≤ k, and we also allow the existence of an edge between any two terminals
in {a1, . . . , ak, b1, . . . , bk}. So, in this modification, we test if G contains a
path Pi from ai to bi for i = 1, . . . , k such that for any 1 ≤ i < j ≤ k,
(V (Pi)\{ai, bi})∩ (V (Pj)\{aj , bj}) = ∅ and uv /∈ E for every u ∈ V (Pi) and
v ∈ V (Pj) with uv /∈ {aiaj , aibj , biaj , bibj}. The following argument shows
why we can make these two assumptions. Suppose ai = aj . We choose two
non-adjacent neighbors u, v of ai and remove all its other neighbors. If such
neighbors do not exist, we output No. Otherwise, this results in a new claw-free
graph, where terminal pairs (u, bi) and (v, bj) replace (ai, bi) and (aj , bj). We
perform a similar operation for the second assumption. In this way we create
at most O(n2k) new instances of the original k-INDUCED DISJOINT PATHS

problem, which we can solve in polynomial time due to Corollary 21.
Now, let H be a fixed s-graph. Let D be the set of real edges and F the set

of subdivisible edges, so E(H) = D∪F with D∩F = ∅. Let G be a claw-free
graph on n vertices. We are to test if G contains an induced subgraph that is
isomorphic to a realization of H . We do this as follows.

For each vertex in H we guess a corresponding vertex in G. This results in a
set U of guessed vertices in G. We check if every real edge of H is represented
in G[U]. We also check if every non-edge in H corresponds to a non-edge in
G[U]. If one of these checks is negative, we output No. Otherwise, we continue
as follows. Let U ′ ⊆ U denote the set of vertices that correspond to vertices in
H that are not incident with any subdivisible edge. Let W denote the set of pairs

19

{u, v} with u, v ∈ U\U ′ such that uv corresponds to a subdivisible edge in H .
For every vertex in U ′ we remove all its neighbors that are not in U from G. The
resulting graph is claw-free and forms together with the pairs in W an instance
of |W |-INDUCED DISJOINTS PATHS, which we can solve in polynomial time as
explained above. Because the number of possible sets U is at most O(n|V (H)|)
and H is fixed, our algorithm runs in polynomial time. ut

5 When k Is Part of the Input

We accompany our constructive algorithm for the three problems k-IN-A-PATH,
k-INDUCED DISJOINT PATHS and k-IN-A-CYCLE with NP-hardness proofs for
the case when the number of terminals becomes unbounded.

Theorem 23 The k-IN-A-PATH problem and the k-IN-A-CYCLE problem are
NP-complete even for the class of line graphs, when k is part of the input.

Proof. It is straightforward to verify whether a given path or cycle is induced
and contains all prescribed terminals. Hence membership of these problems in
the class NP is settled.

A cubic graph is a graph in which every vertex has degree three. For the
hardness part for the k-IN-A-PATH problem we show a reduction from the clas-
sical HAMILTONIAN PATH problem, which is already NP-complete for cubic
graphs [13, problem GT39].

Let G be a cubic input graph for the HAMILTONIAN PATH problem. We re-
place every vertex (of degree three) in G by a triangle. Formally, if u is incident
with edges e(u, 1), e(u, 2) and e(u, 3), then we replace u with three vertices
u1, u2 and u3, where each ui becomes incident with e(u, i) instead of u. More-
over, these three new vertices induce a triangle C3. Let G′ be the graph resulting
from G after all original vertices have been replaced.

Observe that a hamiltonian path in G exists if and only if G′ has a path that
passes through all edges {u1u2 | u ∈ V (G)}:

– having the hamiltonian path in G, one can easily extend it inside every tri-
angle in G′ through the associated prescribed edge;

– as the path in G′ may visit each triangle at most once, after contraction of
all triangles into the original vertices of G we get a hamiltonian path of G.

We now take H = L(G′) to be the line graph of G′ and the terminals to be
the images of the chosen edges u1u2 for all u ∈ V (G), as displayed in Figure 3.
The NP-completeness proof for k-IN-A-PATH is concluded by the already men-
tioned argument that induced paths in H are in one-to-one correspondence with
ordinary paths in G′.

20

In the same way we prove that the k-IN-A-CYCLE problem is NP-complete
for the class of line graphs when k is part of the input. The only differences are
the following. Firstly, we make a reduction from the HAMILTONIAN CYCLE

problem, which is also NP-complete for the class of cubic graphs (cf. [13]).
Secondly, we observe that induced cycles (except the C3) in a line graph are in
one-to-one correspondence with cycles in the original graph. ut

v

e(v, 3)e(v, 2)

e(u, 2) = e(v, 1)

u

e(u, 3)e(u, 1)

G

v2 v3

v1

u2

u3u1

G′

v1v2

u2v1

v1v3

v2v3

u2u3

u1u3

u1u2

H

Fig. 3. The reduction from the HAMILTONIAN PATH problem. The thick edges show a fragment
of the solution, and the emphasized objects are the prescribed edges or the terminals.

We now consider the k-INDUCED DISJOINT PATHS problem.

Theorem 24 The k-INDUCED DISJOINT PATHS problem is NP-complete even
for the class of line graphs, when k is part of the input.

Proof. We can check in polynomial time if a given collection of paths is a so-
lution of the k-INDUCED DISJOINT PATHS problem. Hence, this problem is in
NP. In order to show NP-completeness we reduce from the k-DISJOINT PATHS

problem, which is NP-complete when k is part of the input [17].
Let G together with k mutually disjoint vertex pairs (s1, t1), . . . , (sk, tk)

form an instance of the k-DISJOINT PATHS problem. For i = 1, . . . , k we add a
vertex s′i with edge sis

′
i and a vertex t′i with edge tit

′
i to G. This results in graph

G′. We then observe that the line graph of G′ contains k mutually induced paths
connecting sis

′
i to tit

′
i for i = 1, . . . , k if and only if G′ contains k mutually

disjoint paths connecting s′i to t′i for i = 1, . . . , k if and only if G contains k
mutually disjoint paths connecting si to ti for i = 1, . . . , k. ut

21

6 Conclusions and Further Research

We studied the three problems k-IN-A-PATH, k-INDUCED DISJOINT PATHS

and k-IN-A-CYCLE. If k is part of the input these problems are known to be
NP-complete, and we showed this stays true, even when the input graphs are
line graphs. On the positive side, we showed that, for any fixed k, all three
problems are polynomially solvable on claw-free graphs.

Our algorithms run in O(k!nO(k)) time on n-vertex graphs. So, contrary to
the cubic algorithm of Robertson and Seymour [22] that solves the k-DISJOINT

PATHS problem, the order of the polynomial in the running time of our algo-
rithms heavily depends on the integer k. We refrain from stating a more pre-
cise running time, because our motivation was strictly theoretical. Our goal
was to show membership of the three problems in the class P for claw-free
graphs. Hence, we were less concerned with decreasing the running time of
our algorithms (which certainly seems possible by a more refined analysis).
Nevertheless, it is an interesting question whether these problems are fixed pa-
rameter tractable in k for claw-free graphs, i.e., whether they can be solved
in O(f(k)nc) time, where f denotes a computable function and c a constant
independent of k. We note that for line graphs this is the case due to the afore-
mentioned observation that vertex-disjoint paths in a graph are in one-to-one
correspondence with mutually induced paths in its line graph. This enables us
to use the O(f(k)n3) time algorithm of Robertson and Seymour [22] that solves
the k-DISJOINT PATHS problem.

The following two related problems are also fascinating open problems.

Problem 1. Determine the computational complexity of deciding whether a graph
contains an odd hole.

Problem 2. Determine the computational complexity of deciding whether a graph
contains two mutually induced holes.

For claw-free graphs, Problems 1 and 2 are solved. For this graph class, we
solved Problem 2 in Corollary 22, while it is well known that Problem 1 can be
solved in polynomial time for claw-free graphs by using the arguments below.

Let G be a claw-free graph on n vertices. We first determine if G contains an
odd hole or an odd antihole by running the O(n4) time algorithm of Chvátal and
Sbihi [6] for recognizing perfect claw-free graphs. Suppose this is the case. We
check in O(n3) time if G contains 3 independent vertices. If so, then G contains
an odd hole by Ben Rebea’s Lemma (see the paper of Chvátal and Sbihi [6]
for a proof). Suppose G contains at most 2 independent vertices. Then G does
not contain an odd hole on 7 vertices or more. Hence, we are left to check if G
contains a hole on 5 vertices. This can be done in O(n5) time.

22

Recently, an O(nm2) algorithm that finds a shortest odd hole in a claw-
free graph on n vertices and m edges has been given by Shrem, Stern and
Golumbic [24]. In addition, we note that the problem of finding an even hole
is polynomially solvable for general graphs [2] and that the problem of testing
whether a graph contains two mutually induced odd holes is NP-complete [14].

Acknowledgments We would like to thank the two anonymous referees for
their helpful comments.

References

1. D. Bienstock. On the complexity of testing for odd holes and induced odd paths. Discrete
Mathematics 90 (1991) 85–92, See also Corrigendum, Discrete Mathematics 102 (1992)
109.

2. M. Chudnovsky, K. Kawarabayashi and P.D. Seymour. Detecting even holes. Journal of
Graph Theory 48 (2005) 85–111.

3. M. Chudnovsky, N. Robertson, P.D. Seymour, and R. Thomas. The strong perfect graph
theorem. Annals of Mathematics 164 (2006) 51–229.

4. M. Chudnovsky and P.D. Seymour. The structure of claw-free graphs. In Surveys in combi-
natorics 2005, Cambridge (2005) 153–171.

5. M. Chudnovsky and P.D. Seymour. The three-in-a-tree problem. Combinatorica, to appear.
6. V. Chvátal and N. Sbihi. Recognizing claw-free perfect graphs. Journal of Combinatorial

Theory, Series B 44 (1988)154–176.
7. X. Deng, P. Hell, and J. Huang. Linear time representation algorithm for proper circular-arc

graphs and proper interval graphs. SIAM Journal on Computing 25 (1996) 390–403.
8. N. Derhy and C. Picouleau. Finding induced trees. Discrete Applied Mathematics 157 (2009)

3552–3557.
9. N. Derhy, C. Picouleau, and N. Trotignon. The four-in-a-tree problem in triangle-free graphs.

Graphs and Combinatorics 25 (2009) 489–502.
10. R. Faudree, E. Flandrin, and Z. Ryjáček. Claw-free graphs—a survey. Discrete Mathematics

164 (1997) 87–147.
11. M.R. Fellows. The RobertsonSeymour theorems: A survey of applications. In: Proceedings

of AMS-IMS-SIAM Joint Summer Research Conf. Contemporary Mathematics, Providence,
RI (1989) 1-18.

12. D. Fulkerson and O. Gross, Incidence matrices and interval graphs, Pacific Journal of Math-
ematics 15 (1965) 835–855.

13. M.R. Garey and D.S. Johnson. Computers and Intractability. W. H. Freeman and Co., New
York, 1979.

14. P. Golovach, M. Kamiński, D. Paulusma, and D. M. Thilikos. Induced packing of odd cycles
in a planar graph. In: Proceedings of ISAAC 2009, LNCS 5878 (2009) 514–523.

15. R. Haas and M. Hoffmann. Chordless paths through three vertices. Theoretical Computer
Science 351 (2006) 360–371.

16. P. van ’t Hof, M. Kamiński and D. Paulusma. Finding induced paths of given parity in claw-
free graphs. In: Proceedings of WG 2009, LNCS 5911 (2009) 341–352.

17. R.M. Karp. On the complexity of combinatorial problems. Networks 5 (1975) 45–68.
18. A. King and B. Reed. Bounding χ in terms of ω and δ for quasi-line graphs. Journal of

Graph Theory 59 (2008) 215-228.

23

19. Y. Kobayashi and K. Kawarabayashi. The induced disjoint paths problem. In: Proceedings
of IPCO 2008, LNCS 5035 (2008) 47–61.

20. Y. Kobayashi and K. Kawarabayashi. Algorithms for finding an induced cycle in planar
graphs and bounded genus graphs. In: Proceedings of SODA 2009 (2009) 1146–1155.

21. B. Lévêque, D.Y. Lin, F. Maffray, and N. Trotignon. Detecting induced subgraphs. Discrete
Applied Mathematics 157 (2009) 3540–3551.

22. N. Robertson and P.D. Seymour. Graph minors. XIII. The disjoint paths problem. Journal
of Combinatorial Theory, Series B 63 (1995) 65–110.

23. F.S. Roberts, Indifference Graphs, In: Proof Techniques in Graph Theory, Academic Press,
New York (1969) 139–146.

24. S. Shrem, M. Stern and M.C. Golumbic. Smallest odd holes in claw-free graphs. In Proceed-
ings of WG 2009, LNCS 5911 (2009) 329–340.

25. W. Liu and N. Trotignon. The k-in-a-tree problem for graphs of girth at least k. Discrete
Applied Mathematics 158 (2010) 1644–1649.

24

