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Abstract

We give a new proof of the fact that every planar graph is 5-
choosable, and use it to show that every graph drawn in the plane
so that the distance between every pair of crossings is at least 15 is
5-choosable. At the same time we may allow some vertices to have
lists of size four only, as long as they are far apart and far from the
crossings.

Thomassen [5] gave a strikingly beautiful proof that every planar graph
is 5-choosable. To show this claim, he proved the following more general
statement:

Theorem 1. Let G be a plane graph with the outer face F , xy an edge of F ,
and L a list assignment such that |L(v)| ≥ 5 for v ∈ V (G)\V (F ), |L(v)| ≥ 3
for v ∈ V (F ) \ {x, y}, |L(x)| = |L(y)| = 1 and L(x) 6= L(y). Then G is
L-colorable.
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Let us note that the lists of x and y of size 1 give a precoloring of a
path of length 1 in the outer face of G. Unfortunately, this statement is
rather tight, and almost any attempt to alter it (e.g., by allowing more
than two vertices to be precolored, allowing lists of size 2 subject to some
constraints, allowing some crossings in the drawing, etc.) fails with infinitely
many counterexamples. We give a proof of a different version of Theorem 1
(see Theorem 6), that turns out to be more robust with respect to some
strengthenings of the planar 5-choosability theorem. Our proof is inspired
by Thomassen’s proof [6] of 3-choosability of planar graphs of girth 5. Using
this technique, we give the proof of our main result:

Theorem 2. Let G be a graph drawn in the plane with some crossings and
let N ⊆ V (G) be a set of vertices such that the distance between any pair of
crossed edges is at least 15, the distance between any crossing and a vertex
in N is at least 13, and the distance between any two vertices in N is at least
11. Then G is L-colorable for any list assignment L such that |L(v)| = 4 for
v ∈ N and |L(v)| ≥ 5 for v ∈ V (G) \N .

Let us recall that a list assignment L for G is a function that assigns to
each vertex of G a set L(v), called the list of admissible colors for v. An
L-coloring is a choice of a color c(v) ∈ L(v) for each v ∈ V (G) such that no
two adjacent vertices receive the same color. The graph is k-choosable if it
admits an L-coloring for every list assignment L with |L(v)| ≥ k for every
v ∈ V (G).

Our main result, Theorem 2, clearly implies the following special case.

Theorem 3. Every graph drawn in the plane so that the distance between
every pair of crossings is at least 15 is 5-choosable.

Some distance condition on the crossings is necessary, even if we would
allow only three crossings, as shown by K6. On the other hand, it was
proved in [4] and independently also in [2] that the distance requirement is
not needed, if we have at most two crossings. The inductive proof of Theorem
2 involves a stronger inductive hypothesis that is stated later as Theorem 7
and in particular also implies the above-mentioned result from [2, 4].

Theorem 4 ([4, 2]). Every graph whose crossing number is at most two is
5-choosable.

The proof of Theorem 4 is given at the end of the paper. Another special
case of Theorem 2 is the following.
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Theorem 5. Let G be a planar graph and N ⊆ V (G) a set of vertices such
that the distance between any pair of vertices in N is at least 11. Then G
is L-colorable for any list assignment L such that |L(v)| = 4 for v ∈ N and
|L(v)| ≥ 5 for v ∈ V (G) \N .

The last result is motivated by the result of Voigt [7] showing that not
all planar graphs are 4-choosable. Furthermore, it is related to the following
problem of Albertson [1]:

Problem 1. Does there exist a constant d such that whenever G is a planar
graph with list assignment L that gives a list of size one or five to each vertex
and the distance between any pair of vertices with list of size one is at least
d, then G is L-colorable?

Starting with a similar technique as used in this paper, we were able
to give a positive answer to this problem (which we present in a separate
paper [3]).

We start with giving the proof of the basic statement for planar graphs
in Section 1. In Section 2 we then generalize it by allowing crossings and
4-lists subject to distance constraints, obtaining the proof of Theorem 2.

1 Planar graphs

Let P be a path or a cycle. The length `(P ) of P is the number of its
edges, i.e., a path of length l has l + 1 vertices and a cycle of length l has l
vertices. Given a graph G and a cycle K ⊆ G, an edge uv of G is a chord
of K if u, v ∈ V (K), but uv is not an edge of K. For an integer k ≥ 2,
a path v0v1 . . . vk is a k-chord if v0, vk ∈ K and v1, . . . , vk−1 6∈ V (K). We
define a chord to be a 1-chord. If G is a plane graph, let IntK(G) be the
subgraph of G consisting of the vertices and edges drawn inside the closed
disc bounded by K, and ExtK(G) the subgraph of G obtained by removing all
vertices and edges drawn inside the open disc bounded by K. In particular,
K = IntK(G) ∩ ExtK(G). Note that each k-chord of K belongs to exactly
one of IntK(G) and ExtK(G). If the cycle K is the outer face of G and Q is a
k-chord of K, let C1 and C2 be the two cycles in K∪Q that contain Q. Then
the subgraphs G1 = IntC1(G) and G2 = IntC2(G) are the Q-components of G.

As we have mentioned earlier, Thomassen’s Theorem 1 does not extend
to the case when we have a precolored path of length two. However, if we
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strengthen the condition on the list sizes of the other vertices on the outer
face, such an extension is possible.

Theorem 6. Let G be a plane graph with the outer face F , P a subpath
of F of length at most two and L a list assignment such that the following
conditions are satisfied:

(i) |L(v)| ≥ 5 for v ∈ V (G) \ V (F ),

(ii) |L(v)| ≥ 3 for v ∈ V (F ) \ V (P ),

(iii) |L(v)| = 1 for v ∈ V (P ),

(iv) no two vertices with lists of size three are adjacent in G,

(v) L gives a proper coloring to the subgraph induced by V (P ), and

(vi) if P = uvw has length two and x is a common neighbor of u, v and w,
then L(x) 6= L(u) ∪ L(v) ∪ L(w).

Then G is L-colorable.

Proof. Suppose for a contradiction that the claim is false, and let G be a
counterexample with |V (G)| + |E(G)| the smallest possible, and subject to
that, with the longest path P and with the minimum size of the lists (while
satisfying (i)–(vi)). It is clear that G is connected and that every vertex
v ∈ V (G) satisfies deg(v) ≥ |L(v)|.

Furthermore, G is 2-connected: otherwise, let v be a cut-vertex and let G1

and G2 be subgraphs of G such that G1∪G2 = G, V (G1)∩V (G2) = {v} and
|V (G1)|, |V (G2)| > 1. If v ∈ V (P ), then by the minimality of G there exist
L-colorings of G1 and G2, and these colorings together give an L-coloring of
G. Otherwise, we may assume by symmetry that P ⊆ G1. Consider an L-
coloring ϕ of G1. Let L2 be the list assignment for G2 such that L2(u) = L(u)
for u 6= v and L2(v) = {ϕ(v)}. By the minimality of G, G2 is L2-colorable,
and this coloring together with ϕ gives an L-coloring of G.

Every triangle T in G bounds a face: otherwise, first color the subgraph
ExtT (G) and then extend the coloring to IntT (G). A similar argument shows
that G contains no separating 4-cycles; otherwise, consider such a 4-cycle
K = k1k2k3k4, and let ϕ be an L-coloring of ExtK(G). Let G′ = IntK(G).
Since K is separating, we have V (G′) 6= V (K), and since every triangle
bounds a face, we conclude that K has no chord in G′. Let L′ be the list
assignment for G′ − k1 such that L′(z) = {ϕ(z)} for z ∈ {k2, k3, k4}, L′(z) =
L(z) \ {ϕ(k1)} if z 6∈ {k2, k4} is a neighbor of k1 and L′(z) = L(z) if z is any
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other vertex. By the minimality of G, the graph G′ − k1 is L′-colorable, and
this coloring together with ϕ gives an L-coloring of G.

Since G is 2-connected, its outer face is bounded by a cycle, which we
denote by F as well. Next, we show that F has no chords. Otherwise, let uv
be a chord of F and let G1 and G2 be the uv-components of G. If P ⊆ G1,
then we first color G1 and then extend the coloring to G2. The case that
P ⊆ G2 is symmetric. It follows that P has length two and all the chords of
F are incident with its middle vertex. Let P = z1uz2, where zi ∈ V (Gi) for
i ∈ {1, 2}. Let ϕ be an L-coloring of G1 and let L2 be the list assignment
for G2 such that L2(z) = L(z) for z 6= v and L2(v) = {ϕ(v)}. Since G is
not L-colorable, G2 is not L2-colorable. By the minimality of G, either v is
adjacent to z2, or u, v and z2 have a common neighbor w with list of size
three (which means, in particular, that w ∈ V (F )). Since every chord of G
is incident with u, the edge vz2 or vw belongs to F . Since every triangle
bounds a face, we conclude that v has degree two in G2. By symmetry, v
has degree two in G1 as well, and thus v has degree three in G. It follows
that |L(v)| = 3, and thus v cannot be adjacent to any other vertex with
list of size three. In particular, we cannot have the case with the vertex
w. We conclude that v is adjacent to z1 and z2 and V (G) = {u, v, z1, z2}.
However, L(v) 6= L(u) ∪ L(z1) ∪ L(z2) by (vi), and thus G is L-colorable.
This contradiction proves that F has no chords.

Similarly, we have the following property:

(1) Let uvw be a 2-chord of F and let G1 and G2 be uvw-components of G.
If P ⊆ G1, then either u and w are adjacent and G2 is equal to the triangle
uvw, or there exists a vertex x such that V (G2) = {u, v, w, x}, |L(x)| = 3
and x is adjacent to u, v and w.

If `(P ) < 2, then it is easy to see that we can precolor 2 − `(P ) more
vertices of F without violating (vi). Thus, we may assume that `(P ) = 2.
Let P = p0p1p2. Suppose that p0, p1 and p2 have a common neighbor v. If
v ∈ V (F ), then V (G) = {p0, p1, p2, v} and G is L-colorable. If v 6∈ V (F ),
then v has degree at most four in G by (1) and thus deg(v) < |L(v)|, which
is a contradiction. Therefore, p0, p1 and p2 have no common neighbor.

Furthermore, `(F ) ≥ 6: If `(F ) = 3, then we remove one vertex of F
and remove its color from the lists of all its neighbors, and observe that the
resulting graph is a smaller counterexample to Theorem 6. In the case when
`(F ) = 4, then similarly color and remove the vertex of V (F )\V (P ). Finally,
suppose that `(F ) = 5. Let ϕ be an arbitrary L-coloring of F = p2p1p0v1v2.
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Remove v1 and v2 from G and remove their colors according to ϕ from the
lists of their neighbors, obtaining a graph G′ with the list assignment L′.
Since every triangle in G bounds a face, at most one vertex in G′ has list
of size three. Since p0, p1 and p2 have no common neighbor and p0 is not
adjacent to p2, G

′ with the list assignment L′ is a smaller counterexample to
Theorem 6, which is a contradiction.

Let F = p2p1p0v1v2v3v4 . . .. If `(F ) = 6, then we set v4 = p2. We may
assume that |L(v1)| = 3 or |L(v2)| = 3, since otherwise we can remove a color
from the list of v1. Let us consider a set X ⊆ V (F ) \ V (P ) and a partial
L-coloring ϕ of X that are defined as follows:

(X1) If |L(v1)| = 3 and |L(v3)| 6= 3, then X = {v1} and ϕ(v1) ∈ L(v1)\L(p0)
is chosen arbitrarily.

(X2) If |L(v1)| = 3 and |L(v3)| = 3, then X = {v1, v2} and ϕ is chosen so
that ϕ(v2) ∈ L(v2) \ L(v3) and ϕ(v1) ∈ L(v1) \ (L(p0) ∪ {ϕ(v2)}).

(X3) If |L(v2)| = 3, and either |L(v4)| 6= 3 or |L(v3)| ≥ 5, then X = {v2}
and ϕ(v2) ∈ L(v2) is chosen arbitrarily.

(X4) If |L(v2)| = 3, |L(v3)| = 4 and |L(v4)| = 3, then:

(X4a) If v1, v2 and v3 do not have a common neighbor or |L(v1)| ≥ 5,
then X = {v2, v3} and ϕ is chosen so that ϕ(v3) ∈ L(v3) \ L(v4)
and ϕ(v2) ∈ L(v2) \ {ϕ(v3)}.

(X4b) If v1, v2 and v3 have a common neighbor and |L(v1)| = 4, then
X = {v1, v2, v3} and ϕ is chosen so that ϕ(v3) ∈ L(v3) \ L(v4),
ϕ(v1) ∈ L(v1) \ L(p0) and either at least one of ϕ(v1) and ϕ(v3)
does not belong to L(v2), or ϕ(v1) = ϕ(v3). The vertex v2 is left
uncolored.

For later reference, Figure 1 shows the subcases used in the definition of X
and ϕ.

Let G′ = G − X and let L′ be the list assignment obtained from L by
removing the colors of the vertices of X according to ϕ from the lists of their
neighbors (if a vertex of X is not colored according to ϕ, we do not remove
any colors for it). Observe that any L′-coloring of G′ can be extended to
an L-coloring of G, thus G′ is not L′-colorable. By the minimality of G,
this implies that G′ violates the assumptions of Theorem 6. Since F has no
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(X1)

p0 v1 v2 v3
(X2)

p0 v1 v2 v3

(X3)

p0 v1 v2 v3 v4
(X3)

p0 v1 v2 v3 v4

(X4a)

p0 v1 v2 v3 v4
(X4a)

p0 v1 v2 v3 v4

(X4b)

p0 v1 v2 v3 v4

Figure 1: Subcases in the definition of X. Triangle vertices represent lists of
size 3, square vertices list of size ≥ 4. Encircled vertices are in X.
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chords, the choice of X and ϕ implies that every vertex of V (G′) \ V (P ) has
list of size at least three. Since p0 is not adjacent to p2 and p0, p1 and p2 do
not have a common neighbor in G, it follows that the conditions (v) and (vi)
are satisfied by G′ with the list assignment L′. We conclude that (iv) is false,
i.e., G′ contains adjacent vertices u and v such that |L′(u)| = |L′(v)| = 3.

Since F has no chords, the choice of X ensures that at most one of u
and v belongs to V (F ); hence, we can assume that v 6∈ V (F ) and v has two
neighbors in X. In particular, X was chosen according to the cases (X2) or
(X4). Since G contains no separating cycles of length at most 4, we conclude
that u has at most one neighbor in X, and thus u ∈ V (F ). Let x ∈ X be
the neighbor of v such that the distance between u and x in F − P is as
large as possible. By (1) applied to the 2-chord xvu, we conclude that the
xvu-component of G that does not contain P consists of xvu and a vertex z
adjacent to x, v and u with |L(z)| = 3. It follows that |L(u)| > 3, and since
|L′(u)| = 3, we have z ∈ X and |L(u)| = 4. The inspection of the choice of
X shows that (X4) holds, i.e., u = v1, z = v2 and x = v3. However, note
that the condition of (X4b) holds; hence u ∈ X, contrary to the assumption
that u ∈ V (G′). This completes the proof of Theorem 6.

2 Near-planar graphs

In this section, we aim to show that graphs drawn in the plane with crossings
far apart are 5-choosable. For the purposes of the induction, it will be useful
to allow other kinds of irregularities (adjacent vertices with list of size three,
as well as vertices with list of size four not incident with the outer face, which
arise when some vertices incident with a crossing are colored and their color
is removed from the lists of their neighbors), subject to distance constraints.

Let us first introduce some terminology. Let G be a graph. For two sub-
graphs H1, H2 ⊆ G, the distance d(H1, H2) between H1 and H2 is the mini-
mum of the distances between the vertices of H1 and H2, i.e., the minimum k
such that there exists a path v0v1 . . . vk inG with v0 ∈ V (H1) and vk ∈ V (H2).
A drawing G of G in the plane consists of a set V = {pv | v ∈ V (G)} of distinct
points in the plane and a set of simple polygonal curves E = {ce | e ∈ E(G)}
such that

• if uv ∈ E(G), then pu and pv are the endpoints of cuv,

• no internal point of any ce ∈ E belongs to V , and

8



• at most two of the curves in E contain any point that does not belong
to V , and any two curves in E have at most one point in common.

A crossing of G is a point in the plane that belongs to two of the curves in
E , but not to V . An edge e is incident with the crossing x if x ∈ ce. An edge
e is crossed if it is incident with some crossing, and non-crossed otherwise.
For a crossing x, we define Gx to be the graph consisting of the two edges
incident with x. Two vertices of G are crossing-adjacent if they belong to Gx

for some crossing x and are not adjacent in Gx. Removal of
⋃ E splits the

plane into several connected subsets, which we call faces of G. By a slight
abuse of terminology, we sometimes identify a face with its boundary and
hence speak about the vertices, edges and crossings of the face.

Let G be a drawing of a graph G, let P be a path of length at most three
contained in the boundary of the outer face F of G (where in particular, no
edge of P is crossed), N a subset of V (G) and M a subset of E(G), and let L
be a list assignment for G. We say that L is (P,N,M)-valid if the following
conditions are satisfied:

(S) |L(v)| ≥ 5 for v ∈ V (G) \ (V (F )∪N), |L(v)| ≥ 3 for v ∈ V (F ) \ V (P )
and |L(v)| = 1 for v ∈ V (P ),

(N) |L(v)| ≥ 4 for v ∈ N \ V (F ),

(M) if |L(u)| = |L(v)| = 3 and u and v are adjacent, then uv ∈M ,

(P) L gives a proper coloring to the subgraph induced by V (P ),

(T) if a vertex v has three neighbors w1, w2, w3 in V (P ), then L(v) 6=
L(w1) ∪ L(w2) ∪ L(w3), and

(C) if x is a crossing and Gx contains a vertex with list of size three, then
all other vertices of Gx have lists of size 1 or ≥ 5.

We define some subgraphs H of G to be special, and assign a rank r(H)
to each such subgraph (see Figure 2). Specifically, H is special if it falls into
one of the following cases:

• H consists of the two edges incident with a crossing. In this case, its
rank is 4.

• P has length three and H consists of the middle edge of P ; the rank of
H is 3.
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r(H) = 4

e

P

r(e) = 3

v ∈ N

r(v) = 2

e ∈M

r(e) = 0

Figure 2: Special subgraphs and their ranks

• H is equal to a vertex of N , and r(H) = 2.

• H is equal to an edge of M , and r(H) = 0.

The drawing G is (P,N,M)-distant if d(H1, H2) ≥ r(H1) + r(H2) + 7 for
every pair H1 6= H2 of special subgraphs of G. We shall occasionally refer to
the (P,N,M)-distant requirement as the distance condition. The purpose of
the introduced rank function is the following. In our inductive arguments, we
will occasionally construct a smaller graph G′ and introduce a new special
subgraph H ′ in a vicinity of a special subgraph H that would no longer
exist in G′. If H ′ has smaller rank than H, the distance condition for special
subgraphs in G′ would still hold, and the induction hypothesis can be applied.

A subgraph O ⊆ G is an obstruction if O is isomorphic to one of the
graphs drawn in Figure 3 and sizes of the lists of its vertices match those
prescribed by the figure, where the full-circle vertices have list of size one,
triangle vertices have list of size three, square vertices have list of size four and
pentagonal vertices have list of size five. Let us remark that if the distance
condition holds, then G can contain at most one of the obstructions. For
further reference we exhibit in Figure 4 all possible list assignments for which
the obstructions are not colorable. In particular, observe that the following
holds:

(2) Let H be one of the obstructions and let Q be the path in H consisting
of full-circle vertices. Suppose that Q has length two and that H is neither
OM1 nor OC1. Let q be the middle vertex of Q and let L be a list assignment
such that each vertex v drawn by a k-gon has |L(v)| = k, while the vertices of
Q have lists consisting of all possible colors. Then there exists a color b such
that every L-coloring ψ of Q with ψ(q) 6= b extends to an L-coloring of H.

We prove the following claim, which obviously implies our main result,
Theorem 2.
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OM1 OM2 ON1 ON2

ON3 OC1 OC2 OC3

OC4 OC5 OP1 OP2

OP3 OP4 OP5 OP6

Figure 3: The obstructions used in Theorem 7
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a

b

c

bcxabx

OM1

a

b

c

cxyaxy

OM2

abcxy

a

b

c

acy

ON1

abcy

a

b

c

bcxyaxy

ON2

abxy

a

b

c

bcz

bxyz

axy

ON3

abxy

a

b

c

cxyabxy

OC1

abcxy

a

b

c

cxyzaxyz

OC2

bcxyz

abxyz

a

b

c

bcu

uxyz

axyz

OC3

buxyz

abxyz

a

b

c

bcv

vxyz

abu

uxyz

OC4

bvxyzbuxyz a

b

c

acd

OC5

abxyz bcxyz

dcxyzadxyz

a b c d

abcd

OP1

a b c d

cdxabcx

OP2

a b c d

cdybcxyabx

OP3

a b c d

cdxyaxy

OP4

abcxy

a b c d

cdzcxyzaxy

OP5

abcxy

a b c d

adx

OP6

abcdx

Figure 4: The lists for which the obstructions cannot be colored. Colors
represented by different letters may be equal to each other if they do not
occur in the same list for a particular obstruction.
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Theorem 7. Let G be a graph drawn in the plane, P a path of length at
most three contained in the boundary of the outer face F of G and L a list
assignment for G. Suppose that there exist sets N ⊆ V (G) and M ⊆ E(G)
such that L is (P,N,M)-valid and the drawing of G is (P,N,M)-distant. If

(O) every obstruction in G is L-colorable,

then G is L-colorable.

Before giving the proof of this statement, let us give a quick outline.
Essentially, we follow the proof of Theorem 6. First, we show that the outer
face of a hypothetical minimal counterexample G has no chords and then
we also restrict its 2-chords. This is somewhat more complicated due to the
presence of crossings and the condition (O). Next, we find the set X and
its partial coloring ϕ defined in the same way as in the proof of Theorem 6,
and use it to construct the graph G′ with the list assignment L′. By the
minimality of G, we conclude that G′ violates one of the assumptions of
the theorem. A straightforward case analysis shows that (O) holds, and
the conditions (S), (P) and (T) follow in the same way as in the proof of
Theorem 6; but (M), (N) and (C) can be violated in ways which do not
enable us to obtain a contradiction directly. However, we observe that in such
a case, there is a special subgraph S near to X. In this situation, we apply
the symmetric argument on the other side of the path P , and obtain another
set X ′ and a special subgraph S ′ close to it. By the distance condition, we
have S = S ′, and thus there exists a short path from X to X ′ passing through
S. In this situation, we consider all the possible combinations of X, X ′ and
their positions relatively to S, and obtain a contradiction similarly to the
way we deal with 2-chords.

Let us note that the assumption (C) is a product of a somewhat delicate
tradeoff. We believe the claim still essentially holds even without this as-
sumption, and avoiding it would greatly reduce the number of possible bad
cases and simplify the last part of the proof. However, the list of obstructions
in (O) would be significantly larger, making the first part of the proof longer
and more complicated. Moreover, if we omit (C) completely, then there ex-
ists an obstruction with a precolored path of length one (see Figure 5(a)),
which would be a major problem (we could not easily get rid of chords of
F ). One could consider excluding Figure 5(a) by forbidding vertices with
lists of sizes three or four joined by a crossed edge. This would still simplify
the last part of the proof a lot. However, in addition to having more than 10
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(a) (b)

Figure 5: Why is condition (C) needed?

new obstructions, we do not see a way how to reduce the 2-chord depicted
in Figure 5(b), which would need to be dealt with somehow.

Proof of Theorem 7. We follow the outline of the proof of Theorem 6. We
assume that G is a counterexample to Theorem 7 with |V (G)| + |E(G)| as
small as possible, and subject to that, with the minimum sizes of its lists.
Let k = `(P ) ≤ 3, and let P = p0p1 . . . pk. By applying the same kind of
reductions as used in the proof of Theorem 6 together with the minimality
of G, one can show:

(3) The following properties are satisfied:

(a) Every vertex v ∈ V (G) satisfies deg(v) ≥ |L(v)|.
(b) G is 2-connected and `(P ) ≥ 1.

(c) Every non-crossed chord of F is incident with exactly one internal ver-
tex of P .

(d) If K is a triangle in G and no edge of K is crossed, then K is not
separating. If K is a separating 4-cycle without crossed edges, then
IntK(G) − V (K) is either a vertex in N or a complete graph on 4
vertices involving a crossing.

(e) Every vertex v ∈ V (G) satisfies |L(v)| ≤ 5.

(f) If v ∈ V (G)\V (P ) is adjacent to a vertex p ∈ V (P ), then L(p) ⊆ L(v).

Most properties in (3) are easy to argue about; they are left to the reader.
Property (e) is achieved by removing colors from lists of size 6 or more.
The only problem that may arise is that we obtain an obstruction; however,
inspection of bad lists for the obstructions exhibited in Figure 4 shows that
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we can always remove one of the colors so that (O) still holds. The only
remaining nontrivial claim is the property of separating 4-cycles in part (d).
To prove that, we first color the subgraph of G consisting of ExtK(G) and
all chords of K and then consider G′ = IntK(G). Let K = v1v2v3v4, and
let ci be the color of vi as used in the coloring of ExtK(G). Suppose that
c1 6= c3. In that case we consider the list assignment L′ for G′ given by
setting L′(v) = L(v) if v /∈ V (K), L′(vi) = {ci} for i = 1, 2, 3, and L′(v4) =
{c1, c3, c4}. Since any L′-coloring of G′ yields an L-coloring of G, we conclude
that G′ does not satisfy all assumptions of the theorem. It is easy to see that
the only possible violation is that G′ contains an obstruction. Note that this
obstruction contains the whole path v1v2v3 and that the only vertices whose
lists have size 3 or 4 are v4 and possibly a vertex in N . If a vertex in N is
present, there is no crossing by the distance condition. The only obstructions
with these properties are ON1 and OC5, yielding the outcome of the claim
(a similar argument shows that V (IntK(G)) only consists of the vertices of
the obstruction; see (4) below for details). The remaining case to consider is
when c1 = c3. In this case we replace the color c3 in the list of v3 and in the
lists of all its neighbors by a new color c′3 that does not occur elsewhere, and
then apply the same argument as in the previous case. It is to be observed
that the color c′3 will only be used for v3, and the color c3 will not be used on
any of the neighbors of v3. Thus a coloring with the revised lists gives rise
to an L-coloring of G also in this case. This completes the proof of (3).

Let T = v1v2v3 be a triangle in G. Suppose that the edge v1v2 is crossed
by an edge uw, where w belongs to G2 = IntT (G) and w 6= v3. Let ϕ
be an L-coloring of ExtT (G) and let L2 be the list assignment such that
L2(vi) = {ϕ(vi)} for 1 ≤ i ≤ 3, L2(w) = L(w) \ {ϕ(u)} and L2(z) = L(z)
otherwise. Note that |L2(w)| ≥ 4, that G2 is not L2-colorable and that it is
(v1v2v3, (N ∩V (G2))∪{w}, ∅)-distant. Observe that G2 satisfies the validity
conditions (S)–(C), and also satisfies (O). Hence it is a counterexample to
Theorem 7, contradicting the minimality of G. Similarly, if w = v3, then we
conclude that no vertex is drawn in the open disc bounded by T . Together
with (3), we obtain the following conclusion:

(4) If T is a triangle in G distinct from F , then V (IntT (G)) = V (T ).

Suppose now that G contains one of the obstructions from Figure 3. Note
that each of the obstructions contains a special subgraph. By the distance
condition, none of them has further crossed edges and (4) implies that no
such obstruction H appears in G, as otherwise we would have G = H and G
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would be L-colorable by the assumptions.
Furthermore, analogous arguments as used in the proof of (3)(d) show

that the following conditions hold:

(5) If K is a 4-cycle in G distinct from F and V (IntK(G)) 6= V (K),
then either IntK(G) − V (K) is K4, or there exists a vertex z such that
V (IntK(G)) = V (K) ∪ {z}, z is adjacent to all vertices of K and z either
belongs to N or is incident with an edge crossing an edge of K.

(6) If K is a 5-cycle in G distinct from F , V (IntK(G)) 6= V (K), no edge
of K is crossed and there exists a special subgraph S ⊆ ExtK(G) such that
d(S,K) ≤ 1, then V (IntK(G)) = V (K) ∪ {z} for a vertex z adjacent to all
vertices of K.

Some explanation concerning the proof of (6) is needed: Again, we first
color ExtK(G) and then consider IntK(G) with the 5-cycle precolored. By
the previous results, K has no chords, since the outcomes of (5) would
yield a special subgraph too close to S. Let uv be an edge of K, and let
G′ = IntK(G) − {u, v}. By removing the colors of u and v from the lists of
their neighbors, we obtain another instance of a list coloring problem with a
precolored path of length 2. Since any coloring of G′ gives rise to a coloring
of G, we conclude that one of the assumptions of the theorem is violated.
By the distance condition, the only one that may not hold is the assumption
(T). Since the common neighbor w of the three vertices on the path has list
of size 3 (and it had list of size 5 in G), it is adjacent to u and v in G, thus
proving the claim.

Our next goal is to show that F does not have chords. Let uv be a non-
crossed chord of F . By (3)(c), u is an internal vertex of P , say u = p1, while
v 6∈ V (P ). Let G1 and G2 be the uv-components for G such that p0 ∈ V (G1),
and let P1 = p0p1v and P2 = vp1 . . . pk. For each color c ∈ L(v) \L(u), let Lc

be the list assignment such that Lc(v) = {c} and Lc(z) = L(z) if z 6= v. Since
G is not L-colorable, either G1 or G2 is not Lc-colorable. Furthermore, since
both G1 and G2 are L-colorable (by the minimality of G), there exist distinct
colors c1 and c2 such that G1 is not Lc1-colorable and G2 is not Lc2-colorable.
Since G is a minimal counterexample, the assumptions of our theorem fail
for G1 and G2 with respect to these list assignments. In the sequel we discuss
what can go wrong.

All special subgraphs inG that do not contain v remain special inG1 orG2

and no new special subgraphs arise. Thus, G1 is (P1, N∩V (G1),M∩E(G1))-
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distant and G2 is (P2, N ∩ V (G2),M ∩ E(G2))-distant. Clearly, validity
conditions (S), (N), (M), and (C) hold for both graphs. Thus one of (P),
(T), or (O) fails. If G1 contains an obstruction, then it contains a special
subgraph whose distance to p1 is at most two. In that case, we conclude that
`(P ) ≤ 2 and that G2 contains no obstruction, since the distance between
special subgraphs in G is more than four; also, no edge at distance at most
two from p1 inG2 is crossed. Since `(P ) ≤ 2, we may in this case exchange the
role of G1 and G2 and henceforth assume that G1 contains no obstructions.
Similarly, by exchanging the roles of G1 and G2 if necessary, we may assume
that no edge in G1 at distance at most 2 from p1 is crossed. Furthermore,
if G1 violates (T), then since no edge in G1 incident with p1 is crossed, we
could consider the chord p1z instead of p1v, where z is the common neighbor
of p0, p1 and v. Therefore, we can assume that G1 satisfies (T) and (O).
Since no L-coloring of G2 extends to an L-coloring of G1, we conclude that
G1 violates (P), and thus v is adjacent to p0. Since vp0 is neither crossed
nor incident with an internal vertex of P , we conclude that vp0 is part of
the boundary of F , and hence G1 is equal to the triangle p0p1v. Suppose
now that G2 contains an obstruction H; by (3) and (4), we have G2 = H.
However, the inspection of the obstructions shows that G would either be
L-colorable or an obstruction. Therefore, G2 satisfies (O). Furthermore, by
the absence of OP1 and property (T) of G, we conclude that there exists a
color c ∈ L(v) \ (L(p0)∪L(p1)) such that G2 satisfies (P). Since this coloring
does not extend to an L-coloring of G2, it follows that G2 violates (T), i.e.,
there exists a vertex w adjacent to v and to vertices p, p′ ∈ V (P ) \ {p0}
such that L(w) = L(p) ∪ L(p′) ∪ {c}. Since we cannot choose c so that G2

satisfies both (P) and (T), it follows that either G contains OP2, or vw ∈M
(in which case `(P ) = 2), and G contains OM1. This is a contradiction, thus
every chord of F is crossed.

Consider now a (crossed) chord uv of F that is not incident with an
internal vertex of P . Let e be the edge crossing uv and let G1 and G2 be the
uv-components of G− e such that P ⊆ G1. Let e = x1x2, where x1 ∈ V (G1)
and x2 ∈ V (G2). By the minimality of G, there exists an L-coloring ϕ of
G1. Since ϕ(u) 6= ϕ(v), we can assume that ϕ(x1) 6= ϕ(u). Let G′ be the
graph obtained from G2 − uv by adding new vertices y1 and y2, edges of the
path P ′ = uy1y2v and the edge y1x2. Let L′ be the list assignment for G′

such that L′(u) = {ϕ(u)}, L′(v) = {ϕ(v)}, L′(y1) = {ϕ(x1)}, L′(y2) = {c}
for a new color c that does not appear in any of the lists and L′(z) = L(z)
for any other vertex z. Note that G′ has a new special subgraph consisting
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of the edge y1y2 and that G′ is (P ′, N ∩V (G′),M ∩E(G′))-distant, since the
crossing of G incident with x2 does not belong to G′ and any path from a
special subgraph in G′ to y1y2 passes through one of the vertices u, v, x2 of
the crossing in G. Furthermore, G′ is not L′-colorable, and by the minimality
of G, it violates (T) or (O). The latter is not possible, since y2 has degree
two, thus (T) does not hold in G′. This implies that x2 has list of size three
and it is adjacent to u and v. By (3) and (4), we have V (G2) = {u, v, x2}.
Note that by (C), we conclude that each of |L(u)|, |L(v)|, |L(x1)| is either 1
or 5. Let a be a color in L(x2) distinct from the colors of its neighbors in
P , which exists by (T). Let G′′ = G − x2 with the list assignment L′′ such
that L′′(z) = L(z) \ {a} for z ∈ {u, v, x1} and L′′(z) = L(z) otherwise. Note
that G′′ is (P,N ∪ {x1},M}-distant and L′′ is (P,N ∪ {x1},M)-valid. By
the minimality of G, we have that G′′ violates (O). The obstruction involved
is L-colorable, so it must contain one of the vertices whose lists have been
changed. Since none of these vertices has list of size 3 or 4 in L and all
special subgraphs are far away from the crossing, we conclude that `(P ) = 2,
|L′′(x1)| = 4 and G′′ contains one of ON1, ON2 or ON3, in which the interior
vertex with list of size 4 is x1. However, inspection of these graphs shows
that |L′′(u)| = 3 or |L′′(v)| = 3, which is a contradiction.

Finally, consider a crossed chord uv of F incident with an internal vertex
u of P . Since G is (P,N,M)-distant, we have `(P ) = 2, thus u = p1.
Let e be the edge crossing uv and let G1 and G2 be the uv-components
of G − e such that p0 ∈ V (G1) and p2 ∈ V (G2). Let P1 = p0p1v and
P2 = p2p1v, and let e = x1x2, where xi ∈ V (Gi) for i ∈ {1, 2}. Note that
Gi is (Pi, (N ∩ V (Gi)) ∪ {xi},M ∩ E(Gi))-distant. If Gi contains an edge
f different from p0p1, p0v, p1v, then by the minimality of G there exists an
L-coloring ϕ3−i of G − f ⊇ G3−i + x1x2. If additionally |L(xi)| ∈ {1, 5},
then define Li to be the list assignment for Gi such that Li(v) = {ϕ3−i(v)},
Li(xi) = L(xi) \ {ϕ3−i(x3−i)}, and Li(z) = L(z) for any other vertex z.
Observe that Gi is not Li-colorable, and we conclude that it violates (P),
(T) or (O). (For (S) to hold, we add xi to N). Since ϕ3−i is a coloring of
G − f , (P) is satisfied for Gi. Since G is (P,N,M)-distant and contains
no non-crossed chord, it follows that Gi satisfies (T). Thus, Gi violates (O).
The corresponding obstruction is ON1 since all others either have a special
subgraph of G that would violate the distance condition in G, or have a
non-crossed chord incident with p1. Together with (3) and (4), we have that
for each i ∈ {1, 2}, one of the following holds:
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• xi ∈ V (Pi) and either Gi = Pi or Gi is the triangle on V (Pi), or

• |L(xi)| ∈ {3, 4}, or

• Gi is equal to ON1 and xi is its vertex with list of size four.

Since we already excluded all chords not incident with p1, at most one of x1
and x2 has list of size three or four. By symmetry assume that |L(x1)| ∈
{1, 5}. If |L(x2)| ∈ {1, 5}, then all the possible combinations of such graphs
G1 and G2 are either L-colorable or equal to OC1. Therefore, |L(x2)| ∈ {3, 4}.
Since every chord of F is crossed and incident with an internal vertex of P ,
we have x1 6∈ V (F ), thus G1 is ON1. Let w be the vertex of G1 with list
of size three, G′ = G − {w, p0} − p1v and L′ the list assignment such that
L′(x1) = {ϕ1(x1)}, L′(v) = {ϕ1(v)} and L′(z) = L(z) otherwise. Note that
G′ is (p2p1x1v,N ∩ V (G′),M ∩E(G′))-distant and not L′-colorable. If v has
degree at least 5 in G, then it has degree at least three in G′. Together with
(3), this implies that x2 is not adjacent to v, hence (T) holds. If v has degree
at most four, then |L(v)| ≤ 4, and by (C), |L(x2)| = 4, and again (T) holds.
Therefore, G′ violates (O). Since x1 has degree three in G′ and it is adjacent
to a vertex with list of size three or four, G′ contains (and by (3), is equal
to) OP1 or OP2. However, then G is L-colorable. Therefore, we obtain the
following conclusion:

(7) F has no chords.

An easy corollary is that

(8) no vertex of P is incident with a crossed edge.

Indeed, if vp were a crossed edge with p ∈ V (P ), then by (7), we have v 6∈
V (F ). Furthermore, since P is incident with a crossing, we have `(P ) ≤ 2.
Let L′ be the list assignment such that L′(v) = L(v) \ L(p) and L′ matches
L on the rest of the vertices of G. Note that G− vp is not L′-colorable, and
by the minimality of G, we conclude that G− vp contains ON1, ON2 or ON3,
whose internal vertex with list of size 4 is v. It cannot contain ON1, since v
is not adjacent to all vertices of P in G − vp. Similarly, it cannot contain
ON3, since the edge vp would be crossed twice. If G− vp contains ON2, then
G contains OC1. Comparison of bad lists for ON2 and OC1 in Figure 4 shows
that OC1 is not L-colorable, which is a contradiction to the assumption that
(O) holds for G and L.

Consider now a vertex v with three neighbors pa, pb, pc ∈ V (P ), where
a < b < c. Let K be the cycle papa+1 . . . pcv, and note that K has a chord
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vpb. By (8), none of the edges vpa, vpb and vpc is crossed. By (3)(d), K is
not separating ((3)(d) allows a vertex of N or a K4 with a crossed edge in
the interior of K; however, this would only be possible if `(P ) = 3, yielding
two special subgraphs at distance 1). Suppose that c− a = `(P ), and let G2

be the pavpc-component of G that does not contain P . Since v /∈ V (F ), and
v /∈ N if `(P ) = 3, there is a color in L(v) that does not appear in the lists
of vertices in P . Observe that G2 (with the precolored path pavpc) violates
either (T) or (O). In the former case, G is either ON1 or OP6. In the latter
case, we have `(P ) = 2 by the distance condition, and (2) implies that G2 is
either OM1 or OC1. If G2 is OM1, then G is OM2, and if G2 is OC1, then G is
L-colorable.

Finally, consider the case that `(P ) = 3 and v is adjacent to say p0,
p1 and p2 and is not adjacent to p3. If L(p0) = L(p2), then G − vp2 is a
counterexample to Theorem 7 contradicting the minimality of G. Therefore,
L(p0) 6= L(p2). Since the edges vp0, vp1, and vp2 are not crossed, the degree
of p1 is three. Let G′ = G − p1 + p0p2, with the list assignment L′ such
that L′(v) = L(v) \ L(p1) and L′(z) = L(z) otherwise. Note that G′ is
(p0p2p3, N ∪ {v},M)-distant, since the rank of the special subgraph p1p2 in
G is greater than the rank of the special subgraph v (in G′), and any path
Q between two special subgraphs S1 and S2 that uses the new edge p0p2
gives rise to paths between S1 or S2 and the middle edge p1p2 of P in G,
thus implying `(Q) ≥ 14 + r(S1) + r(S2) + 2r(p1p2)− 1 > 7 + r(S1) + r(S2).
We conclude that G′ violates (O) and contains ON1, ON2 or ON3 that is not
L′-colorable; however, then G contains a non-L-colorable obstruction OP6,
OP4 or OP5, respectively. Therefore, we have:

(9) Every vertex has at most two neighbors in P .

Suppose now that uv and xy are edges crossing each other and u, x ∈
V (F ). By (8), neither u nor x belongs to P . Let c be the curve formed by
the part of the edge uv between u and the crossing and the part of the edge
xy between the crossing and x. If c is not part of the boundary of F , then let
G2 be the subgraph of G drawn inside the closed disc bounded by c and the
part of the boundary of F between u and x that does not contain P . Note
that there are two possible situations, depending on whether G2 includes the
vertices v and y or not. In any case, we can write G = G1∪G2, where G1∩G2

consists only of vertices u and x. Let G′2 be the graph obtained from G2 by
adding a common neighbor w of u and x. No L-coloring of G1 extends to an
L-coloring of G′2 (where w is assigned an arbitrary color different from the
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colors of u and x). By the minimality of G, we conclude that G′2 (with the
precolored path uwx) violates (P), thus ux ∈ E(G). The conclusion is:

(10) If u and x are crossing-adjacent and u, x ∈ V (F ), then either ux ∈
E(G), or the crossing incident with u and x belongs to the boundary of F .

Similarly, we derive the following property:

(11) Suppose that Q = x1x2 . . . xt−1xt is a path in G, where t ≤ 6 and x1x2
crosses xt−1xt. Let c be the closed curve consisting of the path x2 . . . xt−1 and
parts of the edges x1x2 and xt−1xt, and let X be the set of vertices of G drawn
in the open disc bounded by c. If x1 6∈ X, then X = ∅.

The proof of (11) proceeds as follows. Observe first that the curve c is
not crossed since all its edges are close to a crossing. If the path x2 . . . xt−1 is
induced in G, then the subgraph of G drawn inside the closed disc bounded
by c, with the precolored path x2x3 . . . xt−1, would be a counterexample to
Theorem 7 smaller than G (the distance constraints are satisfied even if
t = 6, since the middle edge of the path x2x3x4x5 has smaller rank then
the crossing, whose distance to x3x4 in G is one). If x2 . . . xt−1 contains a
chord xixj (i < j), then we first consider Q′ = x1x2 . . . xixj . . . xt and then
apply (3)(d) to show that no vertices are contained in the interior of the cycle
xixi+1 . . . xjxi.

Now, we shall consider the 2-chords of F .

(12) Let uvw be a 2-chord of F such that vw is not crossed. Let c be the
closed curve bounding the outer face of G and q the curve corresponding to
the 2-chord uvw. Let c1 and c2 be the simple closed curves in c ∪ q distinct
from c, and let G1 and G2 be the subgraphs of G drawn inside c1 and c2,
respectively, so that G1 ∩ G2 = uvw and G1 ∪ G2 is equal to G if the edge
uv is not crossed, and is equal to G − xy if uv is crossed by the edge xy.
If neither u nor w is an internal vertex of P and P ⊆ G1, then one of the
following holds (cf. Figure 6):

• V (G2) = {u, v, w}, and either uv is not crossed and uw ∈ E(G), or uv
is crossed by an edge incident with w; in the latter case, uw may or
may not be an edge.

• V (G2) = {u, v, w, z} for a vertex z with list of size three, and either
uv is not crossed and uz, vz, wz ∈ E(G), or uv is crossed by an edge
incident with z, zw ∈ E(G) and at least one of uz and vz is an edge.
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Figure 6: Possible cases for G2 for a 2-chord uvw

• V (G2) = {u, v, w, z} for a vertex z with list of size four adjacent to u,
v, w and incident with an edge crossing uv.

Proof. Let us consider a 2-chord uvw that does not satisfy the conclusion of
the claim such that G2 is maximal. First, suppose that uv is not crossed.
An L-coloring of G1 does not extend to an L-coloring of G2, hence G2 (with
the precolored path uvw) violates (P), (T) or (O). If G2 violates (P) or (T),
then by (4) and (7) the outcome of the claim holds. Therefore, we conclude
that G2 violates (O). Since the obstruction in G2 violating (O) contains a
special subgraph with a vertex distinct from v and v /∈ V (F ), we conclude
that v /∈ N , and hence |L(v)| = 5. By (3) and (4) we also conclude that G2 is
the obstruction. Let S be the set of L-colorings of uvw that do not extend to
an L-coloring of G2. The inspection of the non-colorable obstructions with
`(P ) = 2 in Figure 4 shows that one of the following holds:

(R1) there exists a set A of at most two colors and S contains only colorings
ψ such that ψ(v) ∈ A, and furthermore, if |A| = 2 then neither u nor
w has list of size three; or,
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(R2) S contains only colorings ψ such that ψ(u) = ψ(w), and neither u nor
w has list of size three.

Indeed, by (2), all obstructions except for OM1 and OC1 satisfy (R1) with
|A| = 1. If G2 is OM1 or OC1, then neither u nor w has list of size three, by
(M) together with the distance condition and by (C). The inspection of the
colorings shows that if G2 is OC1, then (R1) holds with |A| = 2, and if G2

is OM1, then either (R1) holds with |A| = 2, or (R2) holds (the latter is the
case when the two lists of size 3 are equal, i.e., a = c in Figure 4).

If (R1) holds, then let G′ = G1, with the list assignment L′ such that
L′(v) = L(v) \ A and L′(z) = L(z) for z 6= w. Note that if |A| = 2, then v
has no neighbor in G1 with list of size three by (R1) and by the maximality of
G2. If (R2) holds, let G′ = G1+uw with the list assignment L′ = L. In either
case, G′ is not L′-colorable and it is (P,N ∩ V (G′),M ∩ E(G′))-distant (in
the latter case, any path Q between special subgraphs H1 and H2 using the
added edge uw gives rise to paths from H1 and H2 to the special subgraph
of G2, and thus `(Q) ≥ 14 + r(H1) + r(H2) − 3). Furthermore, G′ satisfies
(T) by (7) and (9), and if G′ violated (C) or (O), then v or uw would have to
belong to a crossing or to an obstruction in G′, and the distance between its
special subgraph and the special subgraph of G2 would be at most 4. Note
that G′ cannot violate (P), as otherwise u,w ∈ V (P ) and G2 is OM1, and by
(3) and (9), v would have degree four and list of size five. Therefore, G′ is a
counterexample to Theorem 7 smaller than G, which is a contradiction.

Suppose now that uv is crossed by an edge xy, where x ∈ V (G1) and
y ∈ V (G2). If y = w, then the conclusion of the claim holds by (10), hence
assume that y 6= w. Furthermore, x 6= w by (10), and uw 6∈ E(G) by (4). Let
G′1 be the graph obtained from G1 by adding the edges ux and vx (if they
are not present already). Note that this can be done without introducing
any new crossings. Since u, v and x are incident with a crossing in G, G′1
is (P,N ∩ V (G′1),M ∩ E(G′1))-distant. Furthermore, G′1 does not contain
any obstruction, as its special subgraph would be at distance at most 2 from
the crossing. By (7), u has at most one neighbor in P within G, hence G′1
satisfies (T). By (8), u and x cannot belong to P , hence by the minimality
of G, there exists an L-coloring ϕ of G′1. Let G′2 be the graph obtained
from G2 − uv by adding the vertex x and edges ux, vx, yx. Consider the
list assignment L′2 for G′2 such that L′2(z) = {ϕ(z)} for z ∈ {u, v, w, x} and
L′2(z) = L(z) otherwise. Note that G′2 is not L′2-colorable and that it is
(uxvw,N ∩ V (G′2),M ∩ E(G′2))-distant.
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Since y 6= w and since uw /∈ E(G′2), the graph G′2 satisfies (P) for the
ϕ-colored path uxvw. If G′2 violates (T), then by (4) we have that |L(y)| = 3
and y is adjacent to at least two of u, v and w. In particular, y ∈ V (F ).
Observe that if vy ∈ E(G), then the yvw-component K that does not contain
P can only be a triangle (since otherwise any L-coloring of the other yvw-
component K ′ would extend to K, and K ′ would contradict the minimality
of G). Thus yw ∈ E(G). By (11) applied to the path xywvu, we have
V (G2) = {u, v, w, y} and the conclusion of the claim holds. Let us now
consider the remaining case that G′2 satisfies (T), and thus by the minimality
of G, it violates (O). By (3) and (4), G′2 is equal to one of OP1, . . . , OP6, but
not OP3 since x has degree 3 in G′2.

If G′2 is OP1, then the conclusion of the claim holds. Otherwise, let us
define S as the set of colorings ψ of the path uxvw that do not extend to an
L-coloring of G′2 and satisfy ψ(u) 6= ψ(v). The inspection of the obstructions
and their problematic list assignments displayed in Figure 4 shows that either
(R1) or one of the following holds:

(R3) G′2 is OP2 and there exists a color c such that S contains only colorings
ψ such that either ψ(u) = c and ψ(x) = ψ(w), or ψ(x) = c and
ψ(u) = ψ(w). Moreover, |L(u)| 6= 3 and |L(w)| 6= 3.

(R4) G′2 is OP4 and there exists a color c such that S contains only colorings
ψ satisfying either ψ(v) = c or ψ(x) = c. Moreover, |L(u)| 6= 3.

Again, the conclusions that the specified vertices do not have lists of size
three follow in all applicable cases by noting that otherwise either (C) or the
distance condition would be violated. Let us remark that for OP2 we have
(R1) if the colors a, b, c, d in Figure 4 are different; we have (R3) if b = d or
a = d. To argue for OP4, OP5, OP6 we observe that ψ(x) and ψ(v) should be
taken from the difference of the lists of the two neighbors of u (so these are
colors b, c in Figure 4). This yields (R1) with the only exception in the case
of OP4, where we cannot argue about |L(w)| 6= 3, so we need (R4) in this
(and only this) case.

The condition in (R3) that the lists of u and w do not have precisely
three elements is argued as follows. Since x has degree 3 in G′2, the vertex z
of OP2 with list of size 3 is not the vertex y, and v, w are both adjacent to z.
Since |L(z)| = 3 and the edge wz is close to a crossing in G, we conclude that
wz /∈M and hence |L(w)| 6= 3. Since |L(y)| = 4, (C) implies that |L(u)| 6= 3.
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Now, the case when (R1) holds is handled in the same way as the case
when uv was not crossed. If (R3) holds, then we let G′1 = G1 + uw with
the list assignment obtained from L by removing c from the list of u (note
that |L(u)| 6= 1 by (8)); we may need to add an edge incident with u to M
in order to satisfy (M). If (R4) holds and |L(x)| = 5, then let G′1 = G1 with
the list assignment obtained by removing c from the lists of x and v (and
adding x to N). In all the cases, G′1 satisfies the assumptions of the theorem.
Indeed, (P) is trivial, since u 6∈ V (P ) by (8). Similarly, (T) follows by (7)
and (9). Finally, (O) holds since by the distance condition, we could only
create OM1, OM2, ON1, ON2 or ON3, and each of them is excluded by (7) or
(9). Therefore, G′1 contradicts the minimality of G, since its coloring would
extend to an L-coloring of G.

Finally, consider the case that (R4) holds and |L(x)| ∈ {3, 4}. By (10),
all neighbors of u distinct from x belong to G2. By (8), we have u 6∈ V (P ),
deg(u) ≥ |L(u)| ≥ 4, and thus u is adjacent to x and |L(u)| = 4. Since G′2 is
OP4, every coloring of x, v and w extends to an L-coloring of G2, hence G1

contradicts the minimality of G. This completes the proof of (12).

Similarly, one can prove the following:

(13) Let u,w ∈ V (F ) be distinct vertices, neither of which is an internal
vertex of P . Suppose that v 6∈ V (F ) is a vertex adjacent to w and crossing-
adjacent to u. Let c be the closed curve not containing P consisting of vw,
parts of the crossed edges incident with u and v, and a part of the boundary
of F between u and w that does not contain P , and let G2 be the subgraph
of G drawn in the closed disc bounded by c. Then G2 does not contain the
crossing and satisfies one of the following:

(a) V (G2) = {u, v, w} and uw ∈ E(G), or

(b) V (G2) = {u, v, w, z}, |L(z)| = 3 and z is adjacent to u, v and w.

Proof. By (12), it suffices to consider the case that uv 6∈ V (G). Let G′1 be the
graph obtained from G1 as follows: If uw ∈ E(G), then we add the edge uw.
If u, v and w have a common neighbor z with list of size three, then we add
z and incident edges. If V (G′1) = V (G), then (a) or (b) holds. Otherwise,
there exists an L-coloring ψ of G′1 by the minimality of G. Let L′ be the list
assignment such that L′(v) = {ψ(v)}, L′(w) = {ψ(w)}, L′(u) = {c} for a new
color c, L′(x) = (L(x) \ {ψ(u)}) ∪ {c} for each neighbor x of u distinct from
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v and w and L′(x) = L(x) for all other vertices x. Note that G′2 = G2 +uv is
not L′-colorable, and by the minimality of G, one of the assumptions of the
theorem is violated in G′2. By the construction of G′1 and the choice of ψ,
(P) and (T) hold. By the distance condition, the only obstruction that can
appear in G′2 is OC1. However, then the 2-chord wvt (where t is the neighbor
of u in G2 with list of size four) contradicts (12).

Let us now introduce a way of defining list assignments that will be used
throughout the rest of the paper. Let ϕ be any proper partial L-coloring of
G such that ϕ(v) 6∈ L(p) for every pair of adjacent vertices v ∈ dom(ϕ) and
p ∈ V (P ). For each vertex z ∈ V (G), let

Rz =
⋃

p∈V (P )\dom(ϕ),zp∈E(G)

L(p).

We define Lϕ to be the list assignment such that

Lϕ(z) =
(
L(z) \ {ϕ(x) : x ∈ dom(ϕ), xz ∈ E(G)}

)
∪Rz.

Let us also define Gϕ = G−dom(ϕ). Consider any Lϕ-coloring ψ of Gϕ. We
claim that the combination of ϕ with ψ is a proper L-coloring of G. Indeed,
for any z ∈ V (Gϕ), we clearly have ψ(z) 6∈ Rz, and thus ψ(z) ∈ Lϕ(z) is
different from the colors of the neighbors of z in dom(ϕ). Since G is not
L-colorable, we conclude that Gϕ is not Lϕ-colorable.

Suppose now that G contains a subgraph H isomorphic to one of the
graphs drawn in Figure 3 such that the subgraph of H corresponding to full-
circle vertices is equal to P , triangle vertices have lists of size at least three,
square vertices have lists of size at least four and pentagonal vertices have
lists of size five. Then we say that H is a near-obstruction.

(14) If H is a near-obstruction, then H is isomorphic to one of OM1, ON2,
ON3 or OP3. Furthermore, |(V (H) ∩ V (F )) \ V (P )| ≤ 1, and if (V (H) ∩
V (F )) \ V (P ) 6= ∅, then H is ON2 or ON3.

Proof. By (9), H is isomorphic to one of OM1, ON2, ON3, OC2, OC3, OC4, OC5

or OP3.
By (12), if H is OC5, then V (G) = V (H) ∪ {z}, where z is a vertex of

degree three adjacent to p0, p2 and the vertex w 6∈ V (P ) in the outer face of
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H. However, the distance condition implies that w /∈ N , so that |L(w)| = 5.
This implies that G is L-colorable, which is a contradiction.

If H is OC2, then let p0w1w2p2 be the path in the outer face of H. If
w1, w2 ∈ V (F ), then V (G) = V (H) and G is L-colorable by (O). Thus
assume that w2 6∈ V (F ); hence |L(w2)| = 5. If w1 ∈ V (F ), then since w2

has degree at least 5, by (12) we have that V (G) = V (H) ∪ {z}, where z
is adjacent to w1, w2 and p2. However, then G is L-colorable. Therefore,
w1 6∈ V (F ). Let ϕ be an L-coloring of H and G2 the p0w1w2p2-component
of G that does not contain P . Since ϕ does not extend to an L-coloring of
G2, it follows that G2 with the precolored path p0w1w2p2 violates (P), (T) or
(O). Since both w1 and w2 have degree at least 5, it follows that p0w2 /∈ E(G)
and w1p2 /∈ E(G), hence (P) holds. Suppose that G2 violates (T). Then a
vertex z with list of size three is adjacent to three vertices among p0, w1,
w2 and p2. If it is adjacent to all four of them, then G contains OC5 which
has already been excluded. Otherwise, since w1 and w2 have degree at least
5, by (5) z cannot be adjacent to p0, w1, and p2. By symmetry, we may
assume that z is adjacent to p0, w1, w2. Then (12) applied to the 2-chord
zw2p2 shows that there is a vertex z′ adjacent to z whose list has size 3, and
we see that the special edge zz′ gives a contradiction. Finally, if G2 violates
(O), then the obstruction is equal to one of OP1, OP2, OP3, OP4, OP5 or OP6,
and now it is easy to see (by comparing bad lists for the obstructions) that
G is L-colorable.

If H is OC3, then let w1 be the vertex of H drawn by the triangle and w2

the vertex of P that is not adjacent to it in G. If H is OC4, then let w1 and
w2 be the vertices of H drawn by triangles. By symmetry, we can assume
that w1 is the neighbor of p2. Let w1x1x2w2 be the path in H formed by
neighbors of p1. Note that |L(wi)| ∈ {1, 5} by (7). Choose an L-coloring ϕ
of the subgraph of G induced by V (P ) ∪ {w1, w2} such that ϕ(w1) 6= ϕ(w2)
and either |Lϕ(x1)| ≥ 4 or Lϕ(x1) 6= Lϕ(x2). Note that this is possible since
|L(w1)| = 5. Let G′ = G − {p1, x1, x2} + w1w2 with the list assignment
L′ such that L′(z) = {ϕ(z)} for z ∈ {w1, w2} and L′(z) = L(z) otherwise.
Observe that G′ is not L′-colorable (since every L′-coloring of G′ extends to
an L-coloring of G) and that it satisfies (P) for the precolored path w2w1p2
or p0w2w1p2. By the minimality of G, G′ violates (T) or (O). In the former
case, by symmetry we can assume that there exists a vertex z ∈ V (G) such
that |L(z)| = 3 and z is adjacent to p2, w1 and either w2 or p0. It follows
that G contains a separating 4-cycle formed by non-crossed edges, and by (3)
the interior of this 4-cycle contains K4. By (7) and (12), there are no other
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vertices in G. Now, it is easy to see that the resulting graph is L-colorable.
Therefore, G′ violates (O). Since G is (P,N,M)-distant, this is only possible
if H is OC4. In this case the obstruction in G′ is one of OP1–OP6. Note that
the edge w1w2 is contained in a triangle; let z be their common neighbor. By
(3), the 4-cycle w1zw2p1 surrounds K4 in G. However, the graphs obtained
from the obstructions OP1–OP6 with the precolored path p0w2w1p2 by adding
the vertex p1 joined to the vertices p0, w1, w2, p2, deleting the edge w1w2, and
adding K4 inside the 4-cycle w1zw2p1 are easily seen to be L-colorable.

The remaining obstructions are OM1, ON2, ON3, and OP3. If H is OM1

or OP3, then none of the vertices in V (H) \ V (P ) belongs to F since this
would contradict (7). In the other cases, at most one of the vertices of H
can belong to F by the same reason.

Observe that `(P ) ≥ 2, since if `(P ) < 2, then we can precolor 2− `(P )
more vertices of F (by (8), we can extend P in the boundary of F ). Let
pk . . . p1p0v1v2 . . . vs be the vertices contained in the boundary of F in the
cyclic order around it. We either have vivi+1 ∈ E(G), or vi and vi+1 are
crossing-adjacent, for each i. As we already observed, p0v1, pkvs ∈ E(G). We
also define vs+1 = pk, vs+2 = pk−1, . . . .

If s = 0, then let ϕ be the L-coloring of p0. Then Gϕ with the list
assignment Lϕ is a smaller counterexample to Theorem 6. This contradiction
shows that s ≥ 1.

Suppose that s = 1 and let ϕ be the partial coloring that assigns a color
in L(v1) \ (L(p0) ∪ L(pk)) to v1. Note that if v1 is adjacent to a vertex x by
a crossed edge, then Gϕ is (P,N ∪ {x}, ∅)-distant, otherwise Gϕ is (P,N, ∅)-
distant. By the minimality of G, Gϕ with the list assignment Lϕ violates
(O) and contains an obstruction H, which by (14) is one of OM1, ON2, ON3

or OP3. Note that if z ∈ V (H) is a vertex with list of size three according
to Lϕ, then z is adjacent to v1 and belongs to N ; but z is at distance at
most one from the special subgraph in the obstruction, contradictory to the
assumption that G is (P,N,M)-distant. Therefore, s ≥ 2.

If v1 is not adjacent to v2 (i.e., v1 and v2 are crossing-adjacent), then
let ϕ be a coloring that assigns a color from L(v1) \ L(p0) to v1 and the
color from L(p0) to p0. Note that `(P ) = 2 by the distance condition. Let
y be the vertex adjacent to v1 by the crossed edge, and note that Gϕ is
(p1p2, N ∪ {y},M)-distant. By the minimality of G together with (3), (7)
and (9), we conclude that Gϕ with the list assignment Lϕ violates (N) or (M).
In the former case, we have |Lϕ(y)| = 3 and since |L(y)| = 5, it follows that
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y is adjacent to p0. However, by (4), v2 would be adjacent to p0, contrary to
(7). In the latter case, p0 and v1 have a common neighbor u 6= y adjacent to
a vertex w with |L(w)| = 3. This contradicts (12). Therefore, v1v2 ∈ E(G),
and by symmetry, vs−1vs ∈ E(G).

Suppose now that s = 2. By symmetry, assume that if v2 is incident
with a crossed edge, then v1 is incident with a crossed edge as well. If
v1v2 ∈ M , then let ϕ be an L-coloring of v1 and v2 such that ϕ(v1) 6∈
L(p0) and ϕ(v2) 6∈ L(pk). Otherwise, let ϕ be a coloring of v1 by a color in
L(v1) \ L(p0) such that if |L(v2)| = 3, then ϕ(v1) 6∈ L(v2) \ L(pk). Note that
this is possible by (3)(f). Let us remark that when |L(v2) \ {ϕ(v1)}| = 2,
then L(pk) = {ϕ(v1)} and Lϕ(v2) = L(v2) by the definition of Lϕ, and thus
we always have |Lϕ(v2)| ≥ 3. If Gϕ with the list assignment Lϕ violated
(C), then v2 would have to be incident with a crossing, and by the choice
of v1, the vertex v1 would be incident with the same crossing, which then
would not appear in Gϕ. Therefore, Gϕ satisfies (C). If v1 is incident with
a crossed edge v1x, then let N ′ = N ∪ {x}; if v1 is adjacent to a vertex
y ∈ N , then let N ′ = N \ {y}; otherwise let N ′ = N . If v1 and v2 have a
common neighbor z belonging to N , then let M ′ = M ∪ {v2z}; otherwise
let M ′ = M \ {v1v2}. Observe that Gϕ is (P,N ′,M ′)-distant and that it
satisfies (S), (N) and (M). By the minimality of G, Gϕ violates (O) and thus
G contains a near-obstruction H. By (14), H is OM1, ON2, ON3 or OP3.
Observe that v1v2 6∈ M , since otherwise the distance between v1v2 and the
special subgraph of H (which is also special in G) is at most 3. Every vertex
with list of size three according to Lϕ either belongs to N or is equal to
v2. If v2 6∈ V (H), then H contains only one vertex with list of size three,
hence H is ON2. However, then N contains two adjacent vertices, which is a
contradiction. Similarly, we exclude the case that v2 ∈ V (H) and H is ON3

or OP3. Therefore v2 ∈ V (H) and H is OM1 or ON2. The former is excluded
by (7). If H is ON2, then we have V (G) = V (H) ∪ {v1} by (4). If v1 is
incident with a crossed edge, then G contains OC2. On the other hand, if v1
is not incident with a crossed edge, then |L(v1)| = 3, |L(v2)| = 4, |N | = 1
and G is L-colorable. This is a contradiction, hence s ≥ 3.

Next, observe that if v1 and v2 are not crossing-adjacent, then |L(v1)| = 3
or |L(v2)| = 3. Otherwise, we could remove a color from the list of v1. If the
edges v1x and e cross, then |L(x)| = 5 by (7), and both vertices incident with
e have list of size five by (8) and (10), hence G with the new list assignment
satisfies (C). By (14), no obstruction arises (since all vertices with lists of size
three or four in the new list assignment are contained in V (F )). Thus G with
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the reduced lists satisfies (O) and contradicts the minimality assumption.
Similarly, if v1 and v2 are crossing-adjacent and |L(v1)| > 3 and |L(v2)| > 3,
then we can assume that |L(v1)| = |L(v2)| = 4.

If |L(v1)| = 3 or |L(v2)| = 3 and furthermore v1v2, v2v3 6∈M , then let the
set X ⊆ V (F )\V (P ) and its partial L-coloring ϕ be defined as in (X1)–(X4)
in the proof of Theorem 6. Let us add two more cases for the situation when
v1 and v2 are crossing-adjacent:

(X5) If |L(v1)| = |L(v2)| = 4 and |L(v3)| 6= 3, then X = {v1} and ϕ(v1) ∈
L(v1) \ L(p0) is chosen arbitrarily.

(X6) If |L(v1)| = |L(v2)| = 4 and |L(v3)| = 3, then X = {v2} and ϕ(v2) ∈
L(v2) \ L(v3) is chosen arbitrarily.

Let m be the largest index such that vm ∈ X. Let us note that m = 1 in
(X1) and (X5), m = 3 in (X4), and m = 2 otherwise. Also, X = dom(ϕ) in
all cases except for (X4b), when X = {v1, v2, v3} and dom(ϕ) = {v1, v3}.
(15) One of the following cases holds:

(A1) v1v2 ∈M or v2v3 ∈M .

(A2) Either v1 and v2 or two distinct vertices in dom(ϕ) have a common
neighbor in N .

(A3) There exists a crossing q and two crossing-adjacent vertices w1, w2 ∈
V (Gq) such that V (Gq) ∩X = ∅, w1 has a neighbor in dom(ϕ) and w2

has two neighbors in dom(ϕ).

(A4) vmvm+1 ∈ E(G), there exists a crossing q such that V (Gq) ∩ X = ∅
and vm+1, vm+2 ∈ V (Gq), and either |L(vm+1)| = |L(vm+2)| = 4 or
|L(vm+1)| = 5 and |L(vm+2)| = 3.

(A5) vmvm+1 ∈ E(G), |L(vm+1)| ∈ {3, 4} and there exists a crossing q such
that V (Gq) ∩X = ∅, vm+1 ∈ V (Gq) and a neighbor w 6∈ V (F ) of vm is
crossing-adjacent to vm+1.

(A6) v1 6∈ X and there exists a crossing q such that V (Gq) ∩ X = ∅, v1 ∈
V (Gq) and a neighbor w 6∈ V (F ) of v2 is crossing-adjacent to v1.

(A7) |X| ≥ 2 and there exists a path vm−1xyvm+1, where x and y are neigh-
bors of vm and y ∈ N .
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Figure 7: Possible outcomes of (15)
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Proof. See Figure 7 for the illustration of the possibilities. Note that if (A1)
does not hold, then X and ϕ are defined.

Suppose now for a contradiction that none of (A1)–(A7) holds. Let us
consider the graph G′0 = G−dom(ϕ) with the list assignment Lϕ, and let G′

be the graph obtained from G′0 by repeatedly removing vertices whose list
is larger than their degree. If dom(ϕ) 6= X, then we have case (X4b) and
X \ dom(ϕ) = {v2}. If v2 is not incident with a crossing, then its degree in
G′0 is 1, and since |Lϕ(v2)| ≥ 2, it is not present in G′. On the other hand,
if v2 were incident with a crossing, then the fact that |L(v1)| = |L(v3)| = 4
would contradict (C). This shows that G′ ⊆ G−X. Observe also that G′ is
not Lϕ-colorable.

Next, we argue that G′ satisfies the assumptions of Theorem 7 (with the
sets N ′ ⊆ V (G′) and M ′ ⊆ E(G′) defined as the minimal sets such that (S),
(N) and (M) hold), thus contradicting the minimality of G. The property
(P) holds trivially, (T) holds by (9). To verify (S), note first that the only
vertices not in the outer face of G′ with list of size less than five are those
belonging to N , or incident with a crossed edge joining them in G to a vertex
in dom(ϕ); and the vertices of the latter kind have list of size four. Thus,
they have been added into N ′ without violating the distance condition since
the rank of special vertices in N ′ is smaller than the rank of the crossing.
Next, suppose that a vertex v ∈ V (G′) \ V (P ) satisfies |Lϕ(v)| ≤ 2. Note
that v 6∈ V (F ) by the choice of X and ϕ and by (7). It follows that v ∈ N
and v has two colored neighbors in X, thus (A2) holds. This confirms that
(S) is satisfied.

Now, let us consider property (C). Let q be a crossing in G′ and suppose
that (C) is violated at q, i.e., there exist distinct u, v ∈ V (Gq) such that
|Lϕ(u)| = 3 and |Lϕ(v)| ∈ {3, 4}. If both u and v belong to F , then by (7)
and (10) we have that u and v are crossing-adjacent, {u, v} = {vm+1, vm+2}
and L(vm+2) = Lϕ(vm+2). It follows that |L(vm+1)| 6= 3 and that (A4) holds.
If u ∈ V (F ) and v 6∈ V (F ) and u and v are not crossing-adjacent, then since
V (Gq)∩X = ∅, (12) implies that (A4) holds. If u ∈ V (F ) and v 6∈ V (F ) and
u and v are crossing-adjacent, then we apply (13). The outcome (a) of (13)
gives (A5) or (A6). The outcome (b) gives a vertex w ∈ X that is adjacent
to v and a vertex z with |L(z)| = 3 that is adjacent to u, v and w. Therefore,
|L(u)| 6= 3, so u has a neighbor in X. This is only possible in the subcase
(X4a) of the definition of X, where z = v2, w = v3 and u = v1, thus obtaining
(A6). If u 6∈ V (F ) and v ∈ V (F ), then u has two neighbors in dom(ϕ). Since
V (Gq) ∩ X = ∅, (12) implies that u and v are crossing-adjacent. By (13),
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one of the neighbors of u in X is also adjacent to v and has list of size three,
and by the choice of X, we conclude that (A6) holds. Finally, if u, v 6∈ V (F ),
then they are crossing-adjacent by (4) and the fact that V (Gq)∩X = ∅, and
(A3) holds.

Therefore, we can assume that G′ satisfies (C). Let us now consider the
newly created special subgraphs in G′. If v ∈ N ′ \ N , then v is adjacent
to a vertex of X by an edge containing a crossing q, and no other vertex
of Gq belongs to X. Therefore, there is at most one such vertex. Consider
now an edge xy ∈ M ′ \M ; we will show that either there exists a crossing
q such that {x, y} = V (Gq) \ X, or at least one of x and y belongs to N .
Note that xy has been added to M ′ because |Lϕ(x)| = |Lϕ(y)| = 3. Suppose
that x, y 6∈ N . If x, y 6∈ V (F ), then both x and y have two neighbors in
dom(ϕ). It is easy to see using (4) and (5) that this implies that x and y are
crossing-adjacent in G via the edges joining x, y with X. If x, y ∈ V (F ), then
by (7) we can assume that x = vm+1 and y = vm+2; but then |Lϕ(x)| 6= 3 or
|Lϕ(y)| 6= 3 by the choice of X, which is a contradiction. Finally, suppose
that say x ∈ V (F ) and y 6∈ V (F ); then y has two neighbors in dom(ϕ) and,
in particular, we have cases (X2) or (X4). By (12), we have x ∈ {v1, vm+1}.
If x = v1, then y would be a common neighbor of v1, v2 and v3, contradicting
the choice of X (assumptions of (X4b) are satisfied, hence we would have
v1 ∈ X). If x = vm+1, then |L(vm)| = 4 and therefore one of the edges vm−1y
and vm+1y is crossed since deg(vm) ≥ 4. However, by the choice of X we
have |L(vm−1)| = |L(vm+1)| = 3, contradicting (C).

It follows that d(S1, S2) ≥ 7 + r(S1) + r(S2) whenever S1 is a special
subgraph of G that is also special in G′ and S2 is any special subgraph of
G′. Suppose now that S1 and S2 are both distinct newly created special
subgraphs in G′. Note that |N ′ \N | ≤ 1 and if N ′ \N 6= ∅, then M ′ \M = ∅.
It follows that S1, S2 ∈ M ′ \M . As proved in the previous paragraph, each
edge in M ′ \ M is incident with a special subgraph in G that is adjacent
to X. By the distance condition, we conclude that there exists a path xyz
in G′ such that |Lϕ(x)| = |Lϕ(y)| = |Lϕ(z)| = 3 and y ∈ N . Note that
at most one of x and z can have two neighbors in dom(ϕ), as otherwise G
would contain a crossing at distance at most one from y; thus we may assume
that x ∈ V (F ). By (12), x ∈ {v1, vm+1, vm+2}. If x = vm+2, then we would
have |L(vm+1)| = |L(x)| = 3 and vm+1x ∈ M would be at distance one from
y ∈ N , which is a contradiction; therefore, x 6= vm+2. If x = v1, then (A2)
holds, hence x = vm+1 and z 6∈ V (F ) has two neighbors in dom(ϕ). However,
then |L(vm)| = 4, hence deg(vm) ≥ 4 and vm is adjacent to y and (A7) holds.
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We conclude that G′ is (P,N ′,M ′)-distant.
Finally, suppose that G′ violates condition (O), and thus G contains a

near-obstruction H. By (14), H is one of OM1, ON2, ON3 or OP3.

• If H is OM1, then let xy be the edge of H that belongs to M ′, where x
is adjacent to p2. Note that x, y 6∈ V (F ) by (7) and xy 6∈M . If x 6∈ N ,
then x has two neighbors vi and vj in dom(ϕ), where i < j. By (12)
applied to p2xvi, we have j = i+ 1 and by the choice of X, |L(vj)| = 4;
hence vj is incident with a crossing and thus y 6∈ N . Consequently, y is
also adjacent to vi and vj. However, note that |L(vi)| = 3, contradicting
(C) for G. Therefore, x ∈ N is adjacent to vj, and y is adjacent to
both vi and vj. By (12) applied to p0yvj, we have i = 1, j = 2 and
|L(v1)| = 3, and by (12) applied to p2xv2, we have that s = 3 and
|L(v3)| = 3. However, then G is L-colorable.

• Next, suppose that H is ON2 and let x and y be the vertices in the outer
face of H such that |Lϕ(x)| = 3 and |Lϕ(y)| = 4. By (7), y /∈ V (F ). If
x ∈ V (F ), then by (12) we have s ≤ 2, which is a contradiction, hence
x 6∈ V (F ). Thus x has two neighbors in dom(ϕ) and y has one, and by
(12) we conclude that s = 3 and |L(v1)| = |L(v3)| = 3. It follows that
X = {v1, v2}, x is adjacent to v1 and v2, and y is adjacent to v2. There
are two cases, either v2 is incident with a crossed edge or |N | = 1; in
both of them, G is L-colorable.

• If H is ON3, then let xyz be the path in the outer face of H such that
|Lϕ(x)| = |Lϕ(z)| = 3, |Lϕ(y)| = 4 and z is adjacent to p1. By (7),
z 6∈ V (F ), thus z has two neighbors w1, w2 ∈ dom(ϕ), and by (12), we
can assume that the neighbors of w1 are w2, z and an endvertex of P ,
and that |L(w1)| = 3. Since y 6∈ V (F ), y is adjacent to w2. Since x
cannot have more than one neighbor in dom(ϕ), we have x ∈ V (F ). If
xw2 6∈ E(G), then (12) implies that x is adjacent to a vertex with list of
size three, and thus |Lϕ(x)| = |L(x)| > 3. This is a contradiction, hence
xw2 ∈ E(G). By the choice of X, |L(x)| = 3. Again, we distinguish two
cases depending on whether w2 is incident with a crossed edge (in this
case |L(w2)| = 5 by (C)) or |N | = 1. In both cases, G is L-colorable.

• Therefore, H is OP3. But then two of the vertices of H have two neigh-
bors in dom(ϕ), hence G contains a crossing at distance at most one
from P , contradictory to the assumption that G is (P,N,M)-distant.
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We have shown that G′ satisfies all conditions of Theorem 7 for the list
assignment Lϕ. This gives a contradiction to the minimality of G and proves
claim (15).

Each case among (A1)–(A7) in (15) contains a special subgraph. Thus,
G contains a special subgraph S whose distance from p0 is at most 2 + r(S).
Consequently, `(P ) = 2. Next, we consider the set X ′ ⊆ {vs, vs−1, vs−2}
defined symmetrically to X and conclude that there exists a special subgraph
S ′ (satisfying one of (A1)–(A7) with vi replaced by vs+1−i) whose distance to
p2 is at most 2 + r(S ′). It follows that d(S, S ′) ≤ 6 + r(S) + r(S ′), and since
G is (P,N,M)-distant, we have S = S ′.

Next, we show that

(16) S consists of two edges incident with a crossing.

Proof. If not, then either S ∈ M or S ∈ N . Suppose first that S ∈ M .
Then (A1) holds and s ≤ 4. Since s ≥ 3, we can by symmetry assume that
S = v2v3. If v2, v3 and vi have no common neighbor for i ∈ {1, 4} (i = 1 if
s = 3), then let ϕ be an arbitrary L-coloring of S (such that ϕ(v3) /∈ L(p2)
if s = 3). Observe that Gϕ cannot contain an obstruction since its special
subgraph would be a special subgraph in G, too close to the special edge
v2v3. Now it is easy to check using previously proved properties of G that
Gϕ satisfies all conditions of Theorem 7. (The same reasoning will be applied
in the sequel without repeating it.) Therefore, Gϕ with the list coloring Lϕ

is a counterexample to Theorem 7, contradicting the minimality of G. Thus,
by symmetry, we may assume that v1, v2 and v3 have a common neighbor
w. In that case, w is not adjacent to v4 by (12). Let ϕ be an L-coloring of
v1 and v3 such that ϕ(v1) 6∈ L(p0), ϕ(v3) 6∈ L(p2) and |Lϕ(v2)| ≥ 2. Then
G′ = G− {v1, v2, v3} with the list assignment Lϕ contradicts the minimality
of G since any Lϕ-coloring of G′ can be extended to v2 by using a color in
Lϕ(v2), and can henceforth be extended to G.

Let us now consider the case that S ∈ N , hence (A2) or (A7) holds. Let
i and j be the smallest and the largest integer, respectively, such that S is
adjacent to vi and vj. By (12) we have j ∈ {i + 1, i + 2}. We consider the
two possible values of j separately:

• Suppose first that j = i + 1. If |X| ≥ 2, then |L(vm)| ≥ 4 and
|L(vm+1)| = 3, hence (A7) cannot hold for both X and X ′. If both X
and X ′ satisfy (A2), then since s ≥ 3, we can assume that v2, v3 ∈ X
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have a common neighbor in N . By the choice of X, we have |L(v4)| = 3,
hence s = 4 and v2, v3 ∈ X ′. However, then |L(v1)| ≥ 4 by the choice
of X and |L(v1)| = 3 by the choice of X ′, which is a contradiction.

Hence, we can assume that (A7) holds for X and (A2) for X ′; then we
either have s = m + 1, or we have s = m + 2 and X ′ = {vm, vm+1}. If
there exists an L-coloring ϕ of vm−1 and vm+1 such that their colors are
distinct from the colors of their neighbors in P and |Lϕ(vm)| ≥ 3, then
G′ = G−{vm−1, vm, vm+1} with the list assignment Lϕ contradicts the
minimality of G. (Observe that G′ satisfies (O), since no special sub-
graph of G is at distance at most two from S. A new special subgraph
would appear in G′ only if S would be adjacent to vm+2, which is not
the case since j = i+ 1.)

We conclude that no such coloring exists, hence both vm−1 and vm+1

have a neighbor in P and s = 3. Furthermore, |L(v1)| = 3 and L(v1) \
L(p0) ⊂ L(v2). Let w′ be the common neighbor of S and v1. Suppose
that there exists a color c ∈ L(w′) different from the colors of the
neighbors of w′ in P such that either c 6∈ L(v2), or v1 has degree
three and c 6∈ L(v1) \ L(p0). In this case, we let ϕ be the partial
coloring such that ϕ(w′) = c and let G′ = G−{w′, v2} if c 6∈ L(v2) and
G′ = G−{w′, v1, v2} if c ∈ L(v2). Observe that G′ is not Lϕ-colorable.
Furthermore, it satisfies the assumptions of Theorem 7, with the edge
Sv3 belonging to M (the condition (O) holds by (14), the distance
condition and (7)). This contradicts the minimality of G, and thus no
such color c exists. Since |L(w′)| > |L(v2)|, it follows that w′ has a
neighbor in P . By (12), w′ is not adjacent to p2, hence it is adjacent
to p0 or p1. However, then (5) and (7) imply that v1 has degree three,
and since |L(v1) \ L(p0)| = 2 and w′ has at most two neighbors in P ,
the color c exists. This is a contradiction.

• It remains to consider the case when j = i + 2. In this case S is
adjacent to vi and vi+2, and by (12) we conclude that vi+1 is a vertex of
degree 3 with neighbors vi, vi+2, and S. Thus, |L(vi+1)| = 3. Suppose
first that both X and X ′ satisfy (A7). If there exists a coloring ϕ of
S by a color different from the colors of its neighbors in P such that
ϕ(S) 6∈ L(vi)∩L(vi+1)∩L(vi+2), then G′ = G− {S, vi, vi+1, vi+2} with
the list assignment Lϕ is a counterexample contradicting the minimality
of G (since in this case any Lϕ-coloring of G′ extends to an L-coloring
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of G). Otherwise, note that S is not adjacent to p0 or p2 by (12),
hence S is adjacent to p1 and L(S)\L(p1) = L(vi+1) ⊆ L(vi)∩L(vi+2).
However, in this case we let ϕ be the L-coloring of X as chosen in the
proof of Theorem 6, and note that ϕ(vi) 6∈ L(vi+1) = L(S) \ L(p1).
Then G − X with the list assignment Lϕ for any other vertex z is a
counterexample contradicting the minimality of G.

Hence, we can assume that say X ′ satisfies (A2). Let us first consider
the case that X satisfies (A2) as well. Note that vi+2 6∈ X, as otherwise
|L(vi+3)| = 3 by the choice of X, and thus vi+1 6∈ X ′, contradictory to
the assumption that X ′ satisfies (A2). Symmetrically, vi 6∈ X ′. Since
|L(vi+1)| = 3, we cannot have {vi, vi+1} ⊆ X, thus i = 1, and by
symmetry, s = 3. Observe that we cannot color S by a color ϕ(S) 6∈
L(vi+1), as otherwise G− {S, vi+1} with the list assignment Lϕ would
contradict the minimality of G. Therefore, S has a neighbor in P ,
and by (12), this neighbor is p1. By (5), the 4-cycle p1p0v1S is not
separating, and by (7), v1 has degree three. This is a contradiction,
since |L(v1)| > 3.

Therefore, X satisfies (A7). Note that vi+1 cannot be the element of
X ′ with the smallest index, thus i + 2 = s. As before, we exclude the
case that S can be colored by a color not belonging to L(vi)∩L(vi+1),
hence S has a neighbor in P . By (12), S is not adjacent to p0 or p2,
hence S is adjacent to p1. However, by (5), the 4-cycle p1Svi+2p2 is
not separating, and by (7), vi+2 is not adjacent to p1. Thus, vi+2 has
degree three and list of size at least four, which is a contradiction.

This completes the proof of the case when S ∈ N .

Therefore, (16) holds and S consists of two edges incident with a crossing
q. We conclude that each of X and X ′ satisfies one of (A3), (A4), (A5) or
(A6). If one of them satisfies (A4), then |V (Gq) ∩ V (F )| = 2 by (7). If it
satisfies (A6), then by (7), (8) and (10) we have |V (Gq) ∩ V (F )| = 1. If it
satisfies (A3), then similarly |V (Gq)∩V (F )| ≤ 1, and if it satisfies (A5) then
1 ≤ |V (Gq) ∩ V (F )| ≤ 2.

(17) Neither X nor X ′ satisfies (A3).

Proof. Suppose for a contradiction that X satisfies (A3). Let w1 and w2 be
as in the description of (A3). Note that w2 is adjacent to vm−1 and vm (even
if vm−1 6∈ dom(ϕ), in the case (X4b)) and that |L(vm−1)| = |L(vm+1)| = 3.
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Let us first consider the case that |V (Gq) ∩ V (F )| = ∅. In this case X ′

satisfies (A3) as well, i.e., there exists w′2 ∈ V (Gq) adjacent to vb and vb+1,
where b is the smallest index of an element of X ′, and another vertex w′1 of Gq

that has one neighbor in X ′. Since |L(vb)| 6= 3, we have b /∈ {m− 1,m+ 1}.
Consequently, |X ∩X ′| ≤ 1, and w′2 6= w2 by (12).

We now distinguish two cases regarding whether w2 is adjacent or crossing-
adjacent to w′2 in Gq.

• Suppose that w2w
′
2 is a crossed edge. Then b 6= m by (4) and the

assumption thatGq is disjoint with F ; thus b ≥ m+2. LetG1 andG2 be
the subgraphs of G intersecting in vmw2w

′
2vb, such that G1∪G2 = G−e,

where e is the edge crossing w2w
′
2, and P ⊂ G1. By (12), we have that

w1 6= w′2, w
′
1 6= w2 and that if w1 = w′1, then w1 belongs to G2. By

symmetry, assume that w1 belongs to G2. If w1 is adjacent to vb,
then b = m + 2 by (12). Let T = {vm, vm+1, vm+2, w1}. By using
(11) it is easy to see that |L(t)| = deg(t) for each t ∈ T \ {w1} and
that deg(w1) ≤ 6. By the minimality of G, there exists an L-coloring
ϕ of G − T . Consider the subgraph G′ of G induced by T with the
list assignment Lϕ. We have |Lϕ(vm+1)| ≥ 3 and |Lϕ(z)| ≥ 2 for
z ∈ T \ {vm+1}. If Lϕ(w1) 6= Lϕ(vm), then we color w1 by a color in
Lϕ(w1)\Lϕ(vm) and extend this coloring to the rest of G′. Similarly, G′

is Lϕ-colorable if Lϕ(w1) 6= Lϕ(vm+2). If Lϕ(vm) = Lϕ(w1) = Lϕ(vm+2),
then we color vm+1 by a color in Lϕ(vm+1) \ Lϕ(w1) and again we can
extend this to an Lϕ-coloring of G′. It follows that G is L-colorable,
which is a contradiction.

Therefore, w1 is not adjacent to vb, and in particular w1 6= w′1 and w′1 ∈
V (G1). Let ϕ be an L-coloring of G1, which exists by the minimality
of G. Since w1 is not adjacent to vb, note that w1 has at most three
neighbors in G1 different from w′2. Hence, we can additionally choose
a color ϕ(w1) for w1 different from the colors of its neighbors in G1 so
that ϕ(w1) 6= ϕ(w′2). Let G′2 = G2 − w2 + w1w

′
2. Note that G′2 gives

an instance of Theorem 7 with the precolored path P ′ = vmw1w
′
2vb,

since the added edge w1w
′
2 can be drawn without crossings following

the crossed edges of G that are no longer in G′2. It is clear that G′2
satisfies validity and distance constraints. Note that ϕ does not extend
to an L-coloring of G′2. Thus G′2 violates (T) or (O). In the former
case, the vertex violating (T) must be vm+1 and we would have b =
m + 2. Consequently, vb would have degree at most three, which is a
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w′2 w′1
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(b)

w′1 = w2

vm = vb

w′2 = w1

(c)

Figure 8: Subcases when w2 and w′2 are crossing-adjacent

contradiction. In the latter case, since |L(vm+1)| = |L(vb−1)| = 3 and
vb has degree at least three in G′2, we have that G′2 is equal to OP5 or
OP6. In both cases, any L-coloring of G1 − {vm, vb} would extend to
an L-coloring of G, a contradiction.

• Suppose now that w2 is crossing-adjacent to w′2. Let G1 and G2 be
the subgraphs of G intersecting in {vb, w′2, w2, vm}, where P ⊂ G1 and
G1∪G2 is equal to G without the crossed edges. We have two subcases:
either b > m or b = m.

– If b > m, then (12) implies that w′2 has no neighbor in X, and
thus w1 6= w′2. Symmetrically, w′1 6= w2. Considering the drawing
of G in the plane, we conclude that the edges of Gq are w1w

′
2 and

w′1w2.

If w1, w
′
1 /∈ V (G1) (see Figure 8(a)), then w1vm, w

′
1vb ∈ E(G). Let

ϕ be an L-coloring of G1 + {w1w
′
2, w

′
1w2, w1w

′
1} which exists by

the minimality of G, and note that ϕ does not extend to an L-
coloring of G′2 = G2+w1w

′
1. Observe that G′2 provides an instance

for Theorem 7 with the precolored path vmw1w
′
1vb. It is easy to

see that we can choose the colors of w1, w
′
1, vm and vb so that

G′2 satisfies the assumptions of the theorem (once the coloring of
G1 − {vm, vb} is fixed, we still have two possible choices for the
colors of vm and vb and three possible choices for the colors of w1
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and w′1). This is a contradiction. The case that w1, w
′
1 ∈ V (G1)

(see Figure 8(b)) is excluded similarly.

– If b = m, then let w2z and w′2z
′ be the edges of Gq (note that we

have w1 = w′2 and w′1 = w2). Suppose that z, z′ ∈ V (G2). Note
that V (G2) 6= {z, z′, w2, w

′
2, vm}, since otherwise z would have

degree at most four and |L(z)| = 5. Therefore, the subgraph of G
induced by V (G1)∪{z, z′} has an L-coloring ψ by the minimality
of G. Let L′ be the list assignment for G′2 = G2−{z, z′} obtained
from L by removing the colors of z and z′ according to ψ from the
lists of their neighbors and by setting L′(w2) = {ψ(w2)}, L′(vm) =
{ψ(vm)} and L′(w′2) = {ψ(w′2)}. Note that G′2 satisfies (O) by the
distance condition and (P) by the choice of ψ, and since G is
not L-colorable, we conclude that G′2 violates (T). Therefore, G2

contains a vertex adjacent to w2, w
′
2, vm, z and z′, and by (4), z

and z′ have degree at most four. This is a contradiction.

Therefore, we have z, z′ ∈ V (G1) (see Figure 8(c)), and by (11),
deg(vm) = 4. Let S1 = L(v2) if m = 3 and S1 = L(v1) \ L(p0) if
m = 2. Note that S1 ⊂ L(vm), as otherwise we consider the partial
coloring ϕ with ϕ(vm−1) ∈ S1 \ L(vm) and conclude that Gϕ with
the list assignment Lϕ contradicts the minimality of G. Suppose
that there exists a color c ∈ L(w2) \L(vm), or that deg(vm−1) = 3
and there exists a color c ∈ L(w2) \ S1, such that this color c is
distinct from the colors of the neighbors of w2 in P . Let G′ =
G − {w2, vm} if deg(vm−1) > 3 and G′ = G − {w2, vm, vm−1} if
deg(vm−1) = 3, with the list assignment L′ obtained from L by
removing c from the lists of neighbors of w2 and setting L′(vm−1) =
L(vm−1) if vm−1 belongs to V (G′) (observe that c 6∈ S1 and that in
any L′-coloring of G′, the color of vm−1 must belong to S1). Note
that L′ is (P,N ∪ {z},M)-valid. Every L′-coloring of G′ would
extend to an L-coloring of G, thus G′ is not L′-colorable. By the
minimality of G, we conclude that G′ violates (O), and by (14)
and the distance condition, G′ contains ON2 or ON3. However,
then z is adjacent to two vertices of P and to z′ and w′2, and at
least one of z′ and w′2 has a list of size three according to L′, which
is a contradiction since |L(z′)| = |L(w′2)| = 5.

We conclude that there exists no such color c. Since |L(vm)| = 4
and |L(w2)| = 5, we conclude that w2 has a neighbor in P . By
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wb+2

w2

p0 v1 = w1 vb

Figure 9: Subcase combining (A3) and (A5).

(12), w2 is not adjacent to p2, and if it were adjacent to p0, then
we would have m = 2, deg(v1) = 3 and there would exist a color
c ∈ L(w2) \ (S1 ∪ L(p0) ∪ L(p1)). Therefore, w2 is adjacent to p1.
By symmetry, w′2 is adjacent to p1 as well. However, the edges
w2p1 and w′2p1 are not crossed by (8), and thus the crossing is
contained inside the 4-cycle vmw2p1w

′
2, contrary to (5).

We conclude that V (Gq) ∩ V (F ) 6= ∅. By (7), w2 6∈ V (F ). Let w be the
vertex joined to w2 by a crossed edge, and let w1w

′ be the other crossing
edge. Since V (Gq) ∩ X = ∅, by (12) we have w 6∈ V (F ). Since vm has
degree at least four, we cannot have w1 = vm+1, thus by (7) and (8), we have
w1 6∈ V (F ) \ {v1}. If w1 6∈ V (F ) and x ∈ X is a neighbor of w1, then the
2-chord xw1w

′ separates P from either w2 or w, and neither w2 nor w belongs
to F , contrary to (12). We conclude that w1 = v1 and V (Gq)∩V (F ) = {v1},
hence v1 6∈ X and X was chosen according to (X4a).

Since |V (Gq) ∩ V (F )| = 1, X ′ must satisfy (A3), (A5) or (A6). If X ′

satisfied (A3), the conclusions of the preceding paragraph would apply sym-
metrically and we would have v1 = vb, which is a contradiction. Similarly,
X ′ cannot satisfy (A6). The remaining possibility is that (A5) holds for X ′.
Then v1 = vb−1 and vb = v2. The situation is shown in Figure 9. Since X was
chosen according to (X4a), we have |L(vb)| = |L(vb+2)| = 3; in particular,
s ≥ 4 and b ≤ s− 2. This is only possible if X ′ has been chosen according to
(X4), but then |L(vb)| > 3. This is a contradiction, showing that (A3) does
not occur.

Next, we claim that

(18) |V (Gq) ∩ V (F )| = 1.

Proof. Since X does not satisfy (A3), if |V (Gq) ∩ V (F )| 6= 1 then |V (Gq) ∩
V (F )| = 2 and each of X and X ′ satisfies (A4) or (A5). By (7) and (10),

41



V (Gq) ∩ V (F ) = {vm+1, vm+2} and vm+1 is crossing-adjacent to vm+2. Let
vm+1w and vm+2w

′ be the crossed edges. By symmetry, we can assume
that |L(vm+1)| ≥ |L(vm+2)|. By (C), either |L(vm+1)| ≥ |L(vm+2)| ≥ 4
or |L(vm+1)| = 5 and |L(vm+2)| = 3. Therefore, X was chosen according to
the rules (X1) or (X3) and |L(vm)| = 3.

If L(vm+2) 6= L(vm+1), then let c be a color in L(vm+1)\L(vm+2). If vm+1

is not adjacent to vm+2, then let c be an arbitrary color in L(vm+1). In both
cases, let ϕ be an L-coloring of vm and vm+1 such that ϕ(vm+1) = c and if
m = 1, then ϕ(v1) 6∈ L(p0). It is easy to see that Lϕ is a (P,N ∪ {w},M)-
valid list assignment for Gϕ. Therefore, Gϕ violates (O). By (14), Gϕ contains
ON2 or ON3. It follows that w is adjacent to p1 and to p0 or p2. However,
if w is adjacent to p0, then by (12), vm+2 is incident with a chord of F ,
contradicting (7). If w is adjacent to p2, then vm+2 has degree at most three
in Gϕ by (12), and since |Lϕ(vm+2)| ≥ 4, Gϕ contains neither ON2 nor ON3.
This is a contradiction, implying that L(vm+1) = L(vm+2) (and in particular,
|L(vm+1)| = |L(vm+2)| = 4), and vm+1vm+2 ∈ E(G). By the choice of X ′, we
have |L(vm+3)| = 3.

Suppose now that w′vm ∈ E(G). Note that vm+1 has degree at least four,
so it is adjacent to w′. Let S1 = L(vm) if m 6= 1 and S1 = L(vm) \ L(p0) if
m = 1. Note that S1 ⊆ L(vm+1), as otherwise we can choose an L-coloring ϕ
of vm such that ϕ(vm) ∈ S1 \L(vm+1), and G1 = G−{vm, vm+1} with the list
assignment Lϕ is a counterexample contradicting the minimality of G (note
that G1 cannot contain an obstruction since no internal vertex in G1 has its
list decreased and q is not a crossing in G1). Since L(vm+1) = L(vm+2), we
conclude that S1 ⊆ L(vm+2). Let G′ be the graph obtained from G − vm+1

by identifying vm with vm+2, and give the resulting vertex z the list of vm.
Note that G′ satisfies the validity and the distance conditions of Theorem
7 (with the edge zvm+3 added to M). Since every coloring of G′ gives rise
to an L-coloring of G, condition (O) is violated in G′ by the minimality
of G. However, G′ contains neither OM1 nor OM2 (and the exclusion of
other obstructions is obvious). Therefore, w′vm 6∈ E(G), and by symmetry,
wvm+3 6∈ E(G).

Let S2 = L(vm+3) if m + 3 6= s and S2 = L(vm+3) \ L(p2) if m + 3 = s.
Suppose now that there exists an L-coloring ϕ of vm+1 and vm+2 such that
ϕ(vm+1) 6∈ S1 and ϕ(vm+2) 6∈ S2. Then Lϕ is a (P,N, {ww′})-valid list
assignment for Gϕ, and by the minimality of G, Gϕ violates (O). By (14),
Gϕ contains OM1 (the other cases are easily excluded: ON2 and ON3 since
no internal vertex gets a reduced list and OP3 since `(P ) = 2). But then w′
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w′ w
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Figure 10: A subcase in the proof when X and X ′ satisfy (A4) or (A5). The
dotted edges may or may not be present.

is adjacent to p0, and the 2-chord p0w
′vm+2 contradicts (12). Therefore, no

such coloring ϕ exists. It follows that |S1| = |S2| = 3 and S1 ⊆ L(vm+1).
Since L(vm+1) = L(vm+2), we also have that S1 = S2. Since |S1| = |S2| = 3,
claim (3)(f) implies that m = 2 and s = 6. Similarly, we conclude that
L(v1) = L(p0) ∪ L(v2) and L(v6) = L(p2) ∪ L(v5), as otherwise we can color
and remove v1 or v6.

Let us now consider the case that v2, v3 and w′ have no common neighbor.
If v1, v2 and v3 have no common neighbor, then let ϕ be an L-coloring of v2,
v3 and v4 such that ϕ(v4) 6∈ L(v5). Otherwise, let ϕ be an L-coloring of v1,
v3 and v4 such that ϕ(v4) 6∈ L(v5) and ϕ(v1) = ϕ(v3). In the former case,
let G′ = Gϕ, in the latter case let G′ = Gϕ − v2. Observe that Lϕ is a valid
list assignment for G′ (after possibly adding the edge ww′ into M) and that
any Lϕ-coloring of G′ extends to G. Furthermore, G′ satisfies (O) by (14),
since w′ cannot be adjacent to p0. Hence, Gϕ contradicts the minimality of
G. Therefore, v2, v3 and w′ have a common neighbor x′, and by symmetry,
v4, v5 and w have a common neighbor x (see Figure 10).

By (12), we have x 6= x′ and x is adjacent neither to p0 nor to p2. Fur-
thermore, if xp1 ∈ E(G), then consider the cycle K = p1p2v6v5x. Since v6
has degree at least four, we conclude by (6) that K has two chords incident
with v6. However, that contradicts (7). Therefore, x (and symmetrically x′)
has no neighbor in P . By (12), neither w nor w′ is adjacent to p0 or p2.
Claims (4) and (5) imply that x′w, xw′, xx′ 6∈ E(G). Since both w and w′

have degree at least 5, we conclude that each of them has a neighbor that
is different from all vertices shown in Figure 10. Suppose that w′p1 6∈ E(G).
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Then let ϕ be an L-coloring of x and w′ such that ϕ(x), ϕ(w′) 6∈ L(v4) (note
that these colors do not belong to the lists of v2, v3 and v5, as well as to
L(v1) \ L(p0) and L(v6) \ L(p2)). Let G′ = G − {x,w′, v3, v4} if deg(w) > 5
and G′ = G−{x,w′, v3, v4, w} if deg(w) = 5. Note that G′ is not Lϕ-colorable
since any Lϕ-coloring of G′ extends to G. Furthermore, the only possible ver-
tices with list of size three in G′ are v2, v5, w and a common neighbor u of x
and w′ distinct from w and v4, if such a vertex exists. By (5), if u exists, then
deg(w) = 5 and w 6∈ V (G′). Furthermore, by (5), u and w are not adjacent
to v2 and v5. Therefore, Lϕ is a valid list assignment, the distance condition
implies that G′ satisfies (O), and thus G′ contradicts the minimality of G.

We conclude that w′p1 ∈ E(G). Let G1 and G2 be the p1w
′v4-components

of G, where G1 contains p0. Consider an L-coloring of G2. Note that v3 has
only two neighbors in G2−w′, thus the coloring of G2 can be extended to v3 in
such a way that its color is different from the color of w′. Then G1−v4+w′v3
(with the precolored path p0p1w

′v3) violates (O). Observe that only v1 and
v2 have list of size at most four and that x′ is a common neighbor of v3 and
w′. Therefore, x′ is a vertex in the corresponding obstruction K, and v2 is a
vertex in K with list of size 3. It follows that K is equal to OP4. However,
then v1p1 ∈ E(G), contradicting (7).

Therefore, |V (Gq)∩ V (F )| = 1, and thus each of X and X ′ satisfies (A5)
or (A6). Since s ≥ 3, we can assume that X ′ satisfies (A5). Suppose first that
X satisfies (A6), and thus b = 2. Since v1 6∈ X, the inspection of possible
cases for X and X ′ shows that we have |L(v2)| = 3, X ′ = {v2}, and s = 3. If
v1, v2 and v3 have no common neighbor, then consider any L-coloring ϕ of v1
and v2 such that ϕ(v1) 6∈ L(p0), and observe that Gϕ with the list assignment
Lϕ is a counterexample contradicting the minimality of G: since v1, v2, v3 do
not have a common neighbor, we do not get adjacent vertices with lists of
size 3; but we may need to add the neighbor z of v1 along the crossed edge
into the set N . The resulting graph satisfies (O), since z is not adjacent to
p0 and p2 by (12) and (8). Hence, we can assume that v1, v2 and v3 have
a common neighbor w, and thus deg(v2) = 3. Similarly, we conclude that
L(v1) = L(p0)∪L(v2) (if not, we color v1 with a color in L(v1)\(L(p0)∪L(v2))
and then consider G′ = G − {v1, v2}) and that L(v3) = L(p2) ∪ L(v2) (if
not, we can color v3 by a color in L(v3) \ (L(p2) ∪ L(v2)) and then consider
G′ = G − {v2, v3}). By (5), (8) and (12), w has no neighbor in P . Let
u be the vertex adjacent to w by the crossed edge, let ϕ be an L-coloring
of w such that ϕ(w) 6∈ L(v2) and let G′ = G − {v2, w} Note that Lϕ is a
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(P,N ∪ {u}, ∅)-valid list assignment for G′ and that G′ satisfies (O), since
no vertex has list of size three. Thus, G′ is a counterexample to Theorem 7
contradicting the minimality of G.

Therefore, both X and X ′ satisfy (A5) and b = m + 2. Moreover, (5)
implies that the neighbor w′ of vb in V (Gq) \ {vm+1} is different from w
(the neighbor of vm). Let y be the vertex joined to vm+1 by a crossed edge.
If |L(vm+1)| 6= 3, then both X and X ′ are chosen by cases (X1) or (X3)
and |L(vm)| = |L(vm+2)| = 3. The condition (A5) implies |L(vm+1)| = 4.
However, in that case we have |L(vm+2)| 6= 3 both in (X1) and (X3), which
is a contradiction. Therefore, |L(vm+1)| = 3. Consequently, X and X ′ were
chosen by (X2) or (X4) and we have |L(vm)|, |L(vm+2)| ≥ 4 and |L(vm−1)| =
|L(vm+3)| = 3. Since deg(vm) ≥ 4, (12) implies that w has no neighbor in F
other than p1, vm and vm+1, and by symmetry, the only possible neighbors
of w′ in F are p1, vm+1 and vm+2.

Let S1 = L(vm−1) if m = 3 and S1 = L(vm−1) \ L(p0) if m = 2. Let
S2 = L(vb+1) if b = s−2 and S2 = L(vb+1)\L(p2) if b = s−1. By symmetry,
we can assume that if m = 2, then b = s − 1. Let S be the set of colors
c ∈ L(vm+1) such that either

(a) L(vm+2) = S2 ∪ {c}, or

(b) |L(vm)| = 4, c 6∈ S1 and S1 ∪ {c} ⊆ L(vm).

If m = 2, then we have b = s − 1, |S1| = |S2| = 2, there are at most two
colors with the property (b) and no colors with the property (a). If m = 3,
then |S1| = 3 and |S2| ≤ 3, there is at most one color with the property (b)
and at most one color with the property (a). It follows that |S| ≤ 2. Let
ϕ be an L-coloring of vm−1, vm+1 and vm+2 chosen so that ϕ(vm+2) 6∈ S2,
ϕ(vm+1) 6∈ S, ϕ(vm−1) ∈ S1 and |L(vm) \ {ϕ(vm−1), ϕ(vm+1)}| ≥ 3. Note
that the choices for ϕ(vm+2) and ϕ(vm−1) are possible, since ϕ(vm+1) does
not satisfy (a) and (b), respectively. Consider G′ = G − {vm−1, vm+1, vm+2}
with the list assignment Lϕ. By (12), vm−1 has no common neighbor with
vm+1 and none with vm+2, and the only common neighbor of vm+1 and vm+2

is w′. Therefore, the only vertices with list of size three are v1 if m = 3, vm,
vm+3 and w′. Since w′ is not adjacent to vm+3, Lϕ is (P,N ∪ {y}, ∅)-valid.
Furthermore, y is adjacent neither to p0 nor to p2 by (12), hence G′ satisfies
(O) by (14) and contradicts the minimality of G. This completes the proof
of Theorem 7.
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Proof of Theorem 4. Let G be a graph with crossing number at most two.
We may assume that G is nonplanar. Consider a drawing of G in the plane
with one or two crossings and let L be a list assignment such that each vertex
has five admissible colors. Let xy and uv be two edges crossing each other at
the crossing q. Suppose first that the edges xy and uv do not participate in
another crossing. Now remove the two edges and add the edges xu, uy, yv,
and vx (if they are not already present). This gives rise to a graph G′ with
at most one crossing, and we can redraw it so that the cycle xuyv bounds the
outer face. Now we ϕ-precolor the path xuy such that ϕ(x) 6= ϕ(y), and give
v the list L(v) \ {ϕ(u)}. Theorem 7 now implies that G′ has a list coloring
which in turn shows that G is L-colorable.

If the edge uv participates in another crossing, then xy does not partici-
pate in another one. Suppose that the segment of uv from u to the crossing
q does not contain the other crossing. Then we proceed similarly as above:
we remove the edges xy and uv and add edges xu and uy. The resulting
graph is planar and the path P = xuy is part of a facial walk. Thus we may
ϕ-precolor the path so that ϕ(x) 6= ϕ(y) and then remove ϕ(u) from the list
of v. Now, we apply Theorem 7 with N = {v} to obtain a coloring that
again confirms that G is L-colorable.
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