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Abstract

An L(2, 1, 1)-labeling of a graph G assigns nonnegative integers to
the vertices of G in such a way that labels of adjacent vertices differ
by at least two, while vertices that are at distance at most three are
assigned different labels. The maximum label used is called the span
of the labeling, and the aim is to minimize this value. We show that
the minimum span of an L(2, 1, 1)-labeling of a tree can be bounded by
a lower and an upper bound with difference one. Moreover, we show
that deciding whether the minimum span attains the lower bound is an
NP-complete problem. This answers a known open problem, which was
recently posed by King, Ras, and Zhou as well. We extend some of our
results to general graphs and/or to more general distance constraints
on the labeling.

1 Introduction

Classical graph coloring involves the labeling of the vertices of some given
graph by integers usually called colors such that no two adjacent vertices
receive the same color. We study a variant of this problem that has been
motivated by and finds applications in wireless communication.

In a wireless network, each transmitter is assigned a frequency channel
for its transmissions. However, two transmissions can interfere if their chan-
nels are too close. Whether this happens depends on the physical structure
of the network; even if two transmitters use different channels, there still
may be interference if the two transmitters are located close to each other.
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The radio spectrum gets more and more scarce, because the number of wire-
less networks is rapidly increasing. Thus the task is to minimize the span of
frequencies while avoiding interference.

A wireless network can be modeled by an undirected graph G = (V,E)
with no loops and no multiple edges. The transmitters are represented
by vertices and the distance distG(u, v) between two transmitters u, v is the
number of edges on a shortest path from u to v. A labeling of G is a mapping
f : V → {0, 1, . . .} that assigns each vertex of V a label f(v) representing a
frequency channel (in this setting, the convention is to use the notion “label”
instead of “color”).

The distance of two transmitters in a network implies certain require-
ments on the difference of the channels assigned to them. We model this by
posing extra restrictions on the labeling. This approach is called distance
constrained labeling and it is done via a frequency graph H, whose vertices
represent the available channels and are denoted by 0, . . . , |V (H)| − 1. For
positive integers p1, p2, . . . , pk, a labeling f of G with f(V (G)) ⊆ V (H) is
called an H(p1, . . . , pk)-labeling if

distH(f(u), f(v)) ≥ pi for all u, v ∈ VG with distG(u, v) = i

holds for every i = 1, . . . , k. The integers p1, . . . , pk are called the distance
constraints imposed on the labeling. It is natural to assume that frequencies
must be farther apart if transmitters are closer to each other; so we restrict
ourselves to distance constraints p1 ≥ p2 ≥ · · · ≥ pk. We can now formalize
the aforementioned task as the following decision problem:

H(p1, . . . , pk)-Labeling
Parameters: Distance constraints p1, . . . , pk.
Instance: Graphs G and H.
Question: Does G have an H(p1, . . . , pk)-labeling?

Not only for its practical applications but also because of its many in-
teresting theoretical properties, distance constrained labeling has received
much attention in recent literature, in particular the cases in which H is a
path or a cycle. Below we discuss these two cases; for a survey on known
algorithmic results for other frequency graphs we refer to Fiala, Golovach
and Kratochv́ıl [9].

Linear Metric. Let H be the path Pλ+1 on vertices 0, . . . , λ with an edge
between vertices i and i + 1 for i = 0, . . . , λ − 1. Then an H(p1, . . . , pk)-
labeling is called an L(p1, . . . , pk)-labeling with span λ, and H(p1, . . . , pk)-
Labeling is formulated as the problem:

L(p1, . . . , pk)-Labeling
Parameters: Distance constraints p1, . . . , pk.
Instance: A graph G and integer λ.
Question: Does G have an L(p1, . . . , pk)-labeling with span λ?
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The minimum λ such that a graph G has an L(p1, . . . , pk)-labeling is
denoted by λp1,...,pk(G). An L(1)-labeling of G is also called a coloring of G
and λ1(G) + 1 is also called the chromatic number χ(G) of G.

Cyclic Metric. Let H be the cycle Cλ on vertices 0, . . . , λ − 1 with an
edge between vertices i and i + 1 for i = 0, . . . , λ − 1 (modulo λ). Then
an H(p1, . . . , pk)-labeling is called a C(p1, . . . , pk)-labeling with span λ, and
the corresponding decision problem is denoted C(p1, . . . , pk)-Labeling. We
denote the minimum λ such that G has a C(p1, . . . , pk)-labeling of span λ
by cp1,...,pk(G). Observe that while for the linear metric, the span λ is the
number of vertices of the frequency graph (path) minus one, for the cyclic
metric, we follow Liu and Zhu [29] and define the span as the number of
vertices of the corresponding cycle.

Known Results. Especially L(p1, p2)-labelings are well studied, see the
surveys of Calamoneri [2] and Yeh [33]. For a survey on a more general model
we refer to Griggs and Král’ [18]. We start with a number of algorithmic
and complexity results for labelings.

Fiala, Kloks and Kratochv́ıl [11] showed that L(2, 1)-Labeling is NP-
complete already for fixed λ ≥ 4. Král’ gave an exact exponential-time algo-
rithm for solving the general channel assignment problem [27]. This implies
an O∗(4n) algorithm for L(2, 1)-Labeling (when λ is part of the input).
The latter was improved to an O∗(3.885n) algorithm by Havet et al. [19]
and further improved to an O∗(3.5616n) algorithm by Junosza-Szaniawski
and Rzazewski [23]. Chang and Kuo [5] presented a nontrivial dynamic
programming algorithm to show that L(2, 1)-Labeling can be solved in
polynomial time for trees. Hasunuma et al. [20] gave a sub-quadratic algo-
rithm, and the same authors [21] found a linear time algorithm afterwards.
For p1 > 1, Chang et al. [4] showed that L(p1, 1)-Labeling is polynomial-
time solvable for trees even when p1 is not fixed but part of the input (see
also Fiala, Kratochv́ıl and Proskurowski [13]). However, for any fixed p1, p2,
the L(p1, p2)-Labeling problem is NP-complete, even for trees, if p2 ≥ 2
and p2 does not divide p1 [9]. It is also known that, for fixed p1 ≥ 2, L(p1, 1)-
Labeling is already NP-complete for graphs of treewidth two [8]. This is in
contrast to the polynomial time result of Zhou, Kanari and Nishizeki [35] on
L(1, 1)-Labeling for graphs of bounded treewidth (but L(1, 1)-Labeling
is W[1]-hard when parameterized by the treewidth of the input graph [10]).

Also L(p1, . . . , pk)-labelings with k ≥ 3 have been studied. Zhou, Kanari
and Nishizeki [35] showed that L(1, . . . , 1)-Labeling can be solved in poly-
nomial time on graphs of bounded treewidth. Bertossi, Pinotti and Rizzi [1]
showed the same for the class of interval graphs. Golovach [15] proved that
the prelabeling extension of L(2, 1, 1)-Labeling is NP-complete for trees
(in this variant of the problem some vertices have preassigned labels). He
also proved [16] that L(p1, 1, 1)-Labeling is NP-complete for trees if p1 is
part of the input. Calamoneri et al. [3] presented lower and upper bounds
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on the minimum span λp,1,1(G) for an outerplanar graph G in terms of the
maximum vertex degree of G. They also gave a linear-time approximation
algorithm for obtaining the minimum span λp,1,1 for outerplanar graphs.
Zhou [34] presented lower and upper bounds on the minimum span of an
L(p1, p2, p3)-labeling of a hypercube Qd extending the work of Kim, Du
and Pardolos [25] and Ngo, Du and Graham [30] on L(1, · · · , 1)-labelings
of hypercubes for the case k = 3, whereas Österg̊ard[31] determined that
λ1,1,1(Qd)

d converges to 2. Recently, King, Ras and Zhou [26] gave lower and
upper bounds on the minimum span of an L(p, 1, 1)-labeling of a tree.

For the cyclic metric, Fiala and Kratochv́ıl [12] showed that C(2, 1)-
Labeling is NP-complete already for fixed span λ ≥ 6. Similarly to
the linear metric, Fiala, Golovach and Kratochv́ıl [8] showed that C(2, 1)-
Labeling is already NP-complete for the class of graphs with treewidth 2.
On the positive side, Liu and Zhu [29] presented a closed formula for the
minimum span of a C(p1, p2)-labeling of a tree. Somewhat surprisingly the
span only depends on the maximum vertex degree in the tree. This imme-
diately implies that C(p1, p2)-Labeling can be solved in polynomial time
for trees, even if p1 and p2 (and λ) are part of the input.

Our Results. In the first part of our paper we show NP-hardness of the
following two problems:

• the L(2, 1, 1)-Labeling problem for general graphs for any fixed λ ≥ 5
(in Section 3).

• the L(2, 1, 1)-Labeling problem for trees if λ is a part of the input
(in Section 4).

The remaining cases, i.e., of λ ≤ 4 for general graphs and of fixed λ for trees,
are shown to be polynomial-time solvable. The latter case can be extended
to general distance constraints p1, . . . , pk.

In the second part (Section 5) we prove an upper bound on the mini-
mum span cp1,p2,p3(T ), which is also an upper bound on the minimum span
λp1,p2,p3(T ), for a tree T . Because we give an upper bound that is valid for
the cyclic metric, the upper bound on λp,1,1(T ) of King, Ras, and Zhou [26]
is a better bound on λp,1,1(T ) than ours (after substituting p2 = p3 = 1).
Nevertheless, the bounds in our WG 2004 paper and their 2010 paper coin-
cide for (p1, p2, p3) = (2, 1, 1).

The proof of our upper bound on λp1,p2,p3 and cp1,p2,p3 for trees is con-
structive; just as the proof of King, Ras and Zhou [26] for their upper bound
on λ2,1,1 for trees, it yields a polynomial-time algorithm for constructing a
labeling that meets the upper bound. Both their and our obtained label-
ings have the extra property that an interval can be assigned to each vertex
containing all the labels of its neighbors, such that the distance constraint
p3 can be replaced by a corresponding distance constraint on the inter-
vals associated to two adjacent vertices. We call such labelings elegant and
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show how to find optimal elegant L(p, 1, 1)-labelings and optimal elegant
C(p, 1, 1)-labelings of trees in polynomial time for any p ≥ 1.

For the case (p1, p2, p3) = (2, 1, 1) the existence of the above algorithms
means that λ2,1,1(T ) and c2,1,1(T ) can be approximated in polynomial time
within additive factor 1 by determining an optimal elegant L(2, 1, 1)-labeling
or C(2, 1, 1)-labeling, respectively. We observe that for the linear metric
this is in contrast with the aforementioned NP-hardness of finding optimal
(but not necessarily elegant) L(2, 1, 1)-labelings of trees, even though the
difference between the two spans is at most one.

In Question 10b of their paper, King, Ras and Zhou ask whether there
exists a characterization of trees with λ2,1,1 equal to the sum of the maxi-
mum total degree of two adjacent vertices. The +1 approximation algorithm
for computing λ2,1,1 and the NP-hardness of L(2, 1, 1)-Labeling for trees
imply that the existence of a good (i.e., polynomial-time verifiable) char-
acterization of such trees does not exist (unless P=NP). Our NP-hardness
result also provides a negative answer (unless P=NP) to Question 12 of their
paper, in which they ask if L(2, 1, 1)-Labeling can be solved in polynomial
time for trees.

2 Preliminaries

All graphs considered in this paper are simple, i.e., without loops and mul-
tiple edges. Let G be a graph. The vertex set of G is denoted by V (G) and
its edge set is denoted by E(G). For a vertex v, NG(v) = {uv | u ∈ V (G)} is
the (open) neighborhood of G, and degG(v) = |NG(v)| denotes the degree of
vertex v ∈ V (G). We may omit subscripts if the graph under consideration
is clear from the context.

The length of a cycle or a path is its number of edges. A connected
graph without a cycle as a subgraph is called a tree, its vertices of degree
one are called the leaves, and the other vertices are called the inner vertices.
A star is a tree on at least two vertices that has at most one inner vertex,
which is called the center. We denote the star on k + 1 vertices by K1,k for
k ≥ 1. A double star is a tree with exactly two inner vertices. A complete
graph is a graph with an edge between every pair of vertices. We denote
the complete graph on k vertices by Kk for k ≥ 1. The vertex set of a
complete graph is called a clique. The symbol ω(G) denotes the number of
vertices of a largest clique in a graph G. The k-th distance power Gk of a
graph G is the graph on the same vertex set V (Gk) = V (G) where edges
of Gk connect distinct vertices that are at distance at most k in G, i.e.,
E(Gk) = {uv : u, v ∈ V (Gk), 1 ≤ distG(u, v) ≤ k}.

A tree decomposition of a graph G = (V,E) is a pair (X, T ) where
X = {X1, . . . , Xr} is a collection of bags (sets of vertices) and T is a tree
with vertex set X such that the following three properties hold. First,
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⋃r
i=1Xi = V . Second, for each uv ∈ E, there exists a bag Xi such

that {u, v} ⊆ Xi. Third, if v ∈ Xi and v ∈ Xj then v is in every bag
on the (unique) path in T between Xi and Xj . The width of (X, T ) is
max1≤i≤r |Xi| − 1 and the treewidth of G is the minimum width over all
possible tree decompositions of G.

For nonnegative integers i ≤ j, we define the (discrete) interval [i, j] =
{i, i+1, . . . , j}. Let µ be a positive integer. For integers i, j ∈ {0, . . . , µ}, we
define the interval modulo µ+1 denoted by [i, j]µ+1 as [i, j]µ+1 = {i, i+1, i+
2, . . . , j} if i ≤ j, and [i, j]µ+1 = {i, . . . , µ, 0, . . . , j} if i > j. For any pair
of integers i and j, we define [i, j]µ+1 = [i mod (µ + 1), j mod (µ + 1)]µ+1.
Here x mod (µ+ 1) = y ∈ [0, µ] such that µ+ 1 divides x− y. By [i, j]≡2 we
denote the set of all even integers in the interval [i, j].

Let G be a graph. Then the vertices of every clique in Gk must get labels
pairwise at least pk apart in any L(p1, . . . , pk)-labeling of G. Furthermore,
a coloring of Gk can be transformed to an L(p1, . . . , pk)-labeling by using
labels that form an arithmetic progression of difference p1 as labels. Hence,
we can make the following observation.

Observation 1. For any p1 ≥ p2 ≥ · · · ≥ pk ≥ 1 and any graph G it holds
that pk(ω(Gk)− 1) ≤ λp1,...,pk(G) ≤ p1(χ(Gk)− 1).

3 Complexity of L(2, 1, 1)-Labeling with fixed span

Note that for fixed λ, we can describe the L(p1, . . . , pk)-Labeling prob-
lem in Monadic Second-Order Logic. Then by the well-known theorem of
Courcelle [6] we immediately have the following claim.

Proposition 1. For any p1 ≥ . . . ≥ pk ≥ 1 and any fixed λ, the
L(p1, . . . , pk)-Labeling problem can be solved in linear time for graphs of
bounded treewidth.

For general graphs the situation is different. To show this we present
a complete computational complexity characterization of the L(2, 1, 1)-
Labeling problem for general graphs for fixed values of the parameter λ.

Theorem 1. The L(2, 1, 1)-Labeling problem is NP-complete for every
fixed λ ≥ 5 and it is solvable in linear time for all λ ≤ 4.

Proof. We start with the second part of the theorem and prove that the
labeling problem is tractable for λ ≤ 4. Let G be a graph. We may as-
sume that G is connected, as otherwise we consider each component of G
separately.

We first observe that G allows an L(2, 1, 1)-labeling of span at most 3 if
and only if G is a path on at most four vertices. (The labels along the path
P4 are 1, 3, 0, 2.) Hence, we are left to consider the case λ = 4.
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F1 F2 F3 F4 F5 F6

F9F8F7

Figure 1: The graphs F1, . . . , F9 with λ2,1,1(Fi) > 4 for i = 1, . . . , 9.

We claim that none of the graphs Fi (1 ≤ i ≤ 9) depicted in Figure 1
allows an L(2, 1, 1)-labeling of span 4 — this can be verified by a straight-
forward case analysis. This means that our input graph G has no L(2, 1, 1)-
labeling of span 4 if it contains one of these nine graphs as a subgraph. We
test this as follows. First, we check in linear time if G has maximum degree
3. If not, then G contains F1 as a subgraph. In the other case, i.e., if G
has maximum degree 3, we can check in linear time if G contains a graph
Fi (2 ≤ i ≤ 9) as a subgraph. In any such case we output No.

From now on, assume that G contains no graph Fi (1 ≤ i ≤ 9) as a
subgraph. Assume first that G contains a cycle of length at least four, and
let us fix a longest one. Observe that every edge of G is incident with a
vertex of this cycle — otherwise we would get F5 or F9.

If two vertices of the cycle that share no common neighbor along the
cycle were connected by an edge, a so-called shortcut, then we would get F2.
Hence all shortcuts produce triangles. These triangles must be edge-disjoint
as otherwise we would get F4.

Finally, if a vertex outside the cycle were adjacent to two vertices of
the cycle then either the cycle could be extended (if the two neighbors were
adjacent) or we would get F7 or F8 (if they shared another common neighbor)
or get F3 (if they were farther apart). Hence, any vertex outside the cycle is
a leaf. Moreover vertices of the cycle that are adjacent to the leaves must be
pairwise at distance at least three (due to F2 and F3) as well as they should
belong neither to a triangle nor to the neighborhood of one (this would yield
F2 or F6).

Some specific cases are also excluded if the longest cycle is of length four,
namely the forbidden graphs F4, F7 and F8.

By analogous arguments we get that if G has no cycle of length at least
four, then it is formed from a longest path with possibly some shortcuts
forming triangles and/or possibly some pendant leaves, whereas these trian-
gles and leaves are sufficiently separated as in the previous case.

It is not difficult to show that in both cases G has treewidth at most 3,
and hence the existence of an L(2, 1, 1)-labeling of span 4 can be tested in
linear time by Proposition 1.
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Eλ−4

Kp

... ...

u1 u2

λ odd

w1

w′1 w′2

w2

...

...

...

... Mp−1

Kp

v1 v2

w′′1 w′′2

... ... Kp

v1 v2

...
...

Ep−2

λ even

w1 w2

u2r1 r2u1

Figure 2: Variable gadgets.

To prove NP-hardness for λ ≥ 5, we reduce from the Monotone Not-
All-Equal p-Satisfiability problem for p = dλ2 e. An instance of Mono-
tone Not-All-Equal p-Satisfiability is a formula Φ in the conjunctive
normal form with p positive literals in each clause, i.e., no negations are al-
lowed. The question is whether Φ has a truth assignment such that each
clause contains at least one positively valued literal and at least one nega-
tively valued literal. Schäfer [32] showed that Monotone Not-All-Equal
3-Satisfiability is NP-complete. This also holds for any fixed p ≥ 4, the
proof of which is straightforward and folklore.

Let Φ be a formula that is an instance of the Monotone Not-All-
Equal dλ2 e-Satisfiability problem. Note that p = dλ2 e. For each variable
xi we construct a gadget consisting of a chain of copies of the graph depicted
in Fig 2. The length of the chain corresponding to the variable xi is the
number of occurrences of xi in Φ. The symbols En andMn in Figure 2 denote
an independent set of n vertices, and a matching on n edges, respectively;
recall that Kn denotes a complete graph on n vertices.

We argue that any L(2, 1, 1)-labeling of span λ of the constructed variable
gadget satisfies:

• All vertices ui are labeled by the same label, either by 0 or by λ.

• If ui is labeled by λ, then the vertex vi is given a label from the set
L = [0, λ− 4 + (λ mod 2)]≡2, and analogously

• if ui is labeled by 0, then the label of vi belongs to L = {λ− l : l ∈ L}.

In both cases, vertices ui are of degree λ−1, hence it would be impossible
to give these vertices labels different from 0 or λ. If ui is given λ, then the
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label λ−1 must be used on the vertices wi−1 and wi+1, hence ui−1 and ui+1

must be also given label λ. As a mirror argument holds for the label 0, the
first claim follows.

For the case of and odd λ, observe that the subgraph consisting of the
two complete subgraphs Kp contains exactly λ+1 vertices and is of diameter
three. Hence all labels from [0, λ] must be used, each on exactly one vertex
of this subgraph. In particular, one Kp will only host even labels, while the
other one hosts all odd labels.

If ui is labeled by λ, then w′i is labeled by λ− 1 by the same argument
as for wi. Then the upper Kp uses even labels, the bottom all odd labels,
and only the label λ− 1 remains for w′′i .

As the vertex vi is at distance at most three from all vertices from the
bottom Kp, it may only be labeled by a label from the set L = [0, λ− 3]≡2,
as claimed above.

When λ is even then ui together with Kp forms a clique on p+1 vertices,
hence all even labels, i.e., the set [0, λ]≡2, are used to label this subgraph.
If a vertex ui is labeled by λ, then its remaining neighbors are given odd
labels from the set [1, λ−3]. (Recall that wi is labeled by λ−1 in this case.)
In particular, the same label is used for all copies of ri and the remaining
labels in [1, λ− 3] for all copies of Ep−2. Hence, all possible labels of vi fall
in the set [0, λ− 4]≡2, as claimed.

In both cases when ui is labeled by 0 the claim is obtained by the sym-
metry of the labeling.

We finalize the construction of the graph G by joining variable gadgets
through clause vertices as follows. For each clause C of the formula Φ we
insert an extra new vertex zC . For each variable x that appears in C we
link zC by an edge with a unique vertex vi of the variable gadget associated
with x. Hence, each clause vertex is of degree p.

The properties of the variable gadgets assure that G allows an L(2, 1, 1)-
labeling of span λ if and only if Φ has a required assignment. These labelings
are related to assignments e.g. by letting x = true whenever the vertices ui
of the gadget for x are all labeled by λ, and x = false if ui gets 0.

Observe that for any clause vertex zC it holds that deg(zC) = p >
|L| = |L|. Hence labels both from L \ L and from L \ L must be present in
the neighborhood of zC . Consequently, these labelings indicate only valid
assignments, i.e., at least one of the adjoining gadgets represents a positively
valued variable and at least one stands for a negatively valued one.

In the opposite direction, each assignment for Φ can be converted into
an L(2, 1, 1)-labeling of G in a straightforward way (by using labelings of
the gadgets with properties discussed above).

Observe in particular that in the case of even λ, each vertex wC together
with its p neighbors will require p+ 1 even labels, which is just the number
of even labels in the interval [0, λ].

9



u v w

T1

u v w

T2

u

x1

x2

v1
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w2
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Figure 3: Gadgets T1, T2 and T3 for λ = 14.

4 NP-completeness of L(2, 1, 1)-Labeling for trees

By Proposition 1, the L(2, 1, 1)-Labeling problem can be solved in poly-
nomial time for trees if the span λ is fixed, i.e., not part of the input. If λ
is considered to be part of the input, then the problem is difficult.

Theorem 2. The L(2, 1, 1)-Labeling problem is NP-complete for the class
of trees.

The remaining part of this section contains the proof of this theorem.

4.1 Auxiliary constructions

We first construct gadgets where some vertices are forced predetermined
labels in an arbitrary L(2, 1, 1)-labeling. A set of integers S ⊆ [0, λ] is called
symmetric if for each i ∈ S, λ − i ∈ S. Note that for any L(p1, . . . , pk)-
labeling l of a graph G of span λ, the mapping l : V (G) → [0, λ], such that
l(v) = λ− l(v) for v ∈ V (G), is an L(p1, . . . , pk)-labeling of G of span λ too.
Hence our gadgets force symmetric sets of labels.

From now on we assume that λ is an even positive integer and that
λ ≥ 16.

We consider a star K1,λ−1 with the center u. Then a new vertex w is
added and joined by an edge with a leaf v of the star. Denote the obtained
tree by T1. We say that w is the root of T1. An example of T1 is shown in
Figure 6. We need the following properties of T1.

Lemma 1. For any L(2, 1, 1)-labeling of T1 with span λ,
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• the vertex u is labeled by an integer from the set {0, λ};

• if u is labeled by 0 then the root w is labeled by 1 and if u is labeled by
λ then w is labeled by λ− 1.

For any i ∈ {1, λ − 1} and any integer j ∈ [3, λ − 3], there is an L(2, 1, 1)-
labeling l of T1 with span λ such that l(w) = i, l(v) = j.

Proof. Since all vertices of NT1(u) should be labeled by different labels which
are 2-distant from the label of u and since degT1(u) = λ−1, for any L(2, 1, 1)-
labeling of T1 with span λ, the vertex u can only be labeled either by 0 or
λ. Assume that u is labeled by 0. Then vertices of NT1(u) are labeled by
all integers from [2, λ]. Hence, w should be labeled by 1. Symmetrically, if
u is labeled by λ, then w is labeled by λ− 1.

The second claim of the lemma can be verified directly.

The next gadget is denoted by T2 and is constructed as follows (see
Figure 3). We introduce a star K1,λ−3 with center u and add a copy of T1
rooted in u. Then a new vertex w is added and joined by an edge with a leaf
v of the tree adjacent to u. The vertex w is the root of T2. The properties
of T2 are given in the following lemma.

Lemma 2. For any L(2, 1, 1)-labeling of T2 with span λ,

• the vertex u is labeled by an integer from the set {1, λ− 1};

• if u is labeled by 1 then the root w is labeled by an integer from {0, 2},
and if u is labeled by λ− 1 then w is labeled by a label from {λ− 2, λ}.

For any i ∈ {0, 2, λ−2, λ} and any integer j ∈ [5, λ−5], there is an L(2, 1, 1)-
labeling l of T2 with span λ such that l(w) = i, l(v) = j.

Proof. By Lemma 1 the vertex u is labeled either by 1 or λ − 1. Assume
that u is labeled by 1. Since degT1(u) = λ− 2, for any L(2, 1, 1)-labeling of
T2 with span λ, the vertices NT2(u) are labeled by all integers from [3, λ].
Therefore, w should be labeled by 0 or 2. Symmetrically, if u is labeled by
λ− 1, then w is labeled by λ− 2 or λ.

The second claim of the lemma can be verified directly.

Now we construct the gadget T3 (see Figure 3). We consider a starK1,λ−2
with center u. Then two copies of T1 rooted in two different leaves x1, x2
of the star are added. Finally we add two vertices w1, w2 and join them by
edges with two different leaves (v1 and v2 respectively) of the constructed
tree adjacent to u. We call w1 and w2 the roots of T3. The properties of T3
are summarized in the next lemma.

Lemma 3. For any L(2, 1, 1)-labeling of T3 with span λ,

11



• the vertex u is labeled by an integer from [3, λ− 3];

• if u is labeled by i, then w1, w2 are labeled by labels from {i− 1, i+ 1}.

For any integer i ∈ [3, λ− 3], any pair of integers j1, j2 ∈ {i− 1, i+ 1} and
any pair of different integers r1, r2 ∈ [i+3, λ− (i+3)], there is an L(2, 1, 1)-
labeling l of T3 with span λ such that l(u) = i, l(w1) = j1, l(w2) = j2,
l(v1) = r1 and l(v2) = r2.

Proof. By Lemma 1, the vertices x1 and x2 can be labeled either 1 or λ− 1.
Since they must have different labels, one of them is labeled by 1 and the
other one is labeled by λ − 1. Hence, u can only be labeled by an integer
from i ∈ [3, λ−3]. Assume that u is labeled by i. For any L(2, 1, 1)-labeling
of T3 with span λ, the vertices in NT3(u) are labeled by all integers from
[0, λ] \ [i − 1, i + 1]. Therefore, w1 and w2 can only be labeled by integers
from {i− 1, i+ 1}

As before, the second claim of the lemma can be verified directly. Note
that neighbors of x1 and x2 different from u can always be labeled by i− 1
and i+ 1.

For our gadgets constructed below we assume that k is a positive integer
and 2 ≤ k ≤ λ/4− 2; the latter is a valid assumption because λ ≥ 16 holds.

We construct a rooted tree T (k) such that the root can only be labeled
by integers from [2, 2k]≡2 ∪ [λ − 2k, λ − 2]≡2. To do it we introduce k − 1

copies of trees T3. For i ∈ {1, . . . , k − 1}, denote by u(i), v
(i)
1 , v

(i)
2 , w

(i)
1 , w

(i)
2

the vertices u, v1, v2, w1, w2 of the i-th copy of T3. Then vertices w
(i−1)
2 and

w
(i)
1 are identified for i ∈ {2, . . . , k − 1}. Finally, a copy of T2 rooted in

w
(1)
1 is added. Let u(0) and v(0) be the vertices u and v of T2, respectively.

The vertex w
(k−1)
2 is the root of T (k). The construction of T (k) is shown in

Figure 4.

Lemma 4. For any L(2, 1, 1)-labeling of T (k) with span λ,

• the root w
(k−1)
2 is labeled by an integer from [2, 2k]≡2∪ [λ−2k, λ−2]≡2;

• if w
(k−1)
2 is labeled by i, then u(k−1) is labeled either i − 1 or i + 1 if

i < 2k and u(k−1) is labeled by i− 1 if i = 2k.

For any integer i ∈ [2, 2k]≡2 ∪ [λ − 2k, λ − 2]≡2 and any integer r ∈ [2k +
2, λ− (2k+ 2)] there is an L(2, 1, 1)-labeling l of T (k) with span λ such that

l(w
(k−1)
2 ) = i and l(v

(k−1)
2 ) = r.

Proof. Note that by Lemma 2 the vertex w
(1)
1 is labeled by an integer from

the set {0, 2, λ − 2, λ}. Since by Lemma 3 it cannot be labeled by 0 or λ,
this vertex is labeled either by 2 or λ− 2. Then the first claim of the lemma

is proved by inductive applications of Lemma 3. We use the fact that if w
(j)
1

12



w
(1)
1

v
(1)
1

u(1)

v
(1)
2

w
(1)
2 = w

(2)
1

v
(2)
1

u(2)

v
(2)
2

w
(2)
2 = w

(3)
1

v(0)

u(0)

w
(k−2)
2 = w

(k−1)
1

v
(k−1)
1

u(k−1)

v
(k−1)
2

w
(k−1)
2

T3 T3 T3T2

· · ·

T (k)

Figure 4: Gadget T (k).

is labeled by i then u(j) is labeled by i− 1 or i+ 1 and w
(j)
2 is labeled by an

integer from {i− 2, i, i+ 2}.
The second claim immediately follows from Lemmas 2 and 3. It is suffi-

cient to note that for j ∈ {1, . . . , k − 1}, vertex v
(j)
1 can be labeled by r + 1

or r − 1, whereas v
(j)
2 and v(0) can be labeled by r.

Using gadgets T (k) it is possible to construct a rooted tree F (k) (see
Figure 5) such that the root can only be labeled by an integer 2k or λ− 2k.
We construct a star K1,2k+1 with the center v and leaves w0, . . . , w2k. Then
four copies of T2 rooted in w1, w2, w3 and w4 respectively are introduced,
and for each i ∈ {2, . . . , k−1}, two copies of T (i) rooted in w2i+1 and w2i+2

are added. Finally, a copy of T (k) rooted in w0 is constructed. The vertex
w0 is declared the root of F (k).

Lemma 5. For any L(2, 1, 1)-labeling of F (k) with span λ,

• the root w0 is labeled either by 2k or λ− 2k;

• the vertices at distance two from the root are labeled by all integers
from [0, 2k − 2]≡2 ∪ [λ − (2k − 2), λ]≡2 and one vertex is labeled by
2k − 1 or λ− (2k − 1).

For any pair of different integers r1, r2 ∈ [2k + 2, λ − (2k + 2)] there is an
L(2, 1, 1)-labeling l of F (k) with span λ such that the vertices adjacent to the
root are labeled by r1 and r2.

Proof. By Lemma 2 vertices w1, w2, w3, w4 have to be labeled by 0, 2, λ −
2, λ. By inductive application of Lemma 4 and the fact that all labels of
w5, . . . , w2k have to be different, we conclude that w5, . . . , w2k are labeled
by all even integers from [4, 2k − 2]≡2 ∪ [λ− (2k − 2), λ− 4]≡2. Then again

13



w0 v

w1 w2 w3 w4

w2k w2k−1 w6 w5

T (k)

T2 T2 T2 T2

· · ·

T (k − 1) T (2)

F (k)

v0 u

v1 v2 v3 v4

v2s+4 v2s+3 v6 v5

T (k)

T2 T2 T2 T2

· · ·

F (ps/2) F (p1/2)

R(S)

Figure 5: Gadgets F (k) and R(S).

by Lemma 4 the vertex w0 is labeled either by 2k or λ− 2k and the vertex
at distance two from w0 in the copy of T (k) is labeled either by 2k − 1 or
λ− (2k − 1).

The second claim follows from Lemmas 2 and 4, since v can be labeled by
r1 and the other vertices adjacent to w0, . . . , w2k can be labeled by r2.

We proceed by constructing a rooted tree R(S) such that the root can
only be labeled by integers from the set of labels S (see Figure 5). Let
S ⊂ [4, 2k]≡2 ∪ [λ− 2k, λ− 4]≡2 be a symmetric set of even integers. Denote
by X the set of all integers from [4, 2k]≡2 \ S, and let X = {p1, . . . , ps}. We
construct a star K1,2s+5 with the center u and leaves v0, . . . , v2s+4. Then
four copies of T2 rooted in v1, v2, v3, v4, respectively, are introduced, and
for each i ∈ {1, . . . , s}, two copies of F (pi/2) rooted in v2i+3 and v2i+4 are
added. Finally, a copy of T (k) rooted in v0 is constructed. The vertex v0 is
declared the root of R(S).

Lemma 6. For any L(2, 1, 1)-labeling of R(S) with span λ,

• the root v0 is labeled by an integer from S;

• the vertices at distance two from the root are labeled by integers from
[0, 2k] ∪ [λ− 2k, λ].

For any integer t ∈ S and any pair of different integers r1, r2 ∈ [2k + 2, λ−
(2k + 2)] there is an L(2, 1, 1)-labeling l of R(S) with span λ such l(v0) = t
and the vertices adjacent to the root are labeled by r1 and r2.

14



Proof. By Lemma 2, vertices v1, v2, v3, v4 have to be labeled by 0, 2, λ −
2, λ. By Lemma 5, vertices v5, . . . , v2p+4 are labeled by all integers from
[4, 2k]≡2 ∪ [λ − 2k, λ − 4]≡2 \ S. By Lemma 4, vertex v0 is labeled by an
even integer from [4, 2k]≡2∪ [λ− 2k, λ− 4], and this vertex is 2-distant from
the vertices v1, . . . , v2p+4. Therefore it can only be labeled by integers from
S. The fact that the vertices at distance two from the root are labeled by
integers from [0, 2k]∪ [λ− 2k, λ] immediately follows from Lemmas 2, 3 and
5.

To prove the second claim, let us note that by Lemmas 2 and 5 there
are labelings of all copies of T2 and F (pi/2) such that the vertices adjacent
to the roots of these trees are labeled by r1. Using Lemma 4 we observe
that there is a labeling of T (k), such that the root is labeled by t and the
vertex adjacent to the root is labeled by r1. It remains to label u by r2 to
receive the L(2, 1, 1)-labeling of R(S) from these labelings of these auxiliary
gadgets.

We conclude this part of the proof by the following easy observation.

Lemma 7. The tree R(S) has O(λ4) vertices.

4.2 Polynomial reduction

We proceed with reduction of the well-known NP-complete 3-Satisfiability
problem [14, problem L02, page 259] to our L(2, 1, 1)-Labeling problem for
trees.

Let Φ be a boolean formula in conjunctive normal form with variables
x1, x2, . . . , xn and clauses C1, C2, . . . , Cm. Each clause consists of three lit-
erals. We choose λ = 8n+m+ 9 if m is odd and λ = 8n+m+ 10 otherwise.

For each variable xi we define the set of integers Xi = {4i, 4i + 2, λ −
(4i + 2), λ − 4i} and construct three copies of trees R(Xi) with roots x

(1)
i ,

x
(2)
i and x

(3)
i . For each clause Cj we define the set of six integers Yj as

follows. For each literal z in Cj , integers 4i, λ − 4i are included in Yj if
z = xi and integers 4i+ 2, λ− (4i+ 2) are included in Yj if z is a negation
of the variable xi for some i ∈ {1, . . . , n}. Then a copy of R(Yj) with a root
yj is constructed. Finally, we add a vertex u and join it with all vertices

x
(1)
i , x

(2)
i , x

(3)
i by edges and with all vertices yj by paths of length two with

middle vertices v1, . . . , vm. Denote the obtained tree by T (see Figure 6).

Lemma 8. The tree T has an L(2, 1, 1)-labeling of span λ if and only if the
formula Φ can be satisfied.

Proof. Suppose that there is an L(2, 1, 1)-labeling of T with span λ. By

Lemma 6 for each i ∈ {1, . . . , n}, vertices x
(1)
i , x

(2)
i , x

(3)
i are labeled by in-

tegers from Xi. Since these vertices are 2-distant in T , the labels have to
be different. Hence exactly one label from Xi is not used for the labeling
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...
...

Figure 6: The tree T .

of x
(1)
i , x

(2)
i , x

(3)
i . Denote this label by pi. If pi = 4i or pi = λ − 4i then

we assume that xi = true and xi = false otherwise. We prove that these
values give a truth assignment which satisfies Φ. By Lemma 6 the vertex
yj is labeled by an integer from the Yj . Assume that yj is labeled by 4i or
λ− 4i for some i ∈ {1, . . . , n}. This label should be different from the labels

of vertices x
(1)
i , x

(2)
i , x

(3)
i . Therefore Cj contains the literal xi and xi = true.

Similarly, if yj is labeled by 4i + 2 or λ − (4i + 2) for some i ∈ {1, . . . , n},
then this label is not used for the labeling of x

(1)
i , x

(2)
i , x

(3)
i , i.e., Cj contains

the literal xi and xi = false.
Assume now that the formula Φ has a satisfying truth assignment and

variables x1, . . . , xn have corresponding values. Note that sets X1, . . . , Xn do

not intersect. We label x
(2)
i by λ−(4i+2) and x

(3)
i by λ−4i for i ∈ {1, . . . , n}.

The vertex x
(1)
i is labeled by 4i+ 2 if xi = true, and x

(1)
i is labeled by 4i if

xi = false. Each clause Cj contains a literal z = true. If z = xi for some
i ∈ {1, . . . , n} then Yj contains the integer 4i and this label was not used

for the labeling of x
(1)
i , x

(2)
i , x

(3)
i . We use 4i to label yj . Similarly, if z = xi

for some i ∈ {1, . . . , n} then Yj contains the integer 4i + 2 and since this

label was not used for the labeling of x
(1)
i , x

(2)
i , x

(3)
i , we label yj by 4i + 2.

By lemma 6 these labeling of roots of trees R(S) can be extended to the
labelings of all vertices of these trees such that the vertices at distance two
from the root are labeled by integers from [0, 4n+ 2] ∪ [λ− (4n+ 2), λ] and
the vertices adjacent to the roots are labeled by 4n + 4 and 4n + 6. We
extend this labeling to the L(2, 1, 1)-labeling of T by labeling u by 4n + 5
and v1, . . . , vm by 4n+ 7, . . . , 4n+m+ 6.

To conclude the proof of Theorem 2 it remains to note that it follows
from Lemma 7 that T has O((n+m)5) vertices.
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Figure 7: An example of a tree T with c2,2,1(T ) = 9 < 10 = c∗2,2,1(T ).

5 Elegant labelings

Let f be an L(p1, . . . , pk)-labeling or a C(p1, . . . , pk)-labeling of a graph G
with span λ. Then f is called elegant if for every vertex u, there exists an
interval Iu modulo λ+ 1 or modulo λ, respectively, such that f(N(u)) ⊆ Iu
and for every edge uv ∈ E(G), Iu ∩ Iv = ∅.

Observe that only triangle-free graphs may admit elegant labelings. On
the other hand, it is not hard to deduce that every tree allows an elegant
labeling for an arbitrary collection of distance constraints. An example of a
C(2, 2, 1)-labeling and of an elegant C(2, 2, 1)-labeling of a tree T is depicted
in Figure 7. We note that the C(2, 2, 1)-labeling in this figure has minimum
span. This can be seen as follows. Because the maximum distance in T
is at most three, every vertex of T must receive a different label. We may
without loss of generality assume that the right inner vertex of T gets label
0. Then the remaining five vertices must get label at least 2. However, if
labels 2, . . . , 6 are used, then the label of the left inner vertex of T is of
distance one to a label of some other vertex. This means that a label ` ≥ 7
must be used. Hence, the C(2, 2, 1)-labeling in Figure 7 has minimum span
c2,2,1(T ). Note that the span of this labeling is c2,2,1(T ) = 9; otherwise label
0 of the right inner vertex is of distance one to the vertex with label 7.

The minimum λ for which a graph G allows an elegant L(p1, . . . , pk)-
labeling, and C(p1, . . . , pk)-labeling respectively, of span λ is denoted by
λ∗p1,...,pk(G) and c∗p1,...,pk(G), respectively (these parameters are set to +∞ if
no elegant labeling exists). The elegant C(2, 2, 1)-labeling in Figure 7 has
span equal to 10 = c∗2,2,1(T ). The latter equality follows from Proposition 4.

We observe that every C(p1, . . . , pk)-labeling with span λ + 1 is an
L(p1, . . . , pk)-labeling with span λ and that every elegant labeling is a valid
labeling. This leads to the following inequalities.

Proposition 2. For any p1 ≥ · · · ≥ pk ≥ 1 and any graph G it holds that

λp1,...,pk(G) + 1 ≤ cp1,...,pk(G) ≤ c∗p1,...,pk(G),

λp1,...,pk(G) + 1 ≤ λ∗p1,...,pk(G) + 1 ≤ c∗p1,...,pk(G).

Elegant labels are useful already for distance constraints p1, p2, p3, be-
cause we only need to maintain a separation of distance p3 between the
intervals associated to adjacent vertices instead of checking every pair of
vertices at distance three. We explain this in detail in Section 5.1.
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5.1 An upper bound for elegant C(p1,p2,p3)-labelings of trees

We present an upper bound on the minimum span of an elegant C(p1, p2, p3)-
labeling of a tree. We first present closed formulas for stars and double stars.
In the proof of Proposition 3, we show that every L(p1, . . . , pk)-labeling and
every C(p1, . . . , pk)-labeling of a star is elegant. However, for double stars
this is already not true anymore, as can be seen from Figure 7.

Proposition 3. For any p1 ≥ · · · ≥ pk ≥ 1 and any n-vertex star T it holds
that

λp1,...,pk(T ) = λ∗p1,...,pk(T ) = p1 + (n− 2)p2,

cp1,...,pk(T ) = c∗p1,...,pk(T ) = 2p1 + (n− 2)p2.

Proof. Let T be a star on vertices u, v1, . . . , vn−1, where u is the center
vertex. We assign label 0 to u and label p1 +(i−1)p2 to each vi. This yields
λp1,...,pk(T ) = p1 + (n− 2)p2 and cp1,...,pk(T ) = 2p1 + (n− 2)p2.

We now show that every L(p1, . . . , pk)-labeling and every C(p1, . . . , pk)-
labeling of T is elegant. Let f be an L(p1, . . . , pk)-labeling or C(p1, . . . , pk)-
labeling with span λ. We define Iu = [f(u)+1, f(u)−1]λ+1 in the first case,
and Iu = [f(u) + 1, f(u) − 1]λ in the second case. For i = 1, . . . , n − 1, we
define Ivi = [f(u), f(u)]. This completes the proof of Proposition 3.

Proposition 4. For any p1 ≥ · · · ≥ pk ≥ 1 and any double star T with
inner vertices of degree d and d′, resp., with d ≤ d′ it holds that

λ∗p1,...,pk(T ) = (d+ d′ − 2)p2 + max{p1 − (d− 1)p2, p3},

c∗p1,...,pk(T ) = (d+d′−2)p2+max{p1−bd−12 cp2, p3}+max{p1−dd−12 ep2, p3}.

Proof. Let T be a double star with inner vertices u and u′ of degree d and
d′, respectively, such that d ≤ d′; see Figure 8a.

We start with the linear metric; this case is illustrated in Figure 8b. The
minimum length of a possible interval Iu is (d− 1)p2. Analogously, we have
that Iu′ is of length at least (d′ − 1)p2. In addition, every label of Iu should
be at least p3 apart from every label of Iu′ , because the diameter of T is
three. This means that λ ≥ (d+ d′ − 2)p2 + p3.

For any elegant L(p1, . . . , pk)-labeling of T with span λ, we also have
that λ ≥ p1 +(d′−1)p2 = (d+d′−2)p2 +p1− (d−1)p2, because the label of
u′ should be at least p1 apart from the interval Iu′ . Combining this bound
with the previous bound yields λ ≥ (d+ d′− 2)p2 + max{p1− (d− 1)p2, p3}.

An elegant L(p1, . . . , pk)-labeling f of T with span λ = (d+ d′ − 2)p2 +
max{p1− (d−1)p2, p3} can be obtained by using the arithmetic progression
0, p2, . . . , (d−1)p2 on N(u) with f(u′) = 0 and arithmetic progression r, r+
p2, . . . , r + (d′ − 1)p2 on N(u′) with f(u) = r + (d′ − 1)p2, where r =
(d − 1)p2 + max{p1 − (d − 1)p2, p3}. This proves the first statement of
Proposition 4.
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Figure 8: The double star T and the two associated metrics.

We illustrate the case of the cyclic metric in Figure 8c. Here, the lower
bound (d+ d′ − 2)p2 + 2p3 comes from the separation of Iu and Iu′ on both
sides. We also find that λ ≥ 2p1+(d′−1)p2 = (d+d′−2)p2+p1−bd−12 cp2+

p1 − dd−12 ep2, because the label of u′ should be at least p1 apart from both
ends of the cyclic interval Iu′ .

Suppose d is odd. Then the above two bounds combine into the value
specified in the second statement of Proposition 4; observe that both maxima
attain the same value, because bd−12 c = dd−12 e in this case.

Suppose d is even. The label of u′ divides the interval Iu into two parts.
Assume that one part contains t labels of vertices from N(u). Then the
other part contains d− t−1 of them (we do not count the label of u′ in none
of these two parts). This means that

λ ≥ max{p1, p3 + tp2}+ max{p1, p3 + (d− t− 1)p2}+ (d′ − 1)p2.

This expression is minimized when we choose t and d − t − 1 as close as
possible, i.e., when t = bd−12 c. By this choice we again get the bound given
in the second statement of Proposition 4.

To construct an optimal elegant C(p1, . . . , pk)-labeling f of T we use
analogous arithmetic progressions for f as in the case of linear metric. To
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be more precise, we define intervals Iu and Iu′ of length (d − 1)p2 and
(d′ − 1)p2, respectively, and we place the d labels of N(u) at distance p2
from each other in Iu, and the d′ labels of N(u′) at distance p2 from each
other in Iu′ . In this way, the distance constraint p2 is respected. Let the
labels of u1 and ud−1 be the two endpoints of Iu, and let the labels of u′1
and u′d′−1 be the two endpoints of Iu′ . Then we set

f(u1) = 0

f(u′) = dd−12 ep2
f(ud−1) = (d− 1)p2
f(u′1) = (d− 1)p2 + max{p1 − bd−12 cp2, p3}
f(u) = (d− 1)p2 + max{p1 − bd−12 cp2, p3}+ bd′−12 cp2
f(u′d′−1) = (d− 1)p2 + max{p1 − bd−12 cp2, p3}+ (d′ − 1)p2.

Recall that f has span (d+ d′ − 2)p2 + max{p1 − bd−12 cp2, p3}+ max{p1 −
dd−12 ep2, p3} in order to be an optimal elegant C(p1, . . . , pk)-labeling of T .
This means that we may write f(u1) = 0 = (d + d′ − 2)p2 + max{p1 −
bd−12 cp2, p3} + max{p1 − dd−12 ep2, p3}. In order to show that the distance
constraint p3 is respected, it suffices to consider the extreme cases, which
are as follows. First, the distance between f(u1) and f(u′d−1) is

(d+ d′ − 2)p2 + max{p1 − bd−12 cp2, p3}+ max{p1 − dd−12 ep2, p3}
−((d− 1)p2 + max{p1 − bd−12 cp2, p3}+ (d′ − 1)p2)

= max{p1 − dd−12 ep2, p3}
≥ p3.

Second, the distance between f(u′1) and f(ud−1) is (d − 1)p2 + max{p1 −
bd−12 cp2, p3} − (d− 1)p2 = max{p1 − bd−12 cp2, p3} ≥ p3.

We are left to show that the distance constraint p1 is respected. Again,
we only consider the extreme cases, which are four in total. First, the
distance between f(u1) and f(u) is

(d+ d′ − 2)p2 + max{p1 − bd−12 cp2, p3}+ max{p1 − dd−12 ep2, p3}
−((d− 1)p2 + max{p1 − bd−12 cp2, p3}+ b (d′−1)2 cp2)

= (d′ − 1)p2 + max{p1 − dd−12 ep2, p3} − b
(d′−1)

2 cp2
≥ p1 + (d′ − 1)p2 − dd−12 ep2 − b

(d′−1)
2 cp2

≥ p1,

where the last inequality follows from our assumption that d ≤ d′. Second,
the distance between f(u) and f(ud−1) is (d−1)p2+max{p1−bd−12 cp2, p3}+
bd′−12 cp2 − (d − 1)p2 ≥ p1 − bd−12 cp2 + bd′−12 cp2 ≥ p1. Third, the distance

between f(u′1) and f(u′) is (d− 1)p2 + max{p1 − bd−12 cp2, p3} − dd−12 ep2 ≥
p1 + (d − 1)p2 − bd−12 cp2 − dd−12 ep2 = p1. Fourth, we may write f(u′) =
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(d+ d′ − 2)p2 + max{p1 − bd−12 cp2, p3}+ max{p1 − dd−12 ep2, p3}+ dd−12 ep2.
We then find that the distance between f(u′) and f(u′d′−1) is

(d+ d′ − 2)p2 + max{p1 − bd−12 cp2, p3}+ max{p1 − dd−12 ep2, p3}
+dd−12 ep2 − ((d− 1)p2 + max{p1 − bd−12 cp2, p3}+ (d′ − 1)p2)

= max{p1 − dd−12 ep2, p3}+ dd−12 ep2
≥ p1.

This completes the proof of Proposition 4.

In Theorem 3, we consider trees that are not stars. We note that the
given upper bound holds for double stars and use Proposition 4 as the base
case in our induction proof. We also make the following observations. It
is well known (see [24, 28]) that every power T k of a tree T is a chordal
graph, and consequently, χ(T k) = ω(T k). This property enables us to com-
pare the general upper bound of Observation 1 with the upper bound in
Theorem 3. We note that the coefficient in the main term ω(T 3) = χ(T k)
becomes p2 instead of p1. Hence, the upper bound in Theorem 3 is an es-
sential improvement if p2 � p1 and ω(T 3) is sufficiently large. For the case
(p1, p2, p3) = (2, 1, 1) the upper bound become almost tight; we explain this
in Section 5.3. Finally, we note that King, Ras and Zhou [26] proved that
λ∗p,1,1(T ) ≤ ω(T 3) + p− 1 for any tree T that is neither a star nor a double
star. However, their bound is not valid for c∗p,1,1(T ).

Theorem 3. For any p1 ≥ p2 ≥ p3 ≥ 1 and any tree T different from a
star, it holds that c∗p1,p2,p3(T ) ≤ p2ω(T 3) + p1 − p2 + max{p1 − p2, p3} − 1.

Proof. Let T be a tree that is not a star.

Claim 1. T has an elegant labeling f such that for each inner vertex u,
f(N(u)) is an arithmetic progression (modulo λ) of length deg(u) and dif-
ference p2.

We prove Claim 1 by induction on the number i of inner vertices of T . Let
i = 2. Then T is a double star. Let d and d′ with d ≤ d′ denote the degrees
of the two inner vertices u and u′ of T , respectively. Because T is a double
star, ω(T 3) = d+ d′. Then, by Proposition 4 and the fact that p1 ≥ p3, we
obtain that

c∗p1,p2,p3(T )

= (d+ d′ − 2)p2 + max{p1 − bd−12 cp2, p3}+ max{p1 − dd−12 ep2, p3}
= p2ω(T 3)− p2 − p2 + max{p1 − bd−12 cp2, p3}+ max{p1 − dd−12 ep2, p3}
≤ p2ω(T 3)− p2 − 1 + p1 + max{p1 − p2, p3}.

Hence, Claim 1 holds for i = 2.
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Let i ≥ 3, so T has at least three inner vertices. The subtree induced
by the inner vertices of T is called the inner tree of T . Let u and v be two
adjacent inner vertices such that v is a leaf in the inner tree of T . Here, we
choose u and v such that the sum degT (u) + degT (v) is minimum over all
pairs of adjacent inner vertices with the property that one of the vertices is
a leaf of the inner tree of T .

Let T ′ be the tree obtained from T after removing all neighbors of v
except u. Note that these neighbors are all leaves of T . By definition of
T 3, every maximal clique in T is obtained by adding all possible edges in
the subgraph of T induced by two adjacent vertices and all their neighbors.
Let s and t be two adjacent vertices such that ω(T 3) = degT (s) + degT (t).
Because i ≥ 3, we may assume that s and t are inner vertices. Then, by
our choice of u and v, we find that v /∈ {s, t}. This means that degT ′(s) +
degT ′(t) = degT (s) + degT (t). Hence, ω((T ′)3) ≥ degT ′(s) + degT ′(t) =
degT (s) + degT (t) = ω(T 3). Because T ′ is a subgraph of T , we also have
ω((T ′)3) ≤ ω(T 3). We conclude that ω((T ′)3) = ω(T 3).

We apply the induction hypothesis and find that T ′ allows an elegant
labeling f ′ of span λ = ω((T ′)3)p2 + p1 − p2 + max{p1 − p2, p3} − 1 =
ω(T 3)p2 +p1−p2 +max{p1−p2, p3}−1 such that f ′(N(u)) is an arithmetic
progression (modulo λ) of length degT ′(u) = degT (u) and difference p2,
say the arithmetic progression on f ′(N(u)) is of the form a, a+ p2, . . . , a+
(degT (u)− 1)p2 (with elements taken modulo λ). Then the vertices of N(v)
should avoid interval I1 = [a − p3 + 1, a + (deg(u) − 1)p2 + p3 − 1]λ due
to the distance three constraint p3. Also, they should avoid interval I2 =
[f ′(v)− p1 + 1, f ′(v) + p1 − 1]λ due to the distance one constraint p1.

Because f ′(v) is of distance at least p3− 1 from the boundary of I1, and
of distance at least p1 − 1 from the boundary of I2, we find

|I1∩I2| ≥ p3+max{p1, (degT (u)−1)p2+p3}−1 ≥ p3+max{p1, p2+p3}−1.

Then I = [0, λ− 1] \ (I1 ∪ I2) is an interval of size

|I|
= λ− |I1| − |I2|+ |I1 ∩ I2|
≥ ω(T 3)p2 + p1 − p2 + max{p1 − p2, p3} − 1

−(a+ (degT (u)− 1)p2 + p3 − 1− a+ p3 − 1 + 1)

−(f ′(v) + p1 − 1− f ′(v) + p1 − 1 + 1) + p3 + max{p1, p2 + p3} − 1

= ω(T 3)p2 + p1 − p2 + max{p1 − p2, p3} − 1− ((degT (u)− 1)p2 + 2p3 − 1)

−(2p1 − 1) + p3 + max{p1, p2 + p3} − 1

= (ω(T 3)− degT (u))p2 + max{p1 − p2, p3} − p3 + max{p1, p2 + p3} − p1
≥ degT (v)p2.

Hence, I can accommodate an arithmetic progression A of length deg(v) and
difference p2 that contains f ′(u) as one of its elements. We extend f ′ into a
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labeling f of T by using the elements of A \ f ′(u) as the labels for the (leaf)
vertices adjacent to v in T . This concludes the proof of Theorem 3.

5.2 Optimal elegant L(p,1,1)- and C(p,1,1)-labelings of trees

The proof of Theorem 3 is constructive and can be straightforwardly con-
verted into a polynomial-time algorithm that finds a C(p1, p2, p3)-labeling
within the claimed upper bound. Here, we consider distance constraints
(p, 1, 1) with p ≥ 1. For these constraints we show a stronger result, namely
that λ∗p,1,1(T ) and c∗p,1,1(T ) can be computed in polynomial time for any
p ≥ 1. We use a dynamic programming approach, similarly to the approach
used in the algorithm that computes λ2,1(T ) (see [5, 13]).

Theorem 4. For any p ≥ 1 and any tree T , λ∗p,1,1(T ) and c∗p,1,1(T ) can be
computed in polynomial time.

Proof. Let T be an n-vertex tree and λ be a positive integer. We describe an
algorithm that decides whether c∗p,1,1(T ) ≤ λ. The algorithm for the linear
metric differs only in some minor details.

If T is a star or double star then we can apply Proposition 3 or Propo-
sition 4, respectively. Hence, we may assume that T is neither a star nor a
double star.

We may assume that λ ≤ n + 2p − 4. This can be seen as follows. By
Theorem 3, we know that T has an elegant C(p, 1, 1)-labeling with span λ if
λ ≥ ω(T 3) +p−2 + max{p−1, 1}. As mentioned at the start of Section 5.2,
we can construct such a labeling in polynomial time.

Suppose p = 1. Then, by Theorem 3, tree T has an elegant C(1, 1, 1)-
labeling with span λ if λ ≥ ω(T 3). Because T is not a double star, ω(T 3) ≤
n− 1. Hence, T has an elegant C(1, 1, 1)-labeling if λ ≥ n− 1 = n+ 2p− 3.

Suppose p ≥ 2. We apply Theorem 3 and use ω(T 3) ≤ n− 1 to find that
T has an elegant C(1, 1, 1)-labeling with span λ if λ ≥ n−1+p−2+p−1 =
n+ 2p− 4.

The distinction in the two cases above shows that from now on we may
assume that λ ≤ n+ 2p− 4.

We first choose a leaf r as the root of T , which defines the parent-child
relation between every pair of adjacent vertices. For any edge uv such that
u is a child of v, we denote by Tuv the subtree of T that is rooted in v and
that contains u and all descendants of u. For every such edge and for every
pair of integers i, j ∈ [0, λ− 1] and for every interval I modulo λ with j ∈ I,
we introduce a boolean function φ(u, v, i, j, I). This function is evaluated
true if and only if Tuv has an elegant C(p, 1, 1)-labeling f with f(u) = i,
f(v) = j and Iu = I. It can be calculated as follows:

1. Set an initial value φ(u, v, i, j, I) = false for all edges uv, integers
i, j ∈ [0, λ− 1] and intervals I (j ∈ I).
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2. If u is a leaf adjacent to v then we set φ(u, v, i, j, I) = true for all
integers i, j ∈ [0, λ− 1] with p ≤ |i− j| ≤ λ− p and for all intervals I
with j ∈ I and i /∈ I.

3. Let us suppose that φ is already calculated for all edges of Tuv except
uv. Denote by v1, v2, . . . , vm the children of u. For all pairs of integers
i, j ∈ [0, λ − 1] with p ≤ |i − j| ≤ λ − p and for all intervals I with
j ∈ I, i /∈ I we consider the set system {M1,M2, . . . ,Mm}, where

Mt = {s : s ∈ I\{j},∃ interval J : φ(vt, u, s, i, J) = true, i ∈ J, I∩J = ∅}

We set φ(u, v, i, j, I) = true if the set system {M1,M2, . . . ,Mm} allows
a system of distinct representatives, i.e., if there exists an injective
function r : [1,m]→ [0, λ− 1] such that r(t) ∈Mt for all t ∈ [1,m].

The correctness proof is inductive. For a leaf u of T , it is straightforward
to see that φ(u, v, i, j, I) = true if and only if Tuv has an elegant C(p, 1, 1)-
labeling f where f(u) = i, f(v) = j and Iu = I. So, we have to prove
the correctness of Step 3. Assume that φ is calculated correctly for Tvtu for
t ∈ {1, . . . ,m}.

Suppose that φ(u, v, i, j, I) = true. Hence, {M1,M2, . . . ,Mm} has a sys-
tem of distinct representatives {r1, . . . , rm} where rt ∈Mt for t ∈ {1, . . . ,m}.
We set f(u) = i, f(v) = j and f(vt) = rt for t ∈ {1, . . . ,m}. By def-
inition, all labels f(v), f(v1), . . . , f(vm) belong to I. They are pairwise
distinct, because j /∈ Mt. Clearly, p ≤ |f(u) − f(v)| ≤ λ − p. Be-
cause φ(vt, u, rt, i, J

(t)) = true for some interval J (t) such that i ∈ J (t) and
I ∩ J (t) = ∅, we also have p ≤ |f(v) − f(vt)| ≤ λ − p for t ∈ {1, . . . ,m}. If
φ(vt, u, rt, i, J

(t)) = true, then by induction, there is an elegant labeling ft of
Tvt,u such that ft(vt) = rt, ft(u) = f(u) and Ivt = J (t). We set f(x) = ft(x)
for all x ∈ V (Tvtu) \ {vt, u} for t ∈ {1, . . . ,m}. It remains to observe that in
the constructed entry f(v) differs from f(x) for every child x of vt in Tvtu,
because f(v) = j ∈ I, and f(x) ∈ J (t), where I ∩ J (t) = ∅.

Assume now that Tuv has an elegant C(p, 1, 1)-labeling f and let i =
f(u), j = f(v) and I = Iu. Let also rt = f(vt) and J (t) = Ivt for
t ∈ {1, . . . ,m}. Clearly, r1, . . . , rm are distinct, each rt ∈ I \ {j} and
I ∩ J (t) = ∅. Since f |V (Tvtu)

is an elegant labeling of Tvtu, by our induction

assumption, φ(vt, u, rt, i, J
(t)) = true. Therefore, {r1, . . . , rm} is a system of

distinct representatives for {M1,M2, . . . ,Mm}. It follows immediately that
φ(u, v, i, j, I) = true.

Now we evaluate the complexity of computation of this function. It is
calculated for n − 1 edges. Since each interval I is defined by the pair of
its endpoints, the set of arguments has cardinality O(n · λ4). Computation
of φ for leafs (see Step 2) demands O(1) operation for each argument. The
recursive step (see Step 3) takes time O(m · λ3) for constructing the sets
Mt. Then we check for the existence of a system of distinct representatives
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for {M1,M2, . . . ,Mm}. This can be done in time O((m + λ)5/2) by the
algorithm of Hopcroft and Karp [22]. Since m ≤ n and λ ≤ n+ 2p− 4, this
step demands O(n4) operations for a single collection of arguments. So, the
total computation time of φ is equal to O(n9), and we calculate this function
in polynomial time for all sets of arguments.

To finish the description of the algorithm we have only to note that an
elegant C(p, 1, 1)-labeling of span λ exists if and only if there are integers
i, j ∈ [0, λ− 1] and a interval I (j ∈ I), for which φ(r, w, i, j, I) = true where
w is the only child of the root r.

It suffices to test at most O(n) values of λ. This provides the total
O(n10) time complexity. For the linear metric the algorithm remains the
same, with the exception that pairs i, j are taken from [0, λ] and that pairs
i, j with |i − j| > λ − p are allowed as well in steps 2 and 3. This finishes
the proof of Theorem 4.

5.3 Approximating optimal L(2,1,1)- and C(2,1,1)-labelings
of trees

In this section we consider the distance constraints (p1, p2, p3) = (2, 1, 1) for
trees. We start with the following result that is valid for any tree T and that
gives us almost tight bounds for λ2,1,1(T ), λ∗2,1,1(T ), c2,1,1(T ) and c∗2,1,1(T ).

Proposition 5. Let T be a tree. Then

ω(T 3)− 1 ≤ λ2,1,1(T ) ≤ λ∗2,1,1(T ) ≤ ω(T 3),

and if T is not a star then

ω(T 3) ≤ c2,1,1(T ) ≤ c∗2,1,1(T ) ≤ ω(T 3) + 1,

otherwise, if T is a star, then c2,1,1(T ) = c∗2,1,1(T ) = ω(T 3) + 2.

Proof. Let T be a tree on n vertices. First suppose T is a star. Then
λ2,1,1(T ) = λ∗2,1,1,(T ) = n = ω(T 3) and c2,1,1(T ) = c∗2,1,1(T ) = n + 2 =

ω(T 3) + 2, by Proposition 3.
Now suppose T is not a star. We apply Proposition 2 to obtain

λ2,1,1(T ) ≤ λ∗2,1,1(T ) and c2,1,1(T ) ≤ c∗2,1,1(T ). We apply Theorem 3 to

obtain c∗2,1,1(T ) ≤ ω(T 3) + 1. Because λ∗2,1,1(T ) ≤ c∗2,1,1(T ) − 1 by Propo-

sition 2, this yields λ∗2,1,1(T ) ≤ ω(T 3). By Observation 1 we find that

ω(T 3) − 1 ≤ λ2,1,1(T ). Because λ2,1,1(T ) + 1 ≤ c2,1,1(T ) by Proposition 2,
this yields ω(T 3) ≤ c2,1,1(T ). This completes the proof of Proposition 5.

Proposition 5 has the following consequence for computing an L(2, 1, 1)-
labeling with minimum span of a tree T . We can approximate an optimal
L(2, 1, 1)-labeling of T in polynomial time within additive factor 1 by run-
ning the algorithm obtained from the constructive proof of Theorem 3, or
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the algorithm described in the proof of Theorem 4, for λ = ω(T 3)− 1. If we
obtain an elegant L(2, 1, 1)-labeling, then λ2,1,1(T ) = λ∗2,1,1(T ) = ω(T 3)− 1;

otherwise λ∗2,1,1(T ) = ω(T 3), and λ2,1,1(T ) = ω(T 3) − 1 might still hold.
However, this is the best we can hope for, because the L(2, 1, 1)-Labeling
problem is NP-complete for trees by Theorem 2.

The same consequence of Proposition 5 also holds for computing a
C(2, 1, 1)-labeling with minimum span of a tree T . If T is a star then
c2,1,1(T ) = ω(T 3) + 2. Otherwise, we can find an elegant C(2, 1, 1)-labeling
with either c∗2,1,1(T ) = ω(T 3) or c∗2,1,1(T ) = ω(T 3) + 1 in polynomial time.

In the first case, c2,1,1(T ) = ω(T 3), and in the second case c2,1,1(T ) = ω(T 3)
or c2,1,1(T ) = ω(T 3) + 1 might both still be possible.

The complexity of the C(2, 1, 1)-Labeling problem is unknown for trees.
It is therefore interesting to characterize trees T that satisfy c2,1,1(T ) =
c∗2,1,1(T ) = ω(T 3). We call a C(2, 1, 1)-labeling of a tree T perfect if it

has span c2,1,1(T ) = ω(T 3). We present a necessary condition that a tree
must satisfy to allow a perfect elegant labeling. We first classify edges
of the tree with respect to the fact whether their neighborhood forms a
maximum clique in T 3 or not. Hence, an edge uv ∈ E(T ) will be called blue
if deg(u) + deg(v) = ω(T 3), and it will be called red otherwise.

Theorem 5. If a tree allows a perfect elegant labeling, then every inner
vertex is incident with at least two red edges.

Proof. Let T be a tree with a perfect elegant labeling. Let Iu denote the
associated interval for vertex u ∈ V (T ). Suppose T has an inner vertex v
that is incident with at most one red edge. For any neighbor u incident
with v along a blue edge we have deg(u) + deg(v) = ω(T 3). Consequently,
Iu = [0, ω(T 3)− 1] \ Iv.

Since Iv = [a, b] is an interval of length deg(v), each element of Iv is
used as a label of some u ∈ N(v). As v is incident with at most one red
edge, at least one of a or b is used as a label of a neighbor w connected to
v via a blue edge. However, then the label of w is one unit away from Iw, a
contradiction.

The necessary condition in Theorem 5 is not a sufficient one; see Figure 9
for an example of a tree T with c2,1,1(T ) = ω(T 3) + 1 = 6 + 1 = 7 and with
at least two red edges incident with each inner vertex. In order to prove
that c2,2,1(T ) = 7, we only have show that c2,1,1(T ) 6= ω(T 3) = 6 due to
Proposition 5. We give a proof by contradiction. Suppose c2,1,1(T ) = 6.
Then T has a C(2, 1, 1)-labeling with span 6. We note that all vertices in
the set {u1, . . . , u6} have a different label. We also note that the same is
true for the vertices in the set {u6, . . . , u11}. Below we show how to derive
at a contradiction.

By symmetry, we may without loss of generality assume that u6 has label
0. Then the labels of u4 and u8 belong to the set {2, 3, 4}. By symmetry, we
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Figure 9: A tree with c2,1,1(T ) = ω(T 3) + 1 (blue edges indicated in bold).

may without loss of generality assume that u8 has label 2. Then the labels
of u7 and u9 belong to the set {4, 5}, and the labels of u10 and u11 belong to
the set {1, 3}. This means that u9 cannot get label 4. Hence u9 has label 5,
and consequently, u7 has label 4. We then deduce that u4 has label 3. This
means that the labels of u3 and u5 belong to the set {1, 5}. Consequently,
the labels of u1 and u2 belong to the set {2, 4}. However, this is not possible.
If u3 has label 1 then u3 is adjacent to a vertex, namely u1 or u2, that has
label 2. In the other case, if u3 has label 5 then u3 is adjacent to a vertex,
namely u1 or u2, that has label 4. We conclude that c2,1,1(T ) 6= 6.

If we interpret the condition of Theorem 5 in the construction of Theo-
rem 3, we get the following corollary.

Corollary 1. A tree allows a perfect elegant labeling if it can be rooted such
that each inner vertex has at least two red children.

6 Conclusions

One of the main results in this paper is that L(2, 1, 1)-Labeling is NP-
complete for trees (while L(2, 1)-Labeling can be solved in polynomial time
for trees [5]). We expect that L(p1, p2, p3)-Labeling remains NP-complete
on trees for all p1, p2, p3 such that p1 > p3, but this statement does not follow
directly from our results. We recall that for graphs of treewidth 2, both the
L(2, 1)-Labeling and the C(2, 1)-Labeling problem are NP-complete [8].
In contrast to these results, determining the computational complexity of
C(2, 1, 1)-Labeling for trees is still an open problem.
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