
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Markov Decision Processes for Train Run
Curve Optimization

Nikovski, D.; Lidicky, B.; Zhang, W.; Kataoka, K.; Yoshimoto, K.

TR2012-083 October 2012

Abstract

We propose three computationally efficient methods for finding optimal run curves of electrical
trains, all based on the idea of approximating the continuous dynamics of a moving train by a
Markov Decision Process (MDP) model. Deterministic continuous train dynamics are converted
to stochastic transitions on a discrete model by observing the similarity between the proper-
ties of convex combinations and those of probability mass functions. The resulting MDP uses
barycentric coordinates to effectively represent the cost-to-go of the approximated optimal con-
trol problem. One of the three solution methods uses equal distance steps, as opposed to the
usual equal- time steps, to avoidself transitions of the MDP, which allows very fast computation
of the cost-to-go in one pass only.

IEEE International Conference on Electrical Systems for Aircraft, Railway and Ship Propulsion
(ESARS)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2012
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

Markov Decision Processes for Train Run Curve
Optimization

Daniel Nikovski1, Bernard Lidicky1, Weihong Zhang1, Kenji Kataoka1, and Koki Yoshimoto2

1Mitsubishi Electric Research Labs, 201 Broadway, Cambridge, MA 02139, USA
2Mitsubishi Electric Corporation, Hyogo 661-8661, Japan

Abstract—We propose three computationally efficient methods
for finding optimal run curves of electrical trains, all based on
the idea of approximating the continuous dynamics of a moving
train by a Markov Decision Process (MDP) model. Deterministic
continuous train dynamics are converted to stochastic transitions
on a discrete model by observing the similarity between the
properties of convex combinations and those of probability mass
functions. The resulting MDP uses barycentric coordinates to
effectively represent the cost-to-go of the approximated optimal
control problem. One of the three solution methods uses equal-
distance steps, as opposed to the usual equal-time steps, to avoid
self transitions of the MDP, which allows very fast computation
of the cost-to-go in one pass only.

I. INTRODUCTION

We consider the problem of computing optimal velocity
profiles, also known as run curves, of electric trains with
regenerative brakes, subject to operating constraints such as
speed and acceleration limits. If the distance along the railways
track is denoted by z, then the desired velocity v(z) at position
z describes the run curve. The dynamics of the moving train
can be represented by a simplified set of ordinary differential
equations concerning the relative position z(t) of the train along
the tracks at time t, and its velocity v(t):

v̇ = a(z,v,u)

ż = v

where the function a(z,v,u) describes what acceleration
would be experienced by the train if action u is applied to it at
position z while moving at speed v. This function incorporates
the inertia of the train, as represented by its mass and velocity,
the slope (gradient) of the tracks at location z, as well as the
air resistance at velocity v. If we represent the state of the train
as the vector x = [z,v]T , then we can represent the dynamics
by the vector-valued equation ẋ = f (x,u).

The instantaneous power consumed by the train is repre-
sented by the function p(z,v,u), which we assume depends on
position, velocity, and applied control, but is otherwise time
independent. When regenerative brakes are used, the function
p(z,v,u) can also be negative, representing energy that is
generated by the train and returned to the catenary system
above the tracks, when it decelerates. A given control trajectory
u(t), 0 ≤ t ≤ T would then result in total energy expenditure
of E(T) =

∫ T
0 p[z(t),v(t),u(t)]dt, where T is the end time.

Depending on whether the end time T is fixed or not, there
are two possible formulations to the run-curve optimization
problem:

Formulation F1: The end time T is not fixed, and the goal is
to minimize a weighted sum J = µE +(1−µ)T of energy and
time, for a suitably chosen weight µ , 0 ≤ µ ≤ 1. This weight
can be chosen from economic considerations, e.g. the relative
cost of a unit of energy (kWh) vs. that of a unit of time (second)
for all passengers in the train.

Formulation F2: The end time T is fixed and specified in
advance, for example from an existing timetable, and the goal
is to minimize the energy only: J = E.

In both cases, the goal is to find a function u(t), 0≤ t ≤ T ,
that minimizes the cost functional J[u(t)], subject to the dy-
namics of the train ẋ = f (x,u), and the constraints/conditions
z(0) = 0, z(T) = Z, v(0) = v(T) = 0, and 0 ≤ v(t) < vmax(t),
where Z is the distance between the origin and destination
stations, and vmax(t) is the speed limit for location z(t).

Both formulations F1 and F2 represent optimal control
problems, and it is well known that the optimal function u(t)

can be found by solving the Hamilton-Jacobi-Bellman (HJB)
equation I.1. If we define the instantaneous cost incurred at time
t if control u is applied at state x as c(x,u), and the optimal
cumulative cost-to-go until the end destination as V (x, t), the
HJB equation allows us to relate the time derivative of V to the

instantaneous cost c and the gradient of V in state space [1]:

dV (x, t)
dt

+min
u
{c(x,u)+∇V (x, t) · f (x,u)}= 0 (I.1)

For formulation F1, the immediate cost function c(x,u) is
defined as c(x,u) .

= µ p(x,u)+ 1− µ , and for formulation F2,
c(x,u) .

= p(x,u).
The HJB equation is a partial differential equation (PDE) that

is seldom possible to solve analytically. Specifically for train
run curve optimization, analytical solutions do not appear to be
available, and numerical methods must be applied instead [2].
In general, implementing and verifying direct solutions to the
HJB equation is quite difficult, and results in slow computation.
In the following section, we describe alternative solutions
methods based on Markov decision processes. Two of these
methods are for formulation F1, and one is for formulation F2.

II. MARKOV DECISION PROCESSES FOR RUN-CURVE

COMPUTATION

Our general solution approach is to represent the continuous-
state-space problem in the form of a Markov decision process
(MDP), and solve the MDP by means of dynamic program-
ming, value iteration, or policy iteration [3], [4]. A discrete-
space MDP is described by the tuple (S,A,P,R). It has a
discrete set S of N states s(i) ∈ S, 1 ≤ i ≤ N such that the
MDP occupies one of these states sk ∈ S at any time tk, and a
set U of L actions u(l) ∈U , 1 ≤ l ≤ L that can be applied at
any given time. We assume that the starting state s0 is known
and fixed. A transition probability function P expresses the
probability Pi jl

.
= Pr(sk+1 = s(j)|sk = s(i),uk = u(l)) of being in

state sk+1 = s(j) at time tk+1 if the MDP was in state sk = s(i)

at time tk and control (action) uk = u(l) was applied at that
time. Similarly, a reward function R expresses the reward (or
cost) Ril

.
= r(sk = s(i),uk = u(l)) of applying action uk = u(l) to

state sk = s(i) at time tk. The MDP evolves in discrete decision
epochs that might occur at regular time intervals (e.g., tk = k∆t),
or might not have a fixed time duration attached to them. The
goal is to optimize a performance measure J = ∑

K
k=0 r(sk,uk).

At any given moment, we restrict the actions that the train
controller can be executing to one of the following four:
accelerating (u1), decelerating (u2), running at a constant speed
(u3), and coasting (moving due to the train’s own momentum,
u4). Such a restriction appears to be typical for automatic train
operation (ATO) systems, and would result in a very compact
representation of the optimal action sequences.

The continuous-state and continuous-time dynamics of the
train are also discretized to create discrete state space of the
MDP, but there are three different methods to do that, depending
on the formulation of the problem (F1 or F2) and the MDP
solution method. These three methods are described below.

III. EQUAL-TIME MDP FOR F1

In this method, time is discretized at constant time steps of
length ∆t, such that decisions and state transitions happen at
times tk = k∆t, where k is an integer. The equations of motion
of the train are integrated forward in time for one time step to
obtain a set of difference equations for the successor state at the
end of that time step: xk+1 =F(xk,uk). Similarly, the immediate
cost C(xk,uk) incurred during one epoch is the integral of the
instantaneous cost c(x,u) over that epoch.

The similarities between train dynamics and MDPs are that
both evolve in discrete time under the effect of a small number
of discrete actions, and both seek to optimize a performance
criterion defined over states and actions. The two major dif-
ferences are in the type of state used (continuous x ∈ R2 vs.
discrete s ∈ S) and in the way state evolution is described
(function F(x,u) vs. probability transition function Pi jl). The
objective of the conversion method, then, is to construct a state
set S embedded in R2 and a transition function Pi jl for every
triple (s(i),s(j),u(l)). After the MDP is constructed, an optimal
policy u = π(s(i)) that maps states to optimal controls can be
found for every s(i) ∈ S, by using well known algorithms such
as policy iteration and value iteration [5].

The proposed method is based on similarities in the mathe-
matical properties of probability functions and convex combi-
nations. A probability function (also called sometimes a proba-
bility mass function to distinguish it from a probability density
function) specifies the probability that a random variable is
equal to some specified value. For the case of MDPs, the
transition function is such a (conditional) probability mass func-
tion, conditioned on the starting state sk = s(i) and the applied
control uk = u(l). The random variable for which the probability
function is specified is the successor state sk+1. If the size of
the state set S is N, let s(1), s(2), . . . , s(N) be an enumeration of
all states. The elements of the transition function can then be
defined as p j

.
= Pi jl = Pr(sk+1 = s(j)|sk = s(i),uk = u(l)). From

the axiomatic properties of probability mass functions, then, it
is always true that ∑

N
j=1 p j = 1, and p j ≥ 0, j = 1,N.

On the other hand, a convex combination of N vectors y j,
j = 1,N is defined as ∑

N
j=1 c jy j, such that ∑

N
j=1 c j = 1, and

z

v

x(i)

y
p2

p3

p1

Figure III.1. Triangulation of the state space of a moving train. The transition
resulting from one action (acceleration) is shown.

c j ≥ 0, j = 1,N. By comparing the two definitions, it can
be observed that probability mass functions and the set of
coefficients defining a convex combination obey exactly the
same mathematical constraints, and a valid probability function
can be used as coefficients of a valid convex combination, and
vice versa. We use this fact to construct all transition functions
of the MDP as sets of coefficients for suitably defined convex
combinations.

A. Conversion Algorithm

The algorithm starts with selecting N states s(1), s(2), . . . ,
s(N) such that each corresponds to a state x ∈ R2. We denote
the continuous state that corresponds to MDP state s(i) by x(i).
Every x(i) is a point (vector) in 2-dimensional Euclidean space.
Call the set of points X = {x(1),x(2), . . . ,x(N)}. The destination
station (point [Z,0]T) should also be in the set X .

The next step is to find the Delaunay triangulation DT (X) of
the set of points X (Figure III.1). The Delaunay triangulation
consists of triangles each of which has 3 vertices, such that each
of these vertices is a member of X . Then, for each point x(i)

that corresponds to state s(i), we execute the system function f

of the train dynamics to find the successor point y of x(i) under
control u(l): y = f (x(i),u(l)).

In general, the successor point y does not coincide with any
of the pre-selected points x(i), i = 1,N, that is, the transition
from a vertex x(i) is not necessarily to another vertex x(j),
but somewhere between the vertices. Our proposal, and the
key idea of this paper, is to treat that transition instead as

a probabilistic transition to one of the three vertices of the

triangle in DT (X) that contains the point y. In order to find

this triangle, we traverse all M simplices in DT (X) and find
the barycentric coordinates c1, c2, and c3 of y, i.e. the three
coefficients that satisfy y = c1x(m,1)+c2x(m,2)+c3x(m,3), where
x(m,1), x(m,1), and x(m,1) are the three vertices of triangle m,
m = 1,2, . . . ,M. Triangle m does indeed contain point y if and
only if the three coefficients constitute a convex combination,
i.e., they are all positive. (Their sum is always one.)

As noted above, the transition function of an MDP has
the exact same properties: the sum of all probabilities is one,
and they are all positive. With this observation, we can easily
construct a complete transition probability distribution over all
possible N successor states s(j): if s(j)corresponds to one of
the vertices of the enclosing triangle m, that is, x(i) = x(m,d) for
some d ∈ 1,2,3, then the corresponding transition probability
of the MDP is Pi jl = Pr(sk+1 = s(j)|sk = s(i),uk = u(l)) = cd ;
otherwise, Pi jl = 0. Finally, the state that corresponds to the
end station [Z,0]T always transitions to itself with probability
one, that is, it is an absorbing, terminal state.

Defining the reward function is straightforward: the reward
(cost) of taking action uk = u(l) in state sk = s(i) is equal to the
cost incurred in decision epoch k (between times tk and tk+1)
if action uk = u(l) is applied in the corresponding state x(i):
r(s(i),u(l)) =C(x(i),u(l)). The cost of any action for the terminal
state is zero. Since the reward in this case has the meaning
of cost, the objective is to minimize its cumulative value
J = ∑

K
k=0 r(sk,uk) until the terminal state is reached. With this

conversion, the deterministic continuous system dynamics of
the train are converted to a stochastic discrete MDP. Full details
of the conversion algorithm and its computational complexity
are available in [4].

B. Solving the Equal-Time MDP

It should be noted, however, that the constructed MDP might
contain self-transitions. It can be solved by means of the value
iteration algorithm which consists of executing the following
assignment in multiple sweeps over the entire state space of
the MDP until the value function V (s) converges:

V (s) := min
u
[R(s,u)+∑

s′
Pr(sk+1 = s′|sk = s,uk = u)V (s′)]

(III.1)
A single such assignment is known as a Bellman back-up

and is computationally inexpensive, because there are at most
three possible successor states s′ for each state s. Once the value
function converges, the value function will satisfy equation III.1

as equality. After that, the optimal policy for the MDP can be
determined as π∗(s) = argmaxuQ(s,u), where we make use of
the auxiliary function Q(s,u) .

= R(s,u)+∑s′ Pr(sk+1 = s′|sk =

s,uk = u)V (s′).
The goal, however, is to find a control law u = ρ(x) that

is a mapping from the continuous state x of the moving train,
as opposed to the discrete state of the embedded MDP s. In
order to find such a law, we use the barycentric coordinates to
estimate the merit Q̂(x,u) of the individual action u taken in
state x as Q̂(x,u) = ∑

3
j=1 c jQ(s(j),u), and use the control law

ρ(x) = argmaxuQ̂(x,u). Given that the barycentric coordinates
c can be interpreted as individual probabilities that the MDP is
in one of its discrete states, the function Q̂(x,u) is indeed the
exact expected merit of taking action u at the continuous state
x.

IV. EQUAL-DISTANCE MDP FOR F1

The biggest computational drawback of the equal-time (ET)
MDP is its relatively long solution time, due to the need to
use the value iteration algorithm. It would be advantageous to
construct an MDP without self-transitions, and we can achieve
that if we use a regular rectangular grid such that the phase
space (z,v) of the moving train is divided into multiple vertical
lines z = z j, and each of these lines is covered by a number of
MDP states (Figure IV.1). Six lines are shown in that figure,
such that all states on a given line have the same coordinate
z. The transition rules of the MDP are also changed: each
transition starts at a state with coordinates [z j,v], for some line
index j and velocity v, and the chosen action u is executed
until the distance coordinate reaches the next line: z = z j+1.
The duration of that transition can vary according to the starting
state and the chosen action, but is uniquely determined by them.

In that case, if we apply the decomposition of the ending state
y into barycentric coordinates described above, it will result in
at most two non-zero values for the three coordinates (p2 and
p3 in Figure IV.1), because the ending state y will always lie on
one of the sides of a triangle in the Delaunay triangulation of
the state space. Equivalently, when the barycentric coordinates
are interpreted as transition probabilities of an MDP, transitions
will always start at a state on line z j and end in one or two
states on line z j+1, meaning that no self transitions would exist
in this MDP.

If we then group all states lying on line z j into stage j, the
resulting MDP could be decomposed in sequential stages, such
that the train moves from stage to stage in each decision step.

z

v

x(i) y

p
2

p
3

p1=0

Figure IV.1. In equal-distance MDPs (ED-MDPs), states are located on a
number of vertical lines, such that multiple states have the same distance
coordinate z j . Such states form a stage, and transitions happen only between
consecutive stages, allowing fast solutions by means of backward dynamic
programming.

Then, by performing Bellman back-ups (Equation III.1) stage
by stage, starting with the last stage and proceeding backward
in time (that is, performing dynamic programming), the value
function could be determined in only one sweep of the state
space, rather than in multiple sweeps required by the value
iteration algorithm.

We will call the resulting MDP an equal-distance MDP (ED-
MDP), because all transitions between states in stages j and
j + 1 cover the same distance along the railway track (equal
to z j+1 − z j). It can be seen that the ED-MDP model is a
special case of the general MDP approach, where all barycentric
coordinates are degenerate in a way that at most two of them
are greater than zero. From computational point of view, finding
these positive coordinates is also much simpler than in the
general case, because only the states in stage j + 1 must be
considered, and if their velocities are sorted in ascending order,
binary search on them can be used to find which two states have
positive transition probabilities.

V. EQUAL-TIME MDP FOR F2

In order to solve the second formulation of the problem,
where the end time T is fixed, we augment the state space of
the MDP with a time coordinate tk, such that tk = k∆t, and
T = tK = K∆t. In this case, the end time T must be an integer
multiple of the time step ∆t. Each state of the MDP, then, is
described by the triple [z,v, t], and transitions occur between
consecutive time steps. The state space of the MDP can be
organized into time slices, where each slice is a replica of the

z

v

x(i)

p

1

z

v

y
p2

p3

1

z

v

Figure V.1. The MDP for the fixed-end-time version of the problem has a
separate replica of the triangulation for multiple time steps, organized into time
slices. Three slices are shown here, in black, green, and blue, respectively. Each
transition is from one time slice to the next (here, a transition is shown from
x(i) in the black slice to y in the green slice).

triangulation for the ET-MDP case (Figure V.1). Each transition
takes place between a starting state in one slice and an end state
in the next slice.

When finding the optimal policy for this MDP, the goal is to
compute the value function V (s, t) for every augmented state
(s, t), where the state now includes time. In general, the value
function for the same state s, but different times t1 and t2, is not
the same. In this case, the Bellman back-up for the augmented
states looks as follows:

V (s, tk) :=min
u
[R(s,u)+∑

s′
Pr(sk+1 = s′|sk = s,uk = u)V (s′, tk+1)]

(V.1)
Since the successor states s′ always lie in slice k + 1 (for

time tk+1), there are no self transitions in the MDP. Its value
function can be computed by means of dynamic programming,
using the above equation, starting with the last slice (K), and
proceeding backward in time until the starting slice and state.
Although the method is not iterative, and only a single sweep
over the augmented state space is necessary, this MDP has K

times more states than the one for the ET-MDP or ED-MDP
for F1, and its computation time is that many times longer.

VI. EXPERIMENTAL RESULTS

We tested the accuracy and computational speed of the three
solution methods on a test case with a track of length 2000
meters, with varying slopes and speed limits, and fastest pos-
sible running time of 139 seconds (Figure VI.1, showing also

0 500 1000 1500 2000 2500
0

10

20

30

40

50

60

70

80

S
p

ee
d

(k
m

/h
)

Running distance(m)

Figure VI.1. Run curves for solver VTT-ED: variable end time, F1, ED-MDP.
The red line shows the speed limit at the current location of the railroad.

multiple run curves for progressively increasing running times.
Figure VI.2 describes the experimentally computed optimal
trade-off (Pareto boundary) between running time and con-
sumed energy, for the three computational methods described.
The states of the MDP were placed on a regular rectangular
grid in state space, the same for all methods. Both the variable
terminal time case (F1, denoted by VTT), and the fixed terminal
time case (F2, denoted by FTT), are shown. VTT-ED is the
curve for the ED-MDP case, and VTT-ET-1 and VTT-ET-2 are
curves for the ET-MDP case, from two different implementa-
tions. All four curves describe the same underlying trade-off,
but computed by means of different methods. Moreover, all four
are approximations to the true curve, and their close grouping
suggests that they have similar accuracy. Overall, the ED-MDP
method shows the smoothest Pareto boundary, and finds best
optima for longer running times.

Next, we explored the effect of the size of the MDP on
optimality. The size of the MDP is determined by the number
of states of the MDP, and when these states are located on a reg-
ular rectangular grid, their number depends on the discretization
step of the grid. Figure VI.3 shows the time/energy trade-off
curves for different discretization steps. The computed curve
for 101 steps in distance and 40 in velocity is not substantially
different from the one for 201 steps in distance in 80 in velocity,
and is four times faster to compute. This suggests that the
discretization steps for the former curve (of size 20m along
the distance direction and 2km/h in the velocity direction) are
sufficient to compute close to optimal run curves.

130 140 150 160 170 180 190 200
4

5

6

7

8

9

10

Running time(secs)

E
n

er
g

y(
kW

h
)

VTT−ET−1
VTT−ET−2
VTT−ED
FTT−ET

Figure VI.2. Optimal trade-off between running time and consumed energy,
using both the variable terminal time case (F1, denoted by VTT), and the fixed
terminal time case (F2, denoted by FTT). VTT-ED is the curve for the ED-
MDP case, and VTT-ET-1 and VTT-ET-2 are curves for the ET-MDP case, from
two different implementations. All four curves describe the same underlying
trade-off, but computed by means of different methods.

130 140 150 160 170 180 190 200
4

5

6

7

8

9

10

Running time(secs)

E
n

er
g

y(
kW

h
)

VTT−ED−201x80−0.01
VTT−ED−201x80
VTT−ED−101x40
VTT−ED−61x40
VTT−ED−31x31

Figure VI.3. Time/energy trade-off for different discretization levels. The
computed curve for 101 steps in distance and 40 in velocity is not substantially
different from the one for 201 steps in distance in 80 in velocity, and is four
times faster to compute.

That figure also contains a line labeled “VTT-ED-201x80-
0.01” for the case when the simulation/control step of the train
system was equal to 0.01s, whereas all other graphs used step
of 0.1s. Visual comparison with the graph labeled “VTT-ED-
201x80-0.1” suggests that using the smaller time step does have
some minimal effect on the optimality of the curve, but using
time steps of 0.1s should be acceptable for practical operation.

In terms of computational time, the three methods exhibited

very different speeds. All experiments were performed on a
computer with Intel Core 2 Duo E6600 CPU (2.40GHz), and
all solvers were implemented in MATLAB 7.9.0 (R2009b). The
VTT-ED method is by far the fastest of all three, because its
MDP has no self-transitions or loops, and has many fewer states
than the MDP for the FTT case (F2). For example, it took only
20.6 seconds to compute the optimal policy for an MDP with
201 steps in distance, and 40 states (velocities) per line.

For comparison, the VTT-ET-2 solver took 527 seconds on
an MDP with 201 steps in distance, 81 steps in velocity, and 5
seconds transition time. Its computation time depends strongly
on the time step: the same discretization, but with 10-second
transition times, resulted in computation time of 993 seconds.
Based on this, we can conclude that the ED-MDP method is at
least an order of magnitude faster than the ET-MDP method,
and should be preferred in practice. This can be attributed to
the lack of cycles and self-transitions in the ED-MDP.

VII. CONCLUSIONS AND FUTURE WORK

Three methods for converting train dynamics and run-curve
optimization problems into MDPs were proposed and tested on
the same test problem. Of these, it is recommended to use the
ED-MDP method for its high speed and smooth resulting run
curves. Experimental results suggest that discretization steps
of 20m in distance and 2km/h in velocity are sufficient for
computation of accurate optimal run curves.

Future work will focus on methods for speeding up the
computation for the fixed terminal time case, and representing
the control law compactly. Intuitively, each slice contains many
states that the train cannot be in — either cannot get to them at
that time, or if it is there, cannot get to the destination station
at time tK . It might be possible to prune these states out of the
state space of the MDP, speeding up computation even more.

REFERENCES

[1] R. F. Stengel, Optimal Control and Estimation. Mineola, NY: Dover,
1986.

[2] H. Ko, T. Koseki, and M. Miyatake, “Application of dynamic programming
to optimization of running profile of a train,” in Computers in Railways
IX, A. et al., Ed., 2004, pp. 103–112.

[3] J. Kushner and P. Dupuis, Numerical Methods for Stochastic Control
Problems in Continuous Time. Heidelberg: Springer Verlag, 2001.

[4] D. Nikovski and A. Esenther, “Construction of embedded Markov decision
processes for optimal control of non-linear systems with continuous state
spaces,” in IEEE Conference on Decision and Control and European
Control Conference, M. Polycarpou, Ed., 2011, pp. 7944–7949.

[5] M. L. Puterman, Markov Decision Processes—Discrete Stochastic Dy-
namic Programming. New York, NY: John Wiley & Sons, Inc., 1994.

	Title Page
	Title Page
	page 2

	Markov Decision Processes for Train Run Curve Optimization
	page 2
	page 3
	page 4
	page 5
	page 6

