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Abstract

In this paper we modify slightly Razborov’s flag algebras machinery to be suitable

for the hypercube. We use this modified method to show that the maximum number of

edges of a 4-cycle-free subgraph of the n-dimensional hypercube is at most 0.6068 times

the number of its edges. We also improve the upper bound on the number of edges

for 6-cycle-free subgraphs of the n-dimensional hypercube from
√

2− 1 to 0.3755 times

the number of its edges. Additionally, we show that if the n-dimensional hypercube is

considered as a poset then the maximum vertex density of three middle layers in an

induced subgraph without 4-cycles is at most 2.15121
(

n
bn/2c

)
.

1 Introduction

Let Qn be the graph of the n-dimensional hypercube (n-cube) whose vertex set is the set

{0, 1}n of binary n-tuples, and two vertices are adjacent if and only if they differ in exactly

one coordinate. The Hamming distance between two n-tuples u and v, denoted by d(u, v),

is the number of coordinates in which they differ. So uv is an edge of Qn if and only if

d(u, v) = 1. Note that the hypercube Qn has 2n vertices and n2n−1 edges.

Let e(G) denote the number of edges of a graph G. For a graph F , we define exQ(n, F )

to be the maximum number of edges of an F -free subgraph of Qn and define

πQ(F ) = lim
n→∞

exQ(n, F )

e(Qn)
.

Note that the existence of the limit follows from an easy averaging argument that exQ(n, F )/e(Qn)

is non-increasing as n increases.
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Erdős [12, 13] was the first one who considered Turán type problems for the hypercube. He

proposed a problem of determining exQ(n,C2t), suggesting that for all t > 2 perhaps o(e(Qn))

was an upper bound. It turned out to be false for t = 3 as Chung [9] and Brouwer, Dejter

and Thomassen [8] found a 4-coloring of the hypercube without a monochromatic C6. This

was later improved by Conder [10] to a 3-coloring. This implies that exQ(n,C6) ≥ 1
3
e(Qn).

On the other hand, the best known upper bound obtained by Chung [9] is exQ(n,C6) ≤
(
√

2− 1 + o(1))e(Qn).

Chung [9] also showed that Erdős was right for even t ≥ 4 by proving that exQ(n,C2t) =

o(e(Qn)). Füredi and Özkahya [15, 16] complemented the previous result by showing that

exQ(n,C2t) = o(e(Qn)) for all odd t ≥ 7. Their approaches were recently unified by Con-

lon [11]. Despite the efforts in [1, 3, 11] the case exQ(n,C10) still remains unsolved.

Erdős [12] was particularly interested in exQ(n,C4). He conjectured that the answer is

πQ(C4) = 1/2 and offered $100 for a solution. Best known lower bound 1
2
(1+ 1√

n
)e(Qn) (valid

when n is a power of 4) on exQ(n,C4) was obtained by Brass, Harborth and Nienborg [7].

The upper bound on πQ(C4) of 0.62284 obtained by Chung [9] was recently improved by

Thomason and Wagner [24] by a computer assisted proof to 0.62256. They also claimed that

πQ(C4) ≤ 0.62083 can be obtained with the same technique.

Razborov [23] developed a systematic approach to bound densities of subgraphs called

flag algebras. This method can be applied to various problems [17, 18, 19, 20]. One nice

exposition of applying the method to Turán density is in [5], for a recent development see [14].

We present a modification of the method for subgraphs of the hypercube. By applying our

modified flag algebra method we obtained improvements on the upper bounds on πQ(C4)

and πQ(C6).

Theorem 1. πQ(C4) ≤ 0.6068.

Theorem 2. πQ(C6) ≤ 0.3755.

These results were independently proved by Baber [4] which originally appeared in his

PhD thesis in March 2011. Let us note that although the results are the same, we use a

different way of defining flag algebras for hypercubes. Baber is using colored hypercubes

while we use subgaphs. Our method is slightly more general since it allows considering

subgraphs which are not hypercubes. Baber also estimated vertex Turán density of Q3 and

determined vertex Turán density of Q3 with one vertex removed for hypercubes.

Both proofs are computer assisted as the number of considered cases is too large to

be computed by hand without an extreme suffering (of students and a postdoc). All the

programs as well as their inputs and outputs can be obtained at http://www.math.uiuc.

edu/~jobal/cikk/hypercube.

In addition to spanning subgraphs of the hypercube, flag algebras can be used also for

induced subgraphs of the hypercube. However, we present the result in a lattice settings

because of its original motivation. For a family F of subsets of [n] = {1, 2, . . . , n} ordered

by inclusion, and a partially ordered set P , we say that F is P -free if it does not contain a

subposet isomorphic to P . Let ex(n, P ) be the largest size of a P -free family of subsets of [n].
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Let Q2 be the poset with distinct elements a, b, c, d where a < b, c < d; i.e., the 2-dimensional

Boolean lattice. Axenovich, Manske and Martin [2] showed that 2N − o(N) ≤ ex(n,Q2) ≤
2.283261N + o(N) where N =

(
n
bn/2c

)
. It was recently improved by Kramer, Martin and

Young [21] to 2.25N + o(N). Axenovich et. al. [2] also proved that the largest Q2-free

family of subsets of [n] having at most three different sizes has at most (3 +
√

2)N/2 + o(N)

members. This was further improved by Manske and Shen [22] to (3 + 2
√

3)N/3 + o(N) ≈
2.1547N+o(N). This result can be further improved by using flag algebras. We show how to

achieve the same bound (3 +
√

2)N/2 that can be verified by hand. With help of computers

we then improve the bound to 2.15121N .

Theorem 3. The largest Q2-free family of subsets of [n] having at most three different sizes

has at most 2.15121N members where N =
(

n
bn/2c

)
.

In the next section we give a brief introduction to the flag algebra method and describe

our modification of it to subgraphs of the hypercube. We refer the interested reader to

the seminal paper of Razborov [23] for a detailed exposition of the method. In Section 3 we

apply the method with a simple setting and obtain an upper bound πQ(C4) ≤ 2/3. The main

purpose of Section 3 is to make the reader comfortable with the terminology and describe

the proof technique. Finally, in Sections 4 and 5 we give ideas of the proofs of Theorems 1

and 2, respectively. We do not include all the technicalities of the proofs as the number

of considered graphs is too large. The interested reader may see all the technical details

at http://www.math.uiuc.edu/~jobal/cikk/hypercube. The last section is devoted to

giving a proof idea of Theorem 3.

2 The flag algebra method for the hypercube

In this section we give a brief introduction to the flag algebra method mixed with the

necessary modifications for subgraphs of the hypercube. We say that a graph G is a cube

graph if G is a subgraph of Qn for some n, so V (G) ⊆ {0, 1}n and if uv is an edge of G then

d(u, v) = 1.

Given a cube graph G and a subset U of V (G), we denote the subgraph of G induced by

U by G[U ]. It is easy to see that G[U ] is also a cube graph.

Given a subset U of {0, 1}n, let D(U) be the set of coordinates i such that there exist

v, w ∈ U which differ in the coordinate i (v and w may differ in more coordinates). If

U = {u, v}, then we abbreviate D({u, v}) to D(u, v). Let d(U) = |D(U)| and again d({u, v})
is abbreviated to d(u, v), as it is the Hamming distance of u and v. We define the dimension

of a cube graph G to be dim(G) = d(V (G)). Given a vertex v ∈ {0, 1}n, let v[i] be its ith

coordinate. Given a vertex set U ⊆ {0, 1}n of dimension r, let Q(U) be the set of vertices of

the unique r-cube containing U , i.e.

Q(U) = {v : v ∈ {0, 1}n,∀u ∈ U, i /∈ D(U), v[i] = u[i]} .
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Given V ⊆ {0, 1}m and U ⊆ {0, 1}n, we say a map f : V → U is Hamming distance

preserving if ∀u, v ∈ V, d(u, v) = d(f(u), f(v)). Note that a Hamming distance preserving

map is injective since d(u, v) = 0 iff u = v. When U = V = {0, 1}n, such f is a cube

automorphism. We call a map f : V → U feasible if there exists a Hamming distance

preserving map f̃ : Q(V ) → Q(U) such that f(v) = f̃(v) for all v ∈ V . Given two cube

graphs H and G, we say H and G are feasible isomorphic (denoted by H ' G) if there exists

a feasible bijection f : V (H) → V (G) satisfying ∀u, v ∈ V (H), f(u)f(v) ∈ E(G) iff uv ∈
E(H). Such f is called a feasible isomorphism from H to G. See Figure 1 for an example.

G1 G2 G3

Figure 1: AllG1, G2 andG3 are isomorphic. However, onlyG1 andG2 are feasible isomorphic.

It is not hard to see that a feasible map preserves the dimension. Indeed, we have a

stronger statement.

Lemma 1. Let V ⊆ {0, 1}m, U ⊆ {0, 1}n and let f : V → U be a feasible map. Then

there exists an injective map φ : D(V ) → D(U) such that for any subset V ′ ⊆ V , we have

D(f(V ′)) = φ(D(V ′)). Given φ and f(v) for any v ∈ V , then f is uniquely determined.

Proof. As f is feasible, there exists a Hamming distance preserving map f̃ : Q(V )→ Q(U)

such that f(v) = f̃(v) for every v ∈ V . We start by inspecting f̃ . Let d(V ) = k and

D(V ) = {l1, . . . , lk}. Pick a vertex v ∈ V and let vi ∈ Q(V ) be the vertex which differs

from v only in the coordinate li. As f̃ is Hamming distance preserving, f̃(vi) differs from

f̃(v) in only one coordinate, say l′i. Then we have l′i 6= l′j for i 6= j since f̃ is injective. Next

we define φ(li) = l′i for all 1 ≤ i ≤ k and show that it satisfies our needs. Because f̃ is

Hamming distance preserving, for a vertex u ∈ Q(V ) we have D(f̃(u), f̃(v)) = φ(D(u, v)),

which means f is uniquely determined by φ and f(v). Furthermore, for any two vertices

v1, v2 ∈ Q(V ) we have D(f̃(v1), f̃(v2)) = φ(D(v1, v2)) since

D(f̃(v1), f̃(v2)) = D(f̃(v), f̃(v1))4D(f̃(v), f̃(v2))

and φ(D(v1, v2)) = φ(D(v, v1))4 φ(D(v, v2)), where 4 means the symmetric difference of

the sets. Then for any subset V ′ ⊆ V , we have D(f(V ′)) = φ(D(V ′)).

Let F be a fixed graph. Our goal is to compute an upper bound on πQ(F ). Let Hs be

the family of all F -free spanning subgraphs of Qs, up to cube automorphism.
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Given any two cube graphs H and G, we define p(H,G) to be the probability that a

feasible map f : V (H) → V (G) chosen uniformly at random satisfies G[Im(f)] ' H. Note

that if H ∈ Hs and V (G) = V (Qn) then Qn[Im(f)] ' Qs.
Given a cube graph G, let n = dim(G), then define its edge density ρ(G) = e(G)/e(Qn).

Let G be an F -free spanning subgraph of Qn. By averaging over all H ∈ Hs we have

ρ(G) =
∑
H∈Hs

ρ(H)p(H,G) (1)

as
∑

H∈Hs
p(H,G) = 1. Hence ρ(G) ≤ maxH∈Hs ρ(H) and then πQ(F ) ≤ maxH∈Hs ρ(H).

This bound in general is very poor, for F = C4 and s ∈ {2, 3, 4} it gives that πQ(F ) ≤ 3/4.

It is because this bound only considers ρ(H). It does not use other structural properties of

graphs in Hs. Razborov’s flag algebra method allows us to make use of more information

about Hs and hence it gives a much better bound. Indeed, our results are obtained with

s = 3.

Let H be a cube graph, we call an injective map θ : [m] → V (H) a type map to H if

every vertex v ∈ V (H) \ Im(θ) satisfies v /∈ Q(Im(θ)). A flag (H, θ) is H together with a

type map θ. If θ is also bijective, then we call the flag a type. We can think of θ as a labeling.

If m = 0, then no vertex is labeled, and we use 0 to denote such type. Let F1 = (H, θ) be

a flag. We say F1 is F -free if H is F -free. We say F1 is a σ-flag if (Im(θ), θ) ' σ. See

Figure 2 for examples. Let H1, H2 be two cube graphs. We call two flags F1 = (H1, θ1)

and F2 = (H2, θ2) isomorphic (denoted by F1 ' F2) if there exists a feasible isomorphism

f : V (H1)→ V (H2) satisfying f · θ1 = θ2.

3

1 2

F1

3

1 2

F2

3

1 2

F3

1 2

F4

3

1 2

σ

Figure 2: σ is a type, F1 and F2 are σ-flags but F3 is not a flag. It contains an unlabeled

vertex in Q(Im(θ)). F4 is a flag but not a σ-flag as the labeled vertices do not induce σ.

Let σ be a type of dimension r. Let G be a (large) F -free spanning subgraph of Qn, so

dim(G) = n. We say a type map θ to G is a σ-type map if there exists a feasible bijection

f : Im(θ) → V (σ). Let Θ be the set of all σ-type maps θ to G. Let Fσk be the set of all

F -free σ-flags of dimension k. Given a σ-flag F1 = (H1, θ1) ∈ Fσk and a map θ ∈ Θ, we define

p(F1, θ;G) to be the probability that a feasible map f : V (H1) → V (G) chosen uniformly

at random subject to f · θ1 = θ satisfies (G[Im(f)], θ) ' F1. Note that if (Im(θ), θ) 6' σ,
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then p(F1, θ;G) = 0. Given two σ-flags F1 = (H1, θ1) ∈ Fσk1 and F2 = (H2, θ2) ∈ Fσk2 , for

θ ∈ Θ, we define p(F1, F2, θ;G) to be the probability that if we choose two feasible maps

f1 : V (H1)→ V (G) and f2 : V (H2)→ V (G) uniformly and independently at random subject

to f1 · θ1 = θ, f2 · θ2 = θ and D(Im(f1)) ∩D(Im(f2)) = D(Im(θ)), then

(G[Im(f1)], θ) ' F1 and (G[Im(f2)], θ) ' F2.

Note that p(F1, F2, θ;G) makes sense only when n ≥ k1+k2−r sinceD (Im(f1) ∪ Im(f2)) =

D(Im(f1))∪D(Im(f2)) must be a subset of D(V (G)). When comparing p(F1, F2, θ;G) with

p(F1, θ;G)p(F2, θ;G), we see that the only difference between these two probabilities is that

in p(F1, θ;G)p(F2, θ;G) we ask only for

f1 · θ1 = θ and f2 · θ2 = θ (2)

where f1, f2 are two randomly chosen feasible maps, while in p(F1, F2, θ;G) we ask not only

for (2) but also for

D(Im(θ)) = D(Im(f1)) ∩D(Im(f2)). (3)

When n is very large, intuitively, if (2) holds, then with high probability (3) also holds, and

then the difference between these two probabilities is negligible. This following lemma states

it formally. It is similar to Lemma 2.1 in [5], which is a special case of Lemma 2.3 in [23].

Lemma 2. For any F1 = (H1, θ1) ∈ Fσk1 , F2 = (H2, θ2) ∈ Fσk2, θ ∈ Θ, and G being a spanning

subgraph of Qn it holds that

p(F1, θ;G)p(F2, θ;G) = p(F1, F2, θ;G) + o(1)

where the o(1) term tends to 0 as n tends to infinity.

Proof. Choose two independent feasible maps f1 : V (H1) → V (G) and f2 : V (H2) → V (G)

uniformly at random subject to f1 · θ1 = θ and f2 · θ2 = θ. For such choices of f1 and f2, let

A be the event

(G[Im(f1)], θ) ' F1 and (G[Im(f2)], θ) ' F2,

and B be the event

D(Im(f1)) ∩D(Im(f2)) = D(Im(θ)).

We have p(F1, θ;G)p(F2, θ;G) = P (A) and p(F1, F2, θ;G) = P (A|B). Using that for any

A and B, it holds that

P (A|B)P (B) = P (A ∩B) ≤ P (A) ≤ P (A ∩B) + P (B),

we have |P (A|B)P (B) − P (A)| ≤ P (B). Hence it suffices to show P (B) ≥ 1 − o(1). Note

that P (B) depends on V (H1), V (H2), V (G) but not on the edges of these graphs.

For i = 1, 2, let φi be the φ in Lemma 1 for fi. We compute P (B) by counting possible

choices of φi instead of counting fi’s directly. We first consider the case that the type σ 6= 0,
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i.e., some vertex is labeled. From fi · θi = θ we know that φi(D(Im(θi))) = D(Im(θ)), so

we next need to look at φi on D(V (Hi)) \D(Im(θi)). Recall that d(Im(θ)) = r, hence there

are still ki − r coordinates to be chosen from [n] \D(Im(θ)).

We know fi(θi(1)) = θ(1), so each φi gives one feasible map fi. Note that different choices

of φi may give the same fi. Let Mi be the number of feasible maps f ′i : V (Hi)→ Q (V (Hi))

satisfying f ′i · θi = θi. Observe that Mi is also the number of fi’s for each choice of (ki − r)
coordinates from [n] \D(Im(θ)) given that fi · θi = θ. Note that good choices for the event

B are choosing coordinates for φ1(D(V (H1)) \D(Im(θ1))) and φ2(D(V (H2)) \D(Im(θ2)))

that are disjoint. So we can compute that

P (B) =

(
n−r
k1−r

)
M1

(
n−k1
k2−r

)
M2(

n−r
k1−r

)
M1

(
n−r
k2−r

)
M2

= 1− o(1).

For the case σ = 0, each choice of φi will give 2n different fi’s, so we have

P (B) =

(
n
k1

)
M12n

(
n−k1
k2

)
M22n(

n
k1

)
M12n

(
n
k2

)
M22n

= 1− o(1).

Now we can use this version of the flag algebra method to compute exQ(F ). This is the

same as in [5]. We suggest the reader to start reading the next section in parallel with the

following text as the entire next section can be viewed as an example.

Fix a type σ 6= 0. Averaging over a uniformly and randomly chosen θ ∈ Θ we have

Eθ∈Θ[p(F1, θ;G)p(F2, θ;G)] = Eθ∈Θ[p(F1, F2, θ;G)] + o(1). (4)

Pick s ≥ k1 + k2 − r. For H ∈ Hs, let ΘH be the set of all σ-type maps to H. Then

Eθ∈Θ[p(F1, F2, θ;G)] =
∑
H∈Hs

Eθ∈ΘH
[p(F1, F2, θ;H)]p(H,G). (5)

We pick σ 6= 0 simply because if σ = 0, then (5) does not hold. Let F = {F1, . . . , F`} ⊆
Fσk be satisfying

s ≥ 2k − r (6)

and let M = (mij) be a positive semidefinite `-by-` matrix. For θ ∈ Θ define pθ =

{p(F1, θ;G), . . . , p(F`, θ;G)}. Using (4) and (5), we have

0 ≤ Eθ∈Θ[pθMpTθ ] =
∑

1≤i,j≤`

∑
H∈Hs

mijEθ∈ΘH
[p(Fi, Fj, θ;H)]p(H,G) + o(1). (7)

For H ∈ Hs we define cH(σ,F ,M) to be the coefficient of p(H,G) in (7) i.e.,

cH(σ,F ,M) =
∑

1≤i,j≤`

mijEθ∈ΘH
[p(Fi, Fj, θ;H)].
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Then we can rewrite (7) as

0 ≤
∑
H∈Hs

cH(σ,F ,M)p(H,G) + o(1).

Fix G and Hs, suppose we have t choices of (σi,Fi,Mi), where each σi 6= 0 is a type of

dimension ri, each Fi is a subset of Fσiki satisfying s ≥ 2ki − ri, and each Mi is a positive

semidefinite matrix of dimension |Fi|. Then for H ∈ Hs we have

0 ≤
∑
H∈Hs

(
t∑
i=1

cH(σi,Fi,Mi)

)
p(H,G) + o(1).

Define cH =
∑t

i=1 cH(σi,Fi,Mi), then we have 0 ≤
∑

H∈Hs
cHp(H,G) + o(1). Together

with (1), we have

ρ(G) ≤
∑
H∈Hs

(ρ(H) + cH)p(H,G) + o(1).

Thus ρ(G) ≤ maxH∈Hs(ρ(H) + cH) + o(1) and therefore πQ(F ) ≤ maxH∈Hs(ρ(H) + cH).

3 Example for Q2

In this section we apply the flag algebra method with F = C4 and H2. We obtain a weaker

bound πQ(C4) ≤ 2/3 than in Theorem 1. On the other hand, it allows us to present the

proof with all the details and hopefully it makes the reader more comfortable while reading

the proofs of Theorems 1 and 2 as the method is the same.

We consider only one type, a single labelled vertex, so its dimension is zero. As flags F =

{F0, F1} we use both possible flags on two vertices with one labelled vertex and containing

0 and 1 edges, respectively. So they both have dimension one. See Figure 3 for F0 and F1.

1
F0

1
F1

Figure 3: Two flags of dimension one with one labeled vertex.

Recall that H2 is the set of all C4-free subgraphs of Q2. See Figure 4 for the list of all five

of them. Note that the variables corresponding to the previous section are r = 0, k = 1, s = 2

and t = 1. We can use H2 because (6) holds.

In order to calculate the coefficients cH we need to compute Eθ∈Θp(Fi, Fj, θ,H) for all

possible H ∈ H2 and Fi, Fj ∈ F . The values of Eθ∈Θp(Fi, Fj, θ,H) are given in Table 1.
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H0 H1 H2 H3 H4

Figure 4: C4-free spanning subgraphs of Q2.

H0 H1 H2 H3 H4

F0, F0 1 1/2 0 1/4 0

F0, F1 0 1/4 1/2 1/4 1/4

F1, F1 0 0 0 1/4 1/2

Table 1: Eθ∈Θp(Fi, Fj, θ,H).

We show how to compute Eθ∈Θp(F0, F1, θ,H3) and leave the verification of other entries

in Table 1 to the interested readers. In this case we need to compute the probability that

a uniformly and randomly chosen θ ∈ Θ and two pairs of vertices with Hamming distance

one V0, V1 ⊂ V (H3) chosen independently and uniformly at random with intersection Im(θ)

induce flags (H3[V0], θ) and (H3[V1], θ) that are isomorphic to F0 and F1, respectively. By

inspection of the cases, this happens only when Im(θ) is a vertex of degree one and the

other vertices of V0 are V1 are the vertices of degree zero and two, respectively. So 2 out of

8 possibilities are satisfying the condition.

As l = 2, we want to choose a positive semidefinite 2 × 2 matrix M used in (7). In the

general form

M =

(
m11 m12

m21 m22

)
.

Note that m12 = m21 as M must be symmetric. We can compute cH(σ,F ,M) by multiplying

the vector (m11, 2m12,m22) with the column corresponding to H in Table 1 for every H ∈ H2.

Note that cH(σ,F ,M) is the same as cH because t = 1. Together with densities we have

ρ(H0) + cH0 = 0 +m11

ρ(H1) + cH1 = 1/4 +m11/2 +m12/2

ρ(H2) + cH2 = 1/2 +m12

ρ(H3) + cH3 = 1/2 +m11/4 +m12/2 +m22/4

ρ(H4) + cH4 = 3/4 +m12/2 +m22/2.

Recall that πQ(C4) ≤ maxi(ρ(Hi) + cHi
). So we want to minimize maxi(ρ(Hi) + cHi

) over
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all positive semidefinite matrices. This can be expressed as a semidefinite program (P ) as

follows:

(P )


Minimize v

subject to v ≥ ρ(Hi) + cHi
∀Hi ∈ H2

v ∈ R,M is positive semidefinite.

The optimal solution of (P ) is

M∗ =

(
2/3 −1/3

−1/3 1/6

)
and it gives maxi(ρ(Hi) + cHi

) = 2/3. Note that it is not necessary to use the optimal

solution to get an upper bound but any feasible solution gives an upper bound (of course,

not as good the optimal solution). We use this observation later in order to fix rounding

errors by CSDP solver.

4 Proof of Theorem 1

The proof of Theorem 1 goes along the same lines as the proof in the previous section. It is

just performed with Q3 and with more flags.

Let E0, E1 ⊆ Q1 be cube graphs with zero and one edge, respectively and let θi : [2] →
V (Ei) for i ∈ {0, 1}. We consider two types σ0 = (E0, θ0) and σ1 = (E1, θ1) and flags

of dimension two. Let F0 = {F 0
0 , . . . , F

0
7 } be all flags in Fσ02 on 4 vertices and let F1 =

{F 1
0 , . . . , F

1
6 } be all flags in Fσ12 on 4 vertices. The flag of type σ1 with four edges is not in

Fσ12 since it is not C4-free. See Figure 5 for the list of flags.

1 2
F 1

0

1 2
F 1

1

1 2
F 1

2

1 2
F 1

3

1 2
F 1

4

1 2
F 1

5

1 2
F 1

6

1 2
F 0

0

1 2
F 0

1

1 2
F 0

2

1 2
F 0

3

1 2
F 0

4

1 2
F 0

5

1 2
F 0

6

1 2
F 0

7

Figure 5: F0 is in the first row and F1 is in the second row.
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Next we need to obtain H3, the set of all C4-free subgraphs of Q3. We wrote two

independent computer programs for generating the graphs and obtained a list of 99 graphs

which agrees with [24] where the authors also obtained 99 such graphs.

Our computer programs also calculated Eθ∈Θp(F
k
i , F

k
j , θ,H) for all possible H ∈ H3 and

F k
i , F

k
j ∈ Fk and produced a semidefinite program.

The resulting semidefinite program was solved by CSDP [6]. Due to rounding, the re-

sulting matrix M∗ may not be positive semidefinite. We used MATLAB to perturb the

matrix to make sure that it is positive semidefinite and then we computed an upper bound

πQ(C4) ≤ 0.6068.

5 Proof of Theorem 2

The proof of Theorem 2 is the same as the proof of Theorem 1. We also considered both

types of dimension one with two labeled vertices. In this case we again considered all possible

flags on four vertices. See Figure 6 for the list of the flags.

1 2
F 1

0

1 2
F 1

1

1 2
F 1

2

1 2
F 1

3

1 2
F 1

4

1 2
F 1

5

1 2
F 1

6

1 2
F 1

7

1 2
F 0

0

1 2
F 0

1

1 2
F 0

2

1 2
F 0

3

1 2
F 0

4

1 2
F 0

5

1 2
F 0

6

1 2
F 0

7

Figure 6: Flags used in the proof of Theorem 2.

Next we need to obtain H3, the set of all C6-free subgraphs of Q3. We wrote two

independent computer programs for generating the graphs and obtained a list of 116 graphs.

We again used CSDP solver and after perturbation we obtained that πQ(C6) ≤ 0.3755.

6 Middle layers

This section describes the idea of proving Theorem 3. We do not give the entire proof as it

is computer assisted. Instead, we show a proof of a weaker result which goes along the same

way as the proof of Theorem 3. Note that it is easy to see that it is sufficient to show the

theorem only for the middle three layers and we are giving an upper bound.
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H0 H1 H2 H3 H4 H5

H6 H7 H8 H9 H10

Figure 7: H2: Q2-free subsets of M2.

F0 F1

Figure 8: Two flags with one labeled vertex.

We start with describing the upper bound (3+
√

2)N/2 using flag algebras. We skip some

technical details; namely stating and proving a lemma analogous to Lemma 2 for hypercubes.

Let An, Bn, Cn be the family of subsets of [n] having sizes bn/2c−1, bn/2c and bn/2c+ 1

respectively. Let Mn = An ∪ Bn ∪ Cn, then |Mn| = (3 + o(1))N . Given a subset Gn of Mn,

define

ρ(Gn) =
|Gn ∩ An|
|An|

+
|Gn ∩Bn|
|Bn|

+
|Gn ∩ Cn|
|Cn|

.

In the following we view a family of subsets as its Hasse diagram. This allows us to talk

about subsets as vertices and edges for subsets that differ by exactly one element. Let Hn

be the family of all Q2-free subsets of Mn, then we can write the result in [2] as

lim
n→∞

max
Gn∈Hn

{ρ(Gn)} ≤ (3 +
√

2)/2.

The same result can be achieved by considering H2 (see Figure 7), and two flags (see Fig-

ure 8). An additional constraint for the flags is that the labeled vertex is from An or Cn,

and the unlabeled vertex is from Bn. A black vertex indicates that the corresponding subset

of [n] is present in the subposet and a white vertex indicates the opposite.

Given Gn ∈ Hn, let p(Hi, Gn) be the probability that a random subset D ' Q2 of Mn

chosen uniformly at random satisfies D ∩Gn ' Hi, then

ρ(Gn) =
∑
i

ρ(Hi)p(Hi, Gn).

12



F0 F1

Figure 9: Flags families used in the computer assited proof.

For the flags, for a vertex θ in An ∪ Cn, we define p(Fi, θ, Gn) to be the probability that

a random vertex v from Bn that is adjacent to θ (i.e. the set corresponding to v contains

the set corresponding to θ or is in θ) satisfies {θ, v} ' Fi. We also define p(Fi, Fj, θ, Gn) to

be the probability that two random vertices u 6= v from Bn that are adjacent to θ satisfy

{θ, u} ' Fi and {θ, v} ' Fj. A lemma analogous to Lemma 2 can be proven, we omit the

details. Hence we can apply flag algebra method to this setup and get Table 2.

H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10

ρ 0 1 1 1/2 1 3/2 3/2 2 5/2 2 2

F0, F0 0 1/2 1/2 0 0 0 0 1 0 0 0

F0, F1 0 0 0 0 0 1/4 1/4 0 1/2 0 0

F1, F1 0 0 0 0 0 0 0 0 0 1/2 1/2

Table 2: ρ(Hk) and Eθp(Fi, Fj, θ,Hk).

Then a semidefinite matrix

M =

( √
2−1
2

√
2−2
2√

2−2
2

√
2− 1

)

gives the desired bound 3+
√

2
2

.

The proof of Theorem 3 goes along the same lines as for 3+
√

2
2

. One difference is that three

middle layers of Q4 are considered instead of Q2. The number of Q2-free subgraphs is 606.

The other difference is that we use flag families depicted in Figure 9. Each family contains

flags obtained from the depicted ones by coloring the vertices black and white. Sources of a

program for generating Q2-free subgraphs and computing an analog of Table 2 are available

at http://www.math.uiuc.edu/~jobal/cikk/hypercube.

7 Conclusion

We presented an adaptation of Razborov’s flag algebra method to subgraphs of the hyper-

cube. Using the adaptation we obtained new upper bounds on densities in limit on 4-cycle

and 6-cycle free subgraphs of the hypercube.
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We suspect that the method can give a better bound when applied to the hypercubes of

dimension greater than 3. However, we found 3212821 C4-free spanning subgraphs of Q4.

The resulting semidefinite program is currently too large for CSDP.

We were trying to reduce the number of considered C4-free subgraphs by identifying those

with the same ρ(H) + cH . The only set of flags we discovered that was leading to a solvable

semidefinite program was consisting of flags whose vertices induce a star in the hypercube.

See F1 in Figure 2 for an example. In this setting ρ(H1) + cH1 = ρ(H2) + cH2 if C4-free

spanning subgraphs H1 and H2 have the same degree sequence. Unfortunately, the resulting

bounds were worse than the bounds obtained from Q3 and square like flags.

Maybe a good set of flags, a better solver or just some future hardware can make such

problems solvable.
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