3-choosability of triangle-free planar graphs
with constraints on 4-cycles*
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Abstract

A graph is k-choosable if it can be colored whenever every vertex
has a list of at least k available colors. A theorem by Grotzsch [2]
asserts that every triangle-free planar graph is 3-colorable. On the
other hand Voigt [10] found such a graph which is not 3-choosable.
We prove that if a triangle-free planar graph is not 3-choosable, then
it contains a 4-cycle that intersects another 4- or 5-cycle in exactly one
edge. This strengthens the Thomassen’s result [8] that every planar
graph of girth at least 5 is 3-choosable. In addition, this implies that
every triangle-free planar graph without 6- and 7-cycles is 3-choosable.

1 Introduction

All graphs considered in this paper are simple and finite. The concepts of list
coloring and choosability were introduced by Vizing [9] and independently
by Erdés et al. [1]. A list assignment of G is a function L that assigns to
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each vertex v € V(G) a list L(v) of available colors. An L-coloring is a
function ¢ : V(G) — |, L(v) such that ¢(v) € L(v) for every v € V(G) and
o(u) # @(v) whenever u and v are adjacent vertices of G. If G admits an
L-coloring, then it is L-colorable. A graph G is k-choosable if it is L-colorable
for every list assignment L such that |L(v)| > k for all v € V(G). Cycles
C: and (5 in a graph are adjacent if they intersect in a single edge, i.e., if
V(Cy) NV (Cs) = {u,v} for an edge uv.

Thomassen [7, 8] proved that every planar graph is 5-choosable, and ev-
ery planar graph of girth at least 5 is 3-choosable. Kratochvil and Tuza
[3] observed that every planar triangle-free graph is 4-choosable. On the
other hand, Voigt [10, 11] found a planar graph that is not 4-choosable,
and a triangle-free planar graph that is not 3-choosable. Numerous papers
study additional conditions that force a triangle-free planar graph to be 3-
choosable, see e.g. [4, 6, 12, 13, 14, 15].

In particular, let us point out the result of Li [5], strengthening the result
of Thomassen [8]: every planar triangle-free graph such that no 4-cycle shares
a vertex with another 4- or 5-cycle is 3-choosable. We further improve this
result, only forbidding the 4-cycles sharing an edge with other 4- or 5-cycles:

Theorem 1. Any planar triangle-free graph without 4-cycles adjacent to 4-
and 5-cycles is 3-choosable.

In particular, we obtain:
Corollary 2. Any planar graph without 3-, 6- and T-cycles is 3-choosable.

This strengthens the results of Lidicky [6] that planar graphs without 3-, 6-,
7- and 8-cycles are 3-choosable, and of Zhang and Xu [13] that planar graphs
without 3-, 6-, 7- and 9-cycles are 3-choosable. Theorem 1 also implies the
result of Lam et al. [4] that planar graphs without 3, 5 and 6-cycles are
3-choosable.

2 Proof of Theorem 1

A path of length k (or a k-path) is a path on k + 1 vertices. Using the proof
technique of precoloring extension developed by Thomassen [8], we show the
following generalization of Theorem 1:



Theorem 3. Let G be a triangle-free planar graph without 4-cycles adjacent
to 4- and 5-cycles, with the outer face C, and P a path of length at most
three such that V(P) C V(C). The graph G can be L-colored for any list
assignment L such that

|L(v)| =3 for allv e V(G)\ V(C);

2 <|L(w)| <3 forallve V(C)\V(P);

|L(v)] =1 for all v € V(P), and the colors in the lists give a proper
coloring of the subgraph of G induced by V(P);

the vertices with lists of size two form an independent set; and

each vertex with lists of size two has at most one neighbor in P.

Note that we view the single-element lists as a precoloring of the vertices
of P. Also, P does not have to be a part of the facial walk of C', as we
only require V(P) C V(C). If C is a cycle, then let ¢(C') denote its length.
Theorem 3 has the following easy consequence:

Corollary 4. Let G be a triangle-free planar graph without 4-cycles adjacent
to 4- and 5-cycles, with the outer face bounded by an induced cycle C of
length at most 9. Furthermore, assume that

o if ((C) = 8, then at least one edge of C' does not belong to a 4-cycle;
and

o if ((C) =9, then C contains two consecutive edges that do not belong
to 4- and 5-cycles.

Let L be an assignment of lists of size 1 to the vertices of C and lists of size
3 to the other vertices of G. If L prescribes a proper coloring of C, then G
can be L-colored.

Proof. The claim follows from Theorem 3 for ¢(C) = 4. If ¢(C) € {5,6, 7},
then let u;wvwseus be an arbitrary subpath of C. Let L’ be the list assign-
ment obtained from L by removing the color L(v) from the lists of vertices
adjacent to v. We also set the lists of w; and wy to 2-lists such that the
precoloring of the other vertices of C' forces the prescribed color L(w;) on w;

and L(ws) on wy, i.e., L'(wy) = L(w;) U L(uy) and L'(we) = L(ws) U L(us).



As all the vertices x with |L'(z)| = 2 are neighbors of a single vertex v, the
graph G — v together with the list assignment L’ satisfies the assumptions of
Theorem 3. It follows that we can L’-color G — v, giving an L-coloring of G.

Let us now consider the case that £(C) = 8, and let C' = wyuvwyrirersry,
where the edge uv does not belong to a 4-cycle. Let us delete vertices u and
v from G, remove the color in L(u) from the lists of neighbors of u and the
color in L(v) from the lists of neighbors of v, and change the list of w; to
L(w;) U L(ry) and the list of wy to L(wy) U L(ry), so that the precoloring of
the path P = ryryrsry forces the right colors on w; and ws. As uv does not
belong to a 4-cycle, the vertices with lists of size two form an independent
set. As C is induced, both w; and wy have only one neighbor in the 3-path
P. Let x be a neighbor of v other than v and w,. The vertex x cannot be
adjacent to both ry and r4, as the 4-cycle uzrjw; would be adjacent to a
5-cycle xrirorsry. Similarly, x cannot be adjacent to both r; and r3 or both
ro and 4. As G does not contain triangles, x has at most one neighbor in P.
By symmetry, this is also true for the neighbors of v. Therefore, the graph
satisfies assumptions of Theorem 3, and can be colored from the prescribed
lists.

Finally, suppose that ¢(C) = 9, and let C' = wyuvwwyrirorsry, where the
edges uv and vw are not incident with 4- and 5-cycles. We argue similarly
as in the previous case. We delete vertices u, v and w from G and remove
their colors from the lists of their neighbors. We also set the list of w; to
L(wy)UL(ry) and the list of wy to L(we)UL(ry), so that the precoloring of the
path ryrorsry forces the right colors on w; and ws. Observe that the resulting
graph satisfies assumptions of Theorem 3, hence it can be colored. O

Before we proceed with the proof of Theorem 3, let us describe the no-
tation that we use in figures. We mark the precolored vertices of P by full
circles, the vertices with list of size three by empty circles, and the vertices
with list of size two by empty squares. The vertices for that the size of the list
is not uniquely determined in the situation demonstrated by the particular
figure are marked by crosses.

Proof of Theorem 3. Suppose GG together with lists L is the smallest coun-
terexample, i.e., such that |V(G)| + |E(G)| is minimum among all graphs
that satisfy the assumptions of Theorem 3, but cannot be L-colored, and
> vev(c) |L(v)| is minimum among all such graphs. Let C' be the outer face
of G and P a path with V(P) C V(C) as in the statement of the theorem.



We first derive several properties of this counterexample. Note that each
vertex v of G has degree at least |L(v)|. A cycle K in G is separating if
K # C and the interior of K contains at least one vertex. A chord of a cycle
K is an edge in GG joining two distinct vertices of K that are not adjacent in
K.

Lemma 5. Let K be a separating cycle in G. Then, ((K) > 8. Furthermore,
if ((K) = 8, then every edge of K belongs to a 4-cycle lying inside K; and if
UK) =9, then at least one of any two consecutive edges of K belongs to a
4- or b-cycle lying inside K.

Proof. We may assume that K is induced, as otherwise we could consider
a shorter separating cycle of length at most 7. Let G; be the subgraph
of G drawn inside K (including K, but excluding the chords of K drawn
outside of K) and G5 the subgraph of G drawn outside of K (including K,
but excluding the chords of K drawn inside K). By the minimality of G,
Theorem 3 holds for G; and G5 and their subgraphs. Therefore, there exists
a coloring of (G; from the prescribed lists, and this coloring can be extended
to G5 by Corollary 4. This is a contradiction, as G cannot be colored from
the lists. O

As G does not have triangles and 4-cycles adjacent to 4- and 5-cycles, a
cycle of length at most 7 does not have a chord. Therefore, Lemma 5 implies
that every cycle of length at most 7 bounds a face. Similarly, a cycle K of
length 8 with an edge that does not belong to a 4-cycle in the interior of K
either bounds an 8-face, or has a chord splitting it to a 4-face and a 6-face,
or two 5-faces.

Lemma 6. The graph G is 2-connected.

Proof. Obviously, GG is connected. Suppose now that v is a cut vertex of GG
and GG; and G5 are nontrivial induced subgraphs of GG such that G = G, UG
and V(G1) N V(Gse) = {v}. Both G; and G, satisfy the assumptions of
Theorem 3. If v is precolored, then by the minimality of G there exist L-
colorings of GGy and G5, and they combine to a proper L-coloring of G. If v
is not precolored, then we may assume that P C G;. An L-coloring of G
assigns a color ¢ to v. We change the list of v to {c}, color Gy and combine
the colorings to an L-coloring of G. U
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Figure 1: A chord of C'

By Lemma 6, C' is a cycle. A k-chord of C is a path Q = qoq1...q of
length k joining two distinct vertices of C, such that V(C)NV(Q) = {qo, g}
(e.g., 1-chord is just a chord).

Lemma 7. The cycle C' has no chords.

Proof. Suppose e = uv is a chord of C, separating G to two subgraphs G,
and Gy intersecting in e. If both u and v are precolored, then we L-color G
and G5 by the minimality of G and combine their colorings. We assume by
symmetry that u € V(P), and that |[V(P) NV (Gy)| > |[V(P) NV (Gs)|. In
particular, |(V(P)NV(Gsy)) \ {u, v} < 1. Furthermore, we may choose uv
such that G5 is as small as possible. Then, the outer face of G5 does not
have a chord. Let us find an L-coloring of (G; and change the lists of v and v
to the single-element sets containing the colors assigned to them. If G5 with
these new lists satisfies assumptions of Theorem 3, then we find its coloring
and combine the colorings to an L-coloring of G, hence assume that this is
not the case.

Let X = (V(P)NV(Gy)) \ {u,v}. As Gy does not satisfy assumptions
of Theorem 3, there exists a vertex z with list of size two adjacent to two
precolored vertices. As G is triangle-free, we conclude that X is not empty,
say X = {w} (see Figure 1), and z is adjacent to u and w. Since G5 contains
no separating 4-cycles and the outer face of G is chordless, z € V(C') implies
that Go is equal to the cycle uwvwz. Since |L(z)| = 2, the assumptions of
Theorem 3 imply |L(u)| = 3. Let ¢; be the color of u in the coloring of Gy,
and ¢ the single color in the list of w. If L(z) # {¢1, ¢}, then we can color
z and finish the coloring of G, hence assume that L(z) = {c1,c}. Let ¢
be a color in L(u) \ ({¢1} U L(v)) (this set is nonempty, as |L(v)| = 1 and
L(w)| = 3).



Let us now color z by ¢; and set the list of u to {c}. If Gy with this
list at u satisfies assumptions of Theorem 3, then we can color GGy, and thus
obtain an L-coloring of G. Since G does not have such an L-coloring, the
assumptions are violated, i.e., either u is adjacent to a vertex of P other
than v, or Gy contains a vertex (with list of size two) adjacent to both u and
a vertex of P. This is a contradiction, as G would in both of these cases
contain either a triangle, or a 4- or 5-cycle adjacent to the 4-cycle vvwz. O

By the previous lemma, P is a part of the facial walk of C, and C' is an
induced cycle.

Lemma 8. ((C) > 8.

Proof. Suppose that ¢(C') < 7. Let ¢ be a proper L-coloring of C' (such a
coloring exists, as if V/(C') # V(P), then C contains at least one vertex with
list of size three). Let L’ be the list assignment defined by L'(v) = {®(v)} for
v e V(C)and L'(v) = L(v) for v € V(G) \ V(C). If 5 < £(C) < 7, then the
proof of Corollary 4 implies that G has an L’-coloring (the proof only uses
Theorem 3 for proper subgraphs of G, which satisfy it by the assumption
that G is a minimal counterexample). Such a coloring is also an L-coloring
of G.

If ¢/(C) = 4, then we delete one of the vertices of C' and remove its color
from the lists of its neighbors. It is easy to verify that the resulting graph
satisfies the assumptions of Theorem 3, hence it has a proper coloring by
the minimality of G. This coloring extends to an L-coloring of GG, which is a
contradiction. 0

Lemma 9. No 4-cycle shares an edge with another 4- or 5-cycle.

Proof. Suppose that C'y = vjv9v3v4 and Cy = vivaus . .. u; are cycles sharing
the edge vive, (Cy) = 4 and t = ((Cy) € {4,5}. Note that C; # C and
Cy # C by Lemma 8. By Lemma 5, both € and C5 bound a face. If
vy = ug, then vy would be a 2-vertex with list of size three. Thus, v3 # ug
and by symmetry, vy # u;. As G does not contain triangles, vs # u; and
vy # ugz, and in case that ¢t = 5, vs # uy and vy # uy. Therefore, C and Cy
are adjacent, contradicting the assumptions of Theorem 3. O

Note that we can assume that |V (P)| = 4, as otherwise we can prescribe
color for more of the vertices of C, without violating the assumptions of
Theorem 3. Let P = pipopsps. We say that a k-chord @ of C splits off a
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Figure 2: Possible 2-chords in G

Figure 3: A 2-chord of C'

face F' from G if F' # C' is a face of both G and C' U Q). See Figure 2 for an
illustration of 2-chords splitting off a face.

Lemma 10. Every 2-chord uvw of C' splits off a k-face F' such that
(a) V(F)nV(P)| <2 and {u,w} £ V(P),

(b) k<5, and

(c) if V(F)NV(P)| <1, then k = 4.

In particular, the cycle C' has no 2-chord with |L(w)| = 2 and u # ps, p3.

Proof. Suppose first that u,w € V(P). By Lemma 5, the 2-chord uwvw
together with a part of P bounds a face K. Color v by a color different
from the colors of u and w, and remove V(K) \ {u,v, w} from G, obtaining
a graph G’. Note that a path of length at most three is precolored in G'.
Since G cannot be L-colored, we may assume that G’ does not satisfy the
assumptions of Theorem 3, i.e., there exists z with |L(z)| = 2 adjacent to
both v and a vertex y € V(P) NV (G’). As G is triangle-free, y & {u,w}. It
follows that yuvz or ywwvz is a 4-face. This is a contradiction, as K would be



an adjacent 4-face. Therefore, {u,w} € V(P), and by symmetry we assume
that w & V(P).

The 2-chord wvw splits G to two subgraphs GG; and (5 intersecting in
wvw. Let us choose Gy such that |V(P) N V(Gs)| < |[V(P)NV(Gy)|, see
Figure 3. Note that |V (P) NV (Gy)| < 2. Let us consider the 2-chord wvw
such that |V(P) NV (Ge)| is minimal, subject to the assumption that G is
not a face. By the minimality of G, there exists an L-coloring ¢ of G;. Let
L’ be the list assignment for G5 such that L'(u) = {¢(u)}, L'(v) = {p(v)},
L'(w) = {p(w)} and L'(z) = L(z) for x € V(Gs) \ {u,v,w}. Let P’ be the
precolored path in Gy (consisting of u, v, w, and possibly one other vertex
p of P adjacent to u). As C has no chords and Gy is not a face, P’ is an
induced subgraph. Since GG cannot be L-colored, we conclude that G5 cannot
be L'-colored, and thus G5 with the list assignment L’ does not satisfy the
assumptions of Theorem 3. Therefore, there exists a vertex z with |L(z)| = 2,
adjacent to two vertices of P’.

Since G5 is not a face, Lemmas 5 and 7 imply that z is not adjacent to
both w and p. Similarly, 2z is not adjacent to both u and w. It follows that 2
is adjacent to v and p, and thus |V(P) NV (Gs)| = 2. Since we have chosen
the 2-chord uvw so that |V (P)NV(Gs)| = 2 is minimal among the 2-chords
for that (G5 is not a face, the 2-chord wwvz splits off a face F’ from G. Let
x be the neighbor of z in F” other than v. Since |L(z)| = 2, it holds that
|L(z)] = 3. As F' is a face, deg(x) = 2, which is a contradiction. It follows
that for every 2-chord, G, is a face. The choice of G5 establishes (a).

Let wvuvy...vp be the boundary of the face Go. Note that V(P) N
V(Gs) C {u,vs}, and vy, ..., v have degree two. If &k > 5, then at least
one of v and vg has list of size three, which is a contradiction, proving (b).
Similarly, if [V(F)NV(P)| <1 and k = 5, then at least one of vy and v;
would be a 2-vertex with list of size three, proving (c).

Consider now a 2-chord uwvw such that |L(w)| = 2 and u & {ps, ps}, and
let « be the neighbor of w in G distinct from v. As u & {ps, p3}, no vertex of
V(P)\{u} lies in Gy. Therefore, |L(z)| = 3 and deg(z) = 2, a contradiction.
We conclude that no such 2-chord exists. 0

Let us now consider the 3-chords of C:

Lemma 11. Fvery 3-chord Q = wvwz of C such that u,x & {ps,p3} splits
off a 4- or 5-face.

Proof. Suppose that @) splits GG into two subgraphs G; and G5 intersecting



in wvwz, such that V(P) NV (Gs) C {u,z}. Let us L-color G; and consider
the vertices u, v, w and x of GGy as precolored according to this coloring. If
uxr were an edge, then () would split off a 4-face. It follows that @) is an
induced path thus this precoloring of @) is proper. Similarly, as ) does not
split off a 5-face, u and = do not have a common neighbor with list of size
two. Neither v nor w is adjacent to a vertex with list of size 2 by Lemma 10.
Therefore, G5 satisfies assumptions of Theorem 3, and the coloring can be
extended to (G5, giving an L-coloring of G. This is a contradiction. O

Let 1292314 be the part of the facial walk of C' such that x; is adjacent
to py and x5 # py. By Lemma 8, {x1, %o, 23,24} NV (P) = 0. Let us now
show a few properties of the vertices x1, x2, x3, x4 and their neighbors.

Lemma 12. Let QQ = vgv; ... v, be a k-chord starting and ending at a vertex
of x1xewsxy, o1 a cycle intersecting C in a single vertex x € {xy,x9, T3, 14}
The following holds (for some i € {1,2,3,4}):

o [fU(Q) =2, then Q = x;v12,49 splits off a 4-face.

o [fU(Q) = 3, then Q splits off either a 4-face x;x;11v1v9, or a 5-face
L1 Li42V10V2.

o [fU(Q) =4, then Q forms a boundary of a 4-face x;v1v9v3, or splits off
a b-face x;x;1 1010203, or splits off a 6-face x;x; 12,1 2V1V203.

Proof. By a simple case analysis. The details are left to the reader. O

Note also that if @ splits off a face of form x;z;1 12,001 ... v5_1, then
deg(zit1) = |L(zis1)| = 2.

Lemma 13. If Q is a k-chord with k < 3, starting at a vertexr x; (where
1 <i < 4) and ending at a vertex with list of size two, then k = 3 and Q
bounds a 4-face.

Proof. Let Q = qoq1 .. .qx, where qo € {x1, 29,23, 24} and |L(qx)| = 2. By
Lemmas 7 and 10, k£ > 2. If k = 3, then by Lemma 11, () splits off a 4- or
5-face. However, the latter is impossible, as |L(g3)| = 2, so the remaining
vertex of the 5-face, whose degree is two, would have a list of size three. [

Lemma 14. There is no 2-chord from {py,pa2} to {x1,x2, x3,24}.

10
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Figure 4: A 2-chord from p; or ps to {zy,x2, x3, 24}

Proof. Suppose Q = p;vx; is such a 2-chord, and let K be the cycle formed
by @ and p;...psz1 ... x;. Note that ((K) < 9. Let us choose @ such that
((K) is minimal. By Lemma 10, @ splits off a face F' such that ¢(F) < 5.
Furthermore, if /(K) = 9, then ¢ = 1, and hence |V(P)NV(F)| = 1. In
that case, the claim (c) of Lemma 10 implies ¢(F) = 4. See Figure 4 for
illustration. It follows that the edges p;v and vx; are not incident with a
4-cycle inside K, and if /(K) = 9, then they are not incident with a 5-cycle.
By Lemma 5, K is not separating. If /(K) < 7, then K bounds a face, and
deg(v) = 2, which is a contradiction. Similarly, if ¢(K) > 7, then K has a
chord incident with v. By the minimality of ¢(K), v is adjacent to p3 or py.
However, this contradicts Lemma 10(a). O

If both x; and x5 have lists of size three, then we remove one color from
L(z1) and find a coloring by the minimality of L (note that x; is not adjacent
to any vertex with list of size two, and has only one neighbor in P, as C' does
not have chords). Therefore, exactly one of z; and x5 has a list of size two.
Let x5 be the neighbor of z, in C' distinct from x3. We now distinguish
several cases depending on the lists of vertices in {z1, xq, x3, 24}, in order to
choose a set Xy C {x1, 29, x3, 24} of vertices that we are going to color (and
remove).

(C1) If |L(z1)| = 2 and |L(z2)| = |L(z3)| = 3 (see Figure 5(1)), then we set
X1 = {I’l}

(C2) If |L(z1)| = 2, |L(z2)| = 3, |L(z3)| = 2, |L(x4)] = 3 and |L(x5)| = 3
(see Figure 5(2)), then we set Xy = {x1, x9, 23}.

(C3) If |L(x1)] = 2, [L(x2)] = 3, [L(xs)| = 2, [L(z4)| = 3 and [L(z5)] < 2
(see Figure 5(3)), then we set X; = {xq, 3, 24}.

11
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Figure 5: The construction of the set X;
(C4) If |L(z1)| = 3, |L(z2)| = 2, |L(z3)] = 3 and |L(z4)] = 3 (see Fig-
ure 5(4)), then we set Xy = {z1, x2}.
(C5) If |L(z1)| = 3, |L(z2)| = 2, |L(z3)] = 3 and |L(z4)] = 2 (see Fig-
ure 5(5)), then we set Xy = {x1, x9, x3}.

Let m = max{i : z; € X;}. Note the following properties of the set X;:

L4 |X1| S 3.
o If |L(z,;,)| =2, then m <3 and |L(211)| = |L(Zma2)| = 3.
o If |[L(x,)| = 3, then |L(zy41)| < 2.

Let F be the set of faces of GG incident with the edges of the path induced
by X (F = 0 in the case (C1)). We define a set Xy C V(G)\V(C), together
with functions r : Xy — X; and R : Xo — F. A vertex z € V(G) \ V(C)
belongs to X, if

e 2 is adjacent to two vertices in X; (see Figure 6(a) as an example). By
Lemma 12, z lies in a (uniquely determined) 4-face F' = x;x;412;422,
where x;, ;11,10 € X1. We define r(z) := x; and R(z) := F. Or,

e there exists a path xzvy such that v,y € Xy and v & {p1} U X1 (see
Figure 6(b), (c) and (d) for examples). If v = x,,,1, then by Lemma 10,
the 2-chord zzv splits off a 4-face F'. Otherwise the 3-chord xzvy splits
off a 4- or 5-face F' by Lemma 12. We define r(z) := z and R(z) := F.

12
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Figure 6: The construction of the set X,

Note that v # z1: otherwise, 1 ¢ X; and we are in case (C3), hence
|L(z1)] = 2 and the 2-chord z;zx would contradict Lemma 10. It
follows that v also belongs to X5, unless v = x,11.

Let us now show that r(z) and R(z) are well-defined. As a 4-face
cannot be adjacent to a 4- or 5-face and G is triangle-free, z does not
have another neighbor in X;. Also, if there existed another path zzv'y’
with ¢ € X; splitting off a face F’, then both F and F’ would be
5-faces; however, that would imply |X;| > 5, which is a contradiction.
Therefore, r and R are defined uniquely. Furthermore, v is the only
neighbor of z in Xy, and R(v) = R(z) (assuming that v # ,,41).

We now find an L-coloring of X; U X, that we aim to extend to a coloring
of GG.

Lemma 15. Let H = G|V (P) U X; U Xy| be the subgraph of G induced by
V(P)U X1 U Xy. There exist an L-coloring @1 of X1 and an L-coloring o
of Xy such that

the coloring of H given by @1, po and the precoloring of P is proper,

if |L(%my1)| <2, then o1(2) & L(Tmy1),

if 11 & X1 (i.e., in the case (C3) of the definition of X1 ), then L(xy) #
L(pa) U{p1(22)}, and

if z € Xy is adjacent to xp11, then |L(zmi1) \ {@1(m), p2(2)} > 2.
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Proof. Suppose first that there exists z € X5 adjacent to x,,1. Note that z is
unique, m > 2 and R(z) = Xy, 1ZmTmy12 18 a 4-face. As G does not contain
a 2-vertex with list of size three, |L(x,,)| = 2 and |L(zm-1)| = |L(zm1)] = 3.
This happens only in the cases (C2) and (C4) of the definition of X, thus
r1 € X1 and m < 3. Furthermore, x,,_1 is the only neighbor of z in X; and
z is not adjacent to any other vertex of X,. As R(z) is a 4-face and G does
not contain 4-cycles adjacent to 4- or 5-cycles, 2z is not adjacent to ps and
ps. By Lemma 14, z is not adjacent to p; and ps, either, thus any choice of
the color for z is consistent with the precoloring of P. Let us distinguish the
following cases:

o If L(z) N L(x,,) # 0, then choose ¢ € L(z) N L(x,,) and let ¢;(z,,) =
pa(z) = c.

o If I(2) # L(xpm+1), then choose pa(2) € L(2) \ L(Tmy1) and ¢ (x,,) €
L(x,,) arbitrarily.

e Finally, consider the case that L(z) N L(x,,) = 0 and L(z) = L(xp41),
i.e., the lists of z,, and x,,,, are disjoint. We choose ¢1(z,) € L(x,)
and @o(z) € L(z) arbitrarily.

On the other hand, suppose that no vertex of X5 is adjacent to z,,,1. If
|L(Zm41)] = 2, then choose ¢1(xy,) € L(xy,) \ L(Zme1). Otherwise, choose
©1(xm) € L(z,,) arbitrarily (in case that m = 1, choose a color different from
the one in L(py))

In both of these cases, the precoloring of z,, (and possibly z) can be
extended to a proper coloring ¢ of the subgraph induced by {x1,..., 2, 2}
consistent with the precoloring of P. We fix ¢ as the restriction of ¥ to X;.

Let us now construct (the rest of) the coloring ¢y. Consider a vertex
u € X, that is not adjacent to z,,41. As u ¢ V(C), it holds that |L(u)| = 3.
If 4 has no neighbor in X5, then it has two neighbors in X7, say r(u) and
x, and R(u) is a 4-face. We claim that u is not adjacent to any p; € V(P).
Otherwise, we obtain ¢ > 3 by Lemma 14. By Lemma 10, the 2-chord
piur(u) splits off a 4- or 5-face. This face shares an edge with R(u), which is
a contradiction. Therefore, any choice of po(u) € L(u) \ {¢1(x), ¢1(r(u))} is
consistent with the precoloring of P.

Finally, suppose that u has a neighbor w € X5. As we argued in the
definition of X5, each of v and w has exactly one neighbor in X;, and u
and w do not have any other neighbors in X,. Also, w is not adjacent to
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Tma+1, as otherwise G would contain a triangle or two adjacent 4-cycles. By
Lemma 10(a), each of u and w has at most one neighbor in P. If one of them
does not have any such neighbor, then we can easily color u and w, hence
assume that p;u and p;w are edges. By Lemma 14, ¢, 7 > 3. Without loss
of generality, 7 = 3 and ¢« = 4. This is a contradiction, as the 4-face psp,uw
shares an edge with R(u). O

Consider the colorings ¢ and ¢, constructed in Lemma 15. Let G’ =
G — (X1 U X5) and let L' be the list assignment such that L'(v) is obtained
from L(v) by removing the colors of the neighbors of v in X; and X, for
v # xy, and L'(z1) = L(zy) if 21 ¢ Xy. Suppose that G’ with the list
assignment L' satisfies assumptions of Theorem 3. Then there exists an L'-
coloring ¢ of G’, which together with ¢; and ¢y gives an L-coloring of G:
this is obvious if x; € Xy. If x; € Xy, then |L(xy)| = 2, and L(ps) C L(z4)
by the minimality of G (otherwise, we could remove the edge psz1). By the
choice of 1, it holds that ¢;(xs) # ¢(z1). Since no other vertex of X; U X,
may be adjacent to x; by Lemmas 7 and 10, ¢ together with ¢, and ¢y is
a proper coloring of G. As G is a counterexample to Theorem 3, it follows
that L' violates assumptions of Theorem 3, i.e.,

(a) a vertex v € V(G') with |L/(v)| = 2 is adjacent to two vertices of P; or
(b) |L'(v)] <1 for some v € V(G') \ V(P); or
(c) two vertices u,v € V(G') with |L'(u)| = |L'(v)| = 2 are adjacent.

Let us now consider each of these possibilities separately.

(a) A vertexv € V(G') with |L'(v)| = 2 is adjacent to two vertices of P. By
Lemmas 7 and 10(a), this is not possible.

(b) |L'(v)| <1 for somev € V(G")\V(P). If |L(xm11)| = 2, then x,,1, does
not have any neighbor in X, by Lemma 10 and hence |L'(zp41)| = 2
by the choice of ;. If |L(2,,41)| = 3, then the choice of ¢ and ¢
according to Lemma 15 ensures |L/'(z,,41)| > 2. Therefore, v # 1.

Since C' has neither chords nor 2-chords starting in X; and ending at
a vertex with list of size two by Lemma 13, it holds that |L(v)| = 3.
Therefore, v has at least two neighbors w1, us € X7 UX,. If at least one
of u; and us belonged to X, then v would be included in X5, hence we
may assume that uy, us € Xo.
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Consider the path z;ujvusz;, where z; = r(u;) and x; = r(ug). We
may assume that ¢ < j. The cycle z; . .. xjupvu; has length at most six,
thus it bounds a face F'. Note that i = j, as each of R(u;) and R(us)
shares at least one edge with the path induced by X; and F' # R(u;) #
R(uy) # F. Therefore, F is a 4-face sharing an edge with 4-face R(u;)
(and also with R(usg)), which is a contradiction. Therefore, |L'(v)| > 2
for every v € V(G') \ V(P).

(c) Two wvertices u,v € V(G') with |L'(u)| = |L'(v)| = 2 are adjacent. As
the vertices with lists of size two form an independent set in GG, we may
assume that |L(u)| = 3. Let y; be a neighbor of v in X; U Xb.

Consider first the case that |L(v)| = 2. If u ¢ V(C), then by Lemma 10,
y1 € V(C), and thus y; € X5 and vuy;r(y;) is a 3-chord. By Lemma 13,
this 3-chord splits off a 4-face F. Note that F' # R(y1), as u € Xs.
This is impossible, as the 4-face F' would share an edge with R(y).
Therefore, v € V(C'), and hence v # x;. If y; € Xy, then uy;r(y;) is
a 2-chord, and by Lemma 10, it splits off a 4-face adjacent to R(y1),
which is again a contradiction. Assume now that y; € X;. As C' does
not have chords, it follows that y; = x,, and u = x,,.1. However, in
that case v = x40 and |L(2,,42)| = 2, which contradicts the choice of
Xi.

Consider now the case that |L(v)|] = 3. Let yo be a neighbor of v in
XiUX,. Asu,v € X,, at least one of y; and ys9, say y;, belongs to Xo.
Let us consider the possibilities y» € X7 and y, € X5 separately:

e yo € X;: The cycle formed by r(y; )y, uvy, and a part of the path
T1x9w3T4 between r(y;) and ys has length at most six, thus it
bounds a face F. Note that R(y;) shares an edge with F. Let
ki and ks be the number of edges that R(y;) and F, respectively,
share with the path induced by Xi, k; > ¢(R(y1)) —3 > 1 and
ko = {(F) —4 > 0. Since |X;| < 3, it holds that k; + ko < 2.
If k& = 1, then R(y;) is a 4-face. Since 4- and 5-faces cannot be
adjacent to R(y1), we obtain £(F) > 6. It follows that ky > 2,
which is a contradiction. Similarly, if £y = 2, then F' cannot
be a 4-face, hence ¢(F) > 5 and thus ky > 1. This is again a
contradiction.

e Yo € X5 Let F be the cycle bounded by 7(y;)y;uvysr(y2) and the
part of the path xjzoxszry between r(y;) and r(y2). As ((F) <
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7, F bounds a face. Note that R(y1) # R(y2) and ¢(R(y1)) =
((R(y2)) = 4, as each of R(y;) and R(y) shares an edge with the
path induced by X;. Since F' shares edges with both R(y;) and
R(ya), ((F) > 6. It follows that F' shares at least one edge with
the path induced by X; as well. However, this is impossible, since
[ Xq| < 3.

Therefore, the assumptions of Theorem 3 are satisfied by G’ and L'. We

conclude that we can find a proper coloring of GG, which contradicts the choice

of GG as a counterexample to Theorem 3. O
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