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Abstract

By the Grünbaum-Aksenov Theorem (extending Grötzsch’s Theorem) every planar
graph with at most three triangles is 3-colorable. However, there are infinitely many
planar 4-critical graphs with exactly four triangles. We describe all such graphs. This
answers a question of Erdős from 1990.

1 Introduction

The classical Grötzsch’s Theorem [14] says that every planar triangle-free graph is 3-colorable.
The following refinement of it is known as the Grünbaum-Aksenov Theorem (the original
proof of Grünbaum [15] was incorrect, and Aksenov [1] fixed the proof).

Theorem 1 ([1, 7, 15]). Let G be a planar graph containing at most three triangles. Then
G is 3-colorable.

The example of the complete 4-vertex graph K4 shows that “three” in Theorem 1 cannot
be replaced by “four”. But maybe there are not many plane 4-critical graphs with exactly
four triangles (Pl4-graphs, for short)?
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Figure 1: A quasi-edge H0 and Pl4-graphs H1 and H2

K4 M T1 T2 T3

Figure 2: Some members of T W .

It turned out that there are many. Havel [16] presented a Pl4-graph H1 (see Figure 1)
in which the four triangles had no common vertices. He used the quasi-edge H0 = H0(u, v)
(on the left of Figure 1), that is, a graph in each 3-coloring of which the vertices u and v
must have distinct colors. The graph H1 is obtained from K4 by replacing the edges v1u1
and v2u2 with copies of the quasi-edge H0. Then Sachs [18] in 1972 asked whether it is true
that in every non-3-colorable planar graph G with exactly four triangles and no separating
triangles these triangles can be partitioned into two pairs so that in each pair the distance
between the triangles is less than two.

Aksenov and Mel’nikov [5, 6] answered the question in the negative by constructing a
Pl4-graph H2 (see Figure 1) in which the distance between any two of the four triangles is
at least two. Moreover, they constructed two infinite series of Pl4-graphs. Aksenov [2] was
studying Pl4-graphs in the seventies. According to Steinberg [19], Erdős in 1990 asked for
a description of Pl4-graphs again. Borodin [7] remarks that he knows 15 infinite families
of Pl4-graphs. In his survey [8], he mentions the problem of describing Pl4-graphs among
unsolved problems on 3-coloring of plane graphs.

First, we give a description of the Pl4-graphs without 4-faces, which we call Pl4,4f -graphs.
Thomas and Walls [20] constructed an infinite family T W of Pl4,4f -graphs; the first five
graphs in T W are depicted in Figure 2 (note that T2 and T3 are isomorphic graphs, but
their drawings are different). If an edge e of a graph belongs to exactly two triangles, we say
that e is a diamond edge. Each graph in T W contains two disjoint diamond edges, drawn
in bold in Figure 2. We define the class T W in terms of Ore-compositions.
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Figure 3: Some members of T W1.

An Ore-composition O(G1, G2) of graphs G1 and G2 is a graph obtained as follows: delete
some edge xy from G1, split some vertex z of G2 into two vertices z1 and z2 of positive degree,
and identify x with z1 and y with z2. If xy is a diamond edge of G1 and G2 is K4, then we
say that O(G1, G2) is a diamond expansion of G1. The class T W consists of all graphs that
can be obtained from K4 by diamond expansions.

Note that H1 is a Pl4,4f -graph but is not in T W . A graph is k-Ore if it is obtained from
a set of copies of Kk by a sequence of Ore-compositions. It was proved in [17] that every
k-Ore graph is k-critical. A partial case of Theorem 6 in [17] is the following.

Theorem 2 ([17]). Let G be an n-vertex 4-critical graph. Then |E(G)| ≥ 5n−2
3

. Moreover,
|E(G)| = 5n−2

3
if and only if G is a 4-Ore graph.

We will see below that every Pl4,4f -graph is a 4-Ore graph. On the other hand, our first
result says the following.

Theorem 3. Every 4-Ore graph has at least four triangles. Moreover, a 4-Ore graph G has
exactly four triangles if and only if G is a Pl4,4f -graph.

This reduces a “topological” result on plane graphs to a result on abstract graphs. And
it turns out that Pl4,4f -graphs do not differ much from the Thomas-Walls graphs. Let T W1

denote the graphs obtained from a graph in T W by replacing a diamond edge by the Havel’s
quasi-edge H0 (see Figure 3). Let T W2 denote the graphs obtained from a graph in T W1

by replacing a diamond edge by the Havel’s quasi-edge H0 (see Figure 4). Note that H0

contains no diamond edges, and thus each graph in T W2 can be obtained from a graph in
T W by replacing two vertex-disjoint diamond edges by the Havel’s quasi-edge H0.

Theorem 4. The class of Pl4,4f -graphs is equal to T W ∪ T W1 ∪ T W2.

The Pl4-graphs may have arbitrarily many 4-faces. Let G be a plane graph, let CP =
xz′yx′zy′ be a 6-cycle in G and let ∆ be the closed disk bounded by CP . Let P be the
subgraph of G consisting of the vertices and edges drawn in ∆. If all neighbors of the
vertices x′, y′ and z′ belong to P and all faces of G contained in ∆ have length 4, then we
say that P is a patch. The patch P is critical if x′, y′ and z′ have degree at least 3 and every
4-cycle in P bounds a face. We will see that if G0 is a Pl4-graph and a vertex v ∈ V (G0)
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Figure 4: Some members of T W2.

has exactly 3 neighbors x, y and z, then the graph Gv obtained from G0 − v by inserting
a critical patch P with boundary CP = xz′yx′zy′ (where x′, y′ and z′ are new vertices) is
again a Pl4-graph. For example, the graph H2 in Figure 1 is obtained from the graph H1

by replacing the vertices r and s with patches bounded by the cycles r1 . . . r6 and s1 . . . s6,
respectively. This gives a way to construct from every Pl4,4f -graph an infinite family of
Pl4-graphs. Our main result is that every Pl4-graph can be obtained this way.

Theorem 5. A plane 4-critical graph has exactly four triangles if and only if it is obtained
from a Pl4,4f -graph by replacing several (possibly zero) non-adjacent 3-vertices with critical
patches.

Thus, even though there are infinitely many Pl4-graphs, we know the structure of all of
them. This fully answers Erdős’ question from 1990. In particular, the result yields that
Sachs had the right intuition in 1972: his question has positive answer if we replace “less
than two” with “at most two.” Also, Aksenov and Mel’nikov [6] conjectured, in particular,
that H1 is the unique smallest Pl4-graph with the minimum distance 1 between triangles and
H2 is the unique smallest Pl4-graph with the minimum distance 2 between triangles. Our
description confirms this.

Havel [16] asked the following question: Does there exist a constant C such that every
planar graph with the minimal distance between triangles at least C is 3-colorable? The
graph H2 shows that C ≥ 3, and a further example of Aksenov and Mel’nikov [6] shows that
C ≥ 4, which is the best known lower bound. The existence of (large) C was recently proved
by Dvořák, Král’ and Thomas [9]. It is conjectured by Borodin and Raspaud that C = 4 is
sufficient, and our result confirms this conjecture for graphs with four triangles. For more
details, see a recent survey of Borodin [8].

The proof of Theorem 5 can be converted to a polynomial-time algorithm to find a 3-
coloring of a planar graph with four triangles or to decide that no such coloring exists.
However, a more general algorithm of Dvořák, Král’ and Thomas [10] can also be used, and
thus we do not provide further details.

The structure of the paper is as follows. In the next section we study the structure of
4-Ore graphs. In Section 3 we prove Theorems 3 and 4. In the last section, we describe all
Pl4-graphs by proving Theorem 5.
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2 The structure of 4-Ore graphs

In this section, we study 4-Ore graphs with few triangles. The following claim is simply a
reformulation of the definition of a k-Ore graph.

Claim 6. Every k-Ore graph G 6= Kk has a separating set {x, y} and two vertex subsets A
and B such that

• A ∩B = {x, y}, A ∪B = V (G) and no edge of G connects A \ {x, y} with B \ {x, y},
• x and y are non-adjacent in G and have no common neighbor in B,

• the graph G′ obtained from G[A] by adding the edge xy is a k-Ore graph, and

• the graph G′′ obtained from G[B] by identifying x with y into a new vertex x ∗ y is a
k-Ore graph.

Our first goal is to obtain a similar decomposition when we restrict ourselves to 4-Ore
graphs with 4 triangles (Theorem 11 below).

Claim 7. Every edge in each 4-Ore graph is contained in at most 2 triangles.

Proof. We prove the claim by induction on the order of a graph. Let G be a 4-Ore graph and
uv its edge and assume that the claim holds for all graphs with less than |V (G)| vertices.

Each edge of K4 is contained in exactly two triangles, and thus we can assume that
G 6= K4. Let {x, y}, A, B, G′ and G′′ be as in Claim 6. Since u is adjacent to v, either
{u, v} ⊂ A or {u, v} ⊂ B. Let G0 ∈ {G[A], G[B]} be the graph containing the edge uv, and
let G′0 ∈ {G′, G′′} be the corresponding 4-Ore graph. Let u′v′ be the edge of G′0 correspond-
ing to uv. Every triangle of G containing uv maps to a triangle in G′0 containing u′v′. Since
|V (G′0)| < |V (G)|, the edge u′v′ is contained in at most two triangles in G′0 by induction,
and thus uv is contained in at most two triangles in G. �

For a graph G, let t(G) denote the number of triangles in G.

Claim 8. If G is a 4-Ore graph, then t(G) ≥ 4. For every vertex z ∈ V (G), every graph Gz

obtained from G by splitting z satisfies t(Gz) ≥ 2. Furthermore, if G 6= K4, then t(G−z) ≥ 2,
and if G = K4, then t(G− z) = 1.

Proof. Let G be a 4-Ore graph. We proceed by induction and assume that the claim holds
for all graphs with less than |V (G)| vertices. Since the claim holds for K4, we can assume
that G 6= K4. Let {x, y}, A, B, G′ and G′′ be as in Claim 6. By induction hypothesis and
Claim 7, G[A] = G′− xy has at least t(G′)− 2 ≥ 2 triangles. Furthermore, G[B] is obtained
from G′′ by splitting a vertex, and thus it has at least two triangles by induction. It follows
that G has at least four triangles.

Consider now a vertex z of G. If z 6∈ {x, y}, then G − z contains G[A] or G[B] as a
subgraph, and thus t(G− z) ≥ 2. If z ∈ {x, y}, say z = x, then G− z contains G′ − x and
G′′−x ∗ y as vertex-disjoint subgraphs, and by induction each of them has a triangle; hence,
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t(G − z) ≥ 2. Finally, any graph Gz obtained from G by splitting z contains G − z as a
subgraph, and thus t(Gz) ≥ t(G− z) ≥ 2. �

Claim 9. If G is a 4-Ore graph with t(G) ≥ 5, then t(G− u− v) ≥ 1 for each u, v ∈ V (G).

Proof. We proceed by induction and assume that the claim holds for all graphs with less than
|V (G)| vertices. Note that G 6= K4, since t(G) ≥ 5. Let {x, y}, A, B, G′ and G′′ be as in
Claim 6. If u, v ∈ A, thenG′′−x∗y is a subgraph ofG−u−v and t(G−u−v) ≥ t(G′′−x∗y) ≥ 1
by Claim 8. Hence, by symmetry we can assume that u ∈ B \ {x, y}. Suppose that v ∈ B.
We can assume that v 6= x, and thus G′ − y is a subgraph of G − u − v. Again, Claim 8
implies that t(G− u− v) ≥ t(G′ − y) ≥ 1.

Finally, consider the case that u ∈ B \ {x, y} and v ∈ A \ {x, y}. Since t(G) ≥ 5, either
G[A] or G[B] contains at least three triangles. In the former case, let G0 = G[A], G′0 = G′,
r = v and s = x. In the latter case, let G0 = G[B], G′0 = G′′, r = u and s = x ∗ y. If r is
contained in at most two triangles in G0, then t(G − u − v) ≥ t(G0 − r) ≥ t(G0) − 2 ≥ 1;
hence, assume that r is contained in at least 3 triangles in G0, and thus also in G′0. Note
that G′0 6= K4, since t(G0) ≥ 3. By Claim 8, we have t(G′0) ≥ t(G′0 − r) + 3 ≥ 5. Note that
G′0−r−s is a subgraph of G−u−v, and thus t(G−u−v) ≥ t(G′0−r−s) ≥ 1 by induction. �

Claim 10. If G is a 4-Ore graph with t(G) ≥ 5, then t(G− v) ≥ 3 for each v ∈ V (G).

Proof. Note that G 6= K4, since t(G) ≥ 5. Let {x, y}, A, B, G′ and G′′ be as in Claim 6.
Since t(G) ≥ 5, either G[A] or G[B] contains at least three triangles. In the former case, let
G0 = G[A], G1 = G[B], G′0 = G′ and s = x. In the latter case, let G0 = G[B], G1 = G[A],
G′0 = G′′ and s = x ∗ y. Since G0 has at least three triangles, it follows that G′0 6= K4. If
v 6∈ V (G0), then t(G − v) ≥ t(G0) ≥ 3. Therefore, assume that v ∈ V (G0). If v ∈ {x, y},
then G′ − v and G′′ − x ∗ y are vertex-disjoint subgraphs of G− v, and since at least one of
G′ and G′′ is not equal to K4, we have t(G− v) ≥ t(G′ − v) + t(G′′ − x ∗ y) ≥ 3 by Claim 8.

Finally, suppose that v 6∈ {x, y}, and thus G1 is a subgraph of G−v. By Claim 8, there are
at least two triangles in G1. We claim that G0−v contains a triangle. This is clear if v belongs
to at most two triangles in G0, since t(G0) ≥ 3. Otherwise, v belongs to at least three trian-
gles in G0, and thus also in G′0. By Claim 8, we have t(G′0) ≥ t(G′0−v)+3 ≥ 5. We conclude
that t(G0−v) ≥ t(G′0−v−s) ≥ 1 by Claim 9. Therefore, t(G−v) = t(G0−v)+t(G1) ≥ 3. �

A 4, 4-Ore graph is a 4-Ore graph with exactly 4 triangles. The main result of this section
is the following.

Theorem 11. Suppose G is a 4, 4-Ore graph distinct from K4. Let {x, y}, A, B, G′ and G′′

be as in Claim 6. Then both G′ and G′′ are 4, 4-Ore graphs, xy is a diamond edge of G′, and
t(G[B]) = 2. Furthermore, if G′′ 6= K4, then x ∗ y belongs to exactly two triangles of G′′.
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Proof. Note that t(G[A]) ≥ 2 and t(G[B]) ≥ 2 by Claims 7 and 8, and since t(G[A]) +
t(G[B]) = t(G) = 4, it follows that t(G[A]) = t(G[B]) = 2. If t(G′) ≥ 5, then we would
have t(G[A]) ≥ t(G′ − x) ≥ 3 by Claim 10. If t(G′′) ≥ 5, then we would have t(G[B]) ≥
t(G′′ − x ∗ y) ≥ 3 by Claim 10. It follows that t(G′) ≤ 4 and t(G′′) ≤ 4, and by Claim 8, we
conclude that t(G′) = t(G′′) = 4, i.e., both G′ and G′′ are 4, 4-Ore graphs.

Since xy belongs to t(G′)− t(G[A]) = 2 triangles in G′, it is a diamond edge. Similarly,
x ∗ y belongs to at least t(G′′)− t(G[B]) = 2 triangles in G′′. Furthermore, if G′′ 6= K4 and
x ∗ y belonged to at least three triangles, then we would have t(G′′) ≥ t(G′′ − x ∗ y) + 3 ≥ 5
by Claim 8, which is a contradiction. �

3 A description of 4, 4-Ore graphs and Pl4,4f-graphs

With Theorem 11, it is easy to characterize all 4, 4-Ore graphs. The Moser spindle is the
Ore composition of two K4’s, depicted in Figure 2 as M .

Lemma 12. Every 4, 4-Ore graph belongs to T W ∪ T W1 ∪ T W2.

Proof. Let G be a 4, 4-Ore graph. We proceed by induction and assume that every 4, 4-Ore
graph with less than |V (G)| vertices belongs to T W ∪ T W1 ∪ T W2. Note that K4 ∈ T W ,
and thus we can assume that G 6= K4. Let {x, y}, A, B, G′ and G′′ be as in Theorem 11. By
induction hypothesis, we have G′, G′′ ∈ T W∪T W1∪T W2. Since G′ has a diamond edge xy
and G′′ has a vertex x∗y belonging to at least two triangles, we conclude that G′, G′′ 6∈ T W2.
Since G[B] has exactly two triangles, an inspection of the graphs in T W∪T W1 (see Figures 2
and 3) shows that either

• G′′ is the Moser spindle, x∗ y is its vertex of degree four, G[B] is the Havel’s quasiedge
H0 and x and y are its vertices of degree two, or

• x has degree two in G[B], y has degree one in G[B] and x∗y is incident with a diamond
edge (x ∗ y)z of G′′, where z is the neighbor of y in G[B].

In the former case, G is obtained from G1 by replacing a diamond edge with the Havel’s
quasiedge H0, and thus G ∈ T W1 ∪ T W2. In the latter case, observe that the described
Ore-composition of graphs from T W∪T W1 results in a graph from T W∪T W1∪T W2. �

We can now describe Pl4,4f -graphs.

Proof of Theorems 4 and 3. By Claim 8, every 4-Ore graph has at least four triangles.
Therefore, it suffices to prove that the following classes are equal to each other:

• 4, 4-Ore graphs,

• T W ∪ T W1 ∪ T W2, and
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• Pl4,4f -graphs.

By Lemma 12, every 4, 4-Ore graph belongs to T W ∪ T W1 ∪ T W2. Every graph in
T W ∪T W1 ∪T W2 is planar, 4-critical (since it is 4-Ore) and has four triangles, and thus it
is a Pl4,4f -graph. Therefore, it suffices to show that every Pl4,4f -graph G is 4, 4-Ore. Since
G has four triangles, we only need to prove that G is 4-Ore. Consider a plane drawing of G
without 4-faces. Let e, n and s be the number of edges, vertices and faces of the drawing
of G, respectively. Note that G has at most four triangular faces and all other faces of G
have length at least 5. Therefore, G has at least 1

2
(5(s − 4) + 3 · 4) edges. Note that G is

connected (since it is 4-critical), and thus s = e + 2− n by Euler’s formula. It follows that
e ≤ (5n− 2)/3, and G is 4-Ore by Theorem 2. �

4 A description of Pl4-graphs

We are going to characterize planar 4-critical graphs with 4 triangles. To deal with short
separating cycles, we use the notion of criticality with respect to a subgraph. Let G be a
graph and C be its (not necessarily induced) proper subgraph. We say that G is C-critical
(for 3-coloring) if for every proper subgraph H ⊂ G such that C ⊆ H, there exists a
3-coloring of C that extends to a 3-coloring of H, but not to a 3-coloring of G.

Notice that 4-critical graphs are exactly C-critical graphs with C = ∅. Furthermore, it
is easy to see that if F is a 4-critical graph and F = G ∪G′, where C = G ∩G′, then either
G = C or G is C-critical. We mainly use the following reformulation.

Lemma 13 (Dvořák et al. [11]). Let G be a plane graph and let Λ be a connected open region
of the plane whose boundary is equal to a cycle C of G, such that Λ is not a face of G. Let
H be the subgraph of G drawn in the closure of Λ. If G is 4-critical, then H is C-critical.

This is useful in connection with the following result of Gimbel and Thomassen [13],
which was also obtained independently by Aksenov et al. [3].

Theorem 14 (Gimbel and Thomassen [13]). Let G be a plane triangle-free graph with the
outer face bounded by a cycle C of length at most 6. If G is C-critical, then C is a 6-cycle
and all internal faces of G have length four.

Furthermore, they also exactly characterized the colorings of C that do not extend to G.

Theorem 15 (Gimbel and Thomassen [13]). Let G be a plane graph with the outer face
bounded by a cycle C = c1 . . . c6 of length 6, such that all other faces of G have length 4. A
3-coloring ϕ of G[V (C)] does not extend to a 3-coloring of G if and only if ϕ(c1) = ϕ(c4),
ϕ(c2) = ϕ(c5) and ϕ(c3) = ϕ(c6).

An analogous result for a 7-cycle was obtained by Aksenov et al. [4]. Their paper is in
Russian. For a shorter proof in English see [12].
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Figure 5: Critical graphs with a precolored 7-face.

Theorem 16 (Aksenov et al. [4]). Let G be a plane triangle-free graph with the outer face
bounded by a cycle C = c1 . . . c7 of length 7. The graph G is C-critical and ϕ : V (C) →
{1, 2, 3} is a 3-coloring of C that does not extend to a 3-coloring of G if and only if G
contains no separating cycles of length at most five and one of the following propositions is
satisfied up to relabelling of vertices (see Figure 5 for an illustration).

(a) The graph G consists of C and the edge c1c5, and ϕ(c1) = ϕ(c5).

(b) The graph G contains a vertex v adjacent to c1 and c4, the cycle c1c2c3c4v bounds a
5-face and every face drawn inside the 6-cycle vc4c5c6c7c1 has length four; furthermore,
ϕ(c4) = ϕ(c7) and ϕ(c5) = ϕ(c1).

(c) The graph G contains a path c1uvc3 with u, v 6∈ V (C), the cycle c1c2c3vu bounds a 5-
face and every face drawn inside the 8-cycle uvc3c4c5c6c7c1 has length four; furthermore,
ϕ(c3) = ϕ(c6), ϕ(c2) = ϕ(c4) = ϕ(c7) and ϕ(c1) = ϕ(c5).

By inspection of the cases (a),(b) and (c) of Theorem 16 we obtain the following fact.

Fact 17. Let G be a plane triangle-free graph with the outer face bounded by a cycle C of
length 7. Suppose that G is C-critical and that ϕ is a precoloring of C that does not extend
to a 3-coloring of G. Let x, y and z be consecutive vertices of C. If ϕ(x) = ϕ(z), then y is
incident with the 5-face of G.

We also use the following result dealing with graphs with a triangle.

Theorem 18 (Aksenov [1]). Let G be a plane graph with the outer face bounded by a cycle
C = c1c2 . . . of length at most 5. If G is C-critical and contains exactly one triangle T
distinct from C, then C is a 5-cycle, all internal faces of G other than T have length exactly
four and T shares at least one edge with C. Furthermore, if C and T share only one edge
c1c2 and ϕ is a 3-coloring of C that does not extend to a 3-coloring of G, then ϕ(c1) = ϕ(c3)
and ϕ(c2) = ϕ(c5).
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Recall that the notion of a patch was defined in the introduction. First, we need to argue
that replacing vertices of degree 3 by critical patches preserves criticality and the number of
triangles.

Lemma 19. Let G be a 4-critical graph, let v be a vertex of G of degree 3 and let x, y and
z be the neighbors of v in G. Let G′ be a graph obtained from G− v by inserting a patch P
with boundary CP = xz′yx′zy′, where x′, y′ and z′ are new vertices. Then G′ is 4-critical if
and only if the patch P is critical. Furthermore, if P is critical, then t(G′) = t(G).

Proof. Clearly, every 4-critical graph has minimum degree at least 3. Furthermore, by
Lemma 13 and Theorem 14, if Λ is an open disk bounded by a 4-cycle in a 4-critical plane
graph and no triangle is contained in Λ, then Λ is a face. Therefore, if G′ is 4-critical, then
P is a critical patch.

Suppose now conversely that P is a critical patch. Consider an edge e ∈ E(G′). If
e 6∈ E(P ), then e is an edge of G not incident with v. Since G is 4-critical, there exists
a 3-coloring ϕ of G − e. The vertex v is properly colored, and thus we can by symmetry
assume that ϕ(x) = ϕ(y). By Theorem 15, ϕ extends to a 3-coloring of P , showing that
G′ − e is 3-colorable.

On the other hand, consider the case that e ∈ E(P ). Since G is 4-critical, there exists a
3-coloring ψ of G− v such that ψ(x) = 1, ψ(y) = 2 and ψ(z) = 3. Suppose that ϕ does not
extend to a 3-coloring of P − e. If e 6∈ E(CP ), this implies that P − e contains a CP -critical
subgraph P ′. By Theorem 14, all faces of P ′ distinct from CP have length 4. However, e is
drawn inside one of the faces of P ′, and thus P would contain a 4-cycle not bounding a face,
contrary to the assumption that P is a critical patch.

Finally, suppose that e ∈ E(CP ), say e = xz′. Note that all faces of P have even length,
and thus P is bipartite. Since z′ has degree at least 3 and every 4-cycle in P bounds a face,
we conclude that xz′y is the only path of length at most two between x and y in P . Let
P1 be obtained from P − e by adding the edge xy, and note that P1 is triangle-free. Let
C1 = xyx′zy′ be the 5-cycle bounding the outer face of P1. Since ϕ does not extend to a
3-coloring of P − e, it also does not extend to a 3-coloring of P1, and thus P1 contains a
C1-critical subgraph. This contradicts Theorem 14.

We conclude that G′ − e is 3-colorable for every e ∈ E(G′). Since G′ does not contain
isolated vertices, this implies that every proper subgraph of G′ is 3-colorable. Suppose that
G′ has a proper 3-coloring θ. Since G is not 3-colorable, θ cannot be extended to v, and
thus we can assume that θ(x) = 1, θ(y) = 2 and θ(z) = 3. However, that implies that
θ(x) = θ(x′), θ(y) = θ(y′) and θ(z) = θ(z′). Since θ is a 3-coloring of P , this contradicts
Theorem 15. Therefore, G′ is not 3-colorable, and thus it is 4-critical.

Now we establish a bijection f between triangles in G and G′. If a triangle T in G does
not contain v, then T also appears in G′, and we set f(T ) = T . If T contains v, say T = vxy,
then we set f(T ) = z′xy. Since f is injective, it suffices to show that it is surjective. Sup-
pose that there exists a triangle T ′ ⊂ G′ that is not in the image of f . Then T ′ contains
an edge of P . Since P is bipartite, T ′ contains an edge outside of P , and since x, y and z
are non-adjacent in the patch P , we conclude that T ′ intersects P in a path of length two,
say xwy, and x and y are adjacent in G. Since f(vxy) = xz′y and T ′ is not in the image
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of f , we conclude that w 6= z′. Since P is a critical patch, the 4-cycle xz′yw bounds a face.
However, this implies that z′ has degree two, which is a contradiction. Therefore, f is indeed
a bijection, and thus t(G′) = t(G). �

By Lemma 19, the graphs described in Theorem 5 are indeed 4-critical and have exactly
4 triangles. If G is obtained from a Pl4,4f -graph by replacing non-adjacent vertices of degree
3 with (not necessarily critical) patches, then we say that G is an expanded Pl4,4f -graph. By
Lemma 19, it remains to show that every Pl4-graph is an expanded Pl4,4f -graph. First we
state several properties of expanded Pl4,4f -graphs.

Claim 20. If P is a patch in an expanded Pl4,4f -graph G, then no vertex of P is incident
with exactly one edge that does not belong to P .

Proof. Let G0 be the Pl4,4f -graph from which G is obtained by replacing vertices with
patches. Let v be the vertex of G0 that is replaced by P and let x, y and z be the neighbors
of v. All vertices of V (P ) \ {x, y, z} only have neighbors in P . Each of x, y and z has degree
at least 3 in G0, and thus each of them is incident with at least two edges that are not
incident with v. So, each of x, y and z is incident with at least two edges of G that do not
belong to P . �

Claim 21. Every face of an expanded Pl4,4f -graph G has length 3, 4 or 5, and every 4-face
of G belongs to a patch.

Proof. Let G0 be the Pl4,4f -graph from which G is obtained by replacing vertices with
patches. By Theorem 4, G0 belongs to T W ∪ T W1 ∪ T W2, and thus each face of G0

has length 3 or 5. Furthermore, observe that replacing a 3-vertex v by a patch transforms
each face of G0 incident with v to a face of G of the same length, whose boundary shares a
path of length two with the boundary cycle of P . Therefore, every face of G which is not
contained in a patch has length 3 or 5. �

Furthermore, we will use the following simple property of critical graphs.

Claim 22. If G is a 4-critical graph and T is a triangle of G, then G− V (T ) is connected.
In particular, if G is a plane graph, then every triangle in G bounds a face.

Proof. If G−V (T ) is not connected, then there exist proper subgraphs G1 and G2 of G such
that G1 ∪ G2 = G and G1 ∩ G2 = T . Since G is 4-critical, both G1 and G2 are 3-colorable
and by permuting the colors if necessary, we can assume that their 3-colorings match on T .
Together, they would give a 3-coloring of G, which is a contradiction. �
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A stretching of a plane graph G at a vertex w ∈ V (G) is a graph G2 obtained from G
by the following procedure. Let e1, . . . , ek be the edges incident with w as drawn in the
clockwise order around it. Choose m < k and let G′ be obtained from G by removing w,
adding two new vertices w1 and w2 and adding edges between w1 and the endpoints of e1,
. . . , em distinct from w, and between w2 and the endpoints of em+1, . . . , ek distinct from w.
Let G1 be obtained from G′ by either adding a new vertex z adjacent to w1 and w2, or by
adding an edge between w2 and the endpoint z of e1 distinct from w. Finally, for each face
f of G1 incident with zw2, if |f | = 6, then replace f by a quadrangulation, and if |f | = 7,
then replace it by a graph satisfying (a), (b) or (c) of Theorem 16, resulting in the graph
G2. We call G1 the intermediate graph of the stretching, and the faces of G1 incident with
zw2 are called special.

Lemma 23. Every Pl4-graph is an expanded Pl4,4f -graph.

Proof. Assume that G has the fewest vertices among the Pl4-graphs that are not expanded
Pl4,4f -graphs. Then G does not contain any patches, since replacing a patch by a 3-vertex
would give a smaller counterexample. We are going to need the following stronger claim.

(1) Let C be a 6-cycle in G and let ∆ be an open region of the plane bounded by C, such
that all faces in ∆ have length four. Then ∆ contains at most one vertex, and if it contains
a vertex, then each vertex of C is incident with an edge that is not drawn in the closure of
∆.

Proof. Let C = v1v2v3v4v5v6 and suppose that ∆ contains at least one vertex, and if it
contains only one, then all edges incident with v6 are drawn in the closure of ∆. Let G′ be
the graph obtained from G by removing the vertices in ∆ (which does not include C) and
adding a vertex v adjacent to v1, v3 and v5. By Theorem 15, G′ is not 3-colorable, since every
3-coloring of C in which v1, v3 and v5 do not have pairwise distinct colors can be extended
to the subgraph of G drawn in the closure of ∆. Therefore, G′ has a 4-critical subgraph G′′.
Note that |V (G′′)| < |V (G)|, since if ∆ contains only one vertex of G, then v6 has degree 2
in G′, and thus v6 6∈ V (G′′).

Since both G and G′′ are 4-critical, G′′ is not a proper subgraph of G. Hence v and all
edges incident to it belong to G′′. Triangles in G′′ that are not in G can only be created by
adding v to an edge, say v1v3; in this case, v1v2v3 is a triangle in G which bounds a face (by
Claim 22), and thus v2 has degree two in G′ and does not belong to G′′, which means that
creating a new triangle in G′′ destroys another triangle. Thus t(G′′) ≤ t(G) = 4. Since G′′

is not 3-colorable, it contains exactly four triangles. By the minimality of G, the graph G′′

is an expanded Pl4,4f -graph and by Claim 21, each face of G′′ has length at most 5. Let G1

be the graph obtained from G′′− v by adding the subgraph H of G contained in the closure
of ∆. Then G1 is a subgraph of G.

If at least two faces of G′′ incident with v have length 4, then v is a vertex of a patch
P ′′ of G′′ and all neighbors of v belong to P ′′. We claim that P = (P ′′ − v) +H is a patch;
this is clear if v is incident with three 4-faces in G′′. If v is incident with exactly two 4-faces,
then let f be the face incident with v of length other than four. Note that at least one edge
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e of C does not belong to G′′ and in G, it is drawn in the region of the plane corresponding
to f . By symmetry, we can assume that e = v1v6. Since all faces of G′′ have length at most
5, if v6 ∈ V (G′′), then v1 and v6 would be joined by a path Q of length two in G′′. The path
Q together with the edge v1v6 would form a triangle in G which does not correspond to any
triangle in G′′, and thus G′′ would only have at most three triangles, which is a contradiction.
Therefore, v6 6∈ V (G′′), and thus all neighbors of v6 in G1 belong to P , showing that P is a
patch. Consequently, G1 is an expanded Pl4,4f -graph.

Hence, we can assume that at most one face of G′′ incident with v has length four. If
exactly one face incident with v had length 4, then v would belong to a patch P and it would
be incident with exactly one edge not belonging to P , contradicting Claim 20, Therefore, no
face incident with v has length four, and as in the previous paragraph, we conclude that H
is a patch in G1 that replaces the vertex v of degree 3 of G′′. Again, it follows that G1 is an
expanded Pl4,4f -graph.

Since G1 is not 3-colorable and G is 4-critical, G = G1 and G is an expanded Pl4,4f -graph.
This is a contradiction. �

(2) G does not contain separating 4-cycles.

Proof. Suppose that C = v1v2v3v4 is a separating 4-cycle in G. Let Λ1 and Λ2 be the
two connected regions obtained from the plane by removing C. For i ∈ {1, 2}, let Gi be the
subgraph of G drawn in the closure of Λi. By Lemma 13, Gi is C-critical, and by Theorem 18,
Gi contains at least two triangles. Since t(G) = 4, we conclude that t(G1) = t(G2) = 2.

For i, j ∈ {1, 2}, let Gi,j be the graph obtained from Gi by adding the edge vjvj+2.
Note that C + vjvj+2 has a unique 3-coloring up to permutation of colors. Therefore, any
3-colorings of G1,j and G2,j could be combined to a 3-coloring of G. We conclude that at
least one of G1,j and G2,j is not 3-colorable. By symmetry, we can assume that G1,1 is not
3-colorable.

Let G′1,1 be a 4-critical subgraph of G1,1. By Claim 22, each triangle in G′1,1 bounds a
face, and thus v1v3 belongs to at most two triangles of G′1,1. Since t(G1) = 2, it follows that
t(G′1,1) ≤ 4. Since G′1,1 is 4-critical, it follows that t(G′1,1) = 4, i.e., G′1,1 is a Pl4-graph, and
that v1v3 belongs to two triangles of G′1,1. Let v1v

′
2v3 and v1v

′
4v3 be the triangles incident

with v1v3 labelled so that for k ∈ {2, 4}, vk is either equal to v′k or it is drawn in G1,1 in the
region of the plane corresponding to the face of G′1,1 bounded by v1v

′
kv2.

Since C is a separating cycle, |V (G′1,1)| < |V (G)|, and by the minimality of G, it follows
that G′1,1 is an expanded Pl4,4f -graph. By Claim 21, every face of G′1,1 has length at most
five. Consider a face f of G′1,1 not incident with v1v3. Since the subgraph of G drawn in the
closure of f contains no triangles, by Lemma 13 and Theorem 14, f is a face of G as well.
Furthermore, if vk 6= v′k for some k ∈ {2, 4}, then Lemma 13 and Theorem 14 imply that
v1v
′
kv3vk is a face of G and vk has degree two in G1,1. It follows that V (G1,1) \ V (G′1,1) ⊆

{v2, v4} and each vertex v ∈ V (G1,1) \ V (G′1,1) is adjacent in G1,1 only to v1 and v3.
Suppose that G′1,1 has a 4-face. In that case, it contains a patch P . Let x, y and z

be the vertices of the boundary cycle K of P that have neighbors only in P . Note that
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v1v3 6∈ E(K), since both faces incident with v1v3 are triangles. Furthermore, at most two
of x, y and z are incident with C, since they form an independent set. Therefore, we can
assume that all edges incident with x in G belong to P . This contradicts (1). We conclude
that G′1,1 has no 4-faces, and thus it belongs to T W ∪ T W1 ∪ T W2 by Theorem 4.

Consequently, both vertices of the diamond edge v1v3 of G′1,1 have degree exactly 3 in
G′1,1. Since G′1,1 is 4-critical, there exists a 3-coloring ϕ of G′1,1−{v1, v3} and ϕ(v′2) 6= ϕ(v′4).
Set ϕ(vk) = ϕ(v′k) for k ∈ {2, 4} and note that ϕ is a proper 3-coloring of G1,2. Since G
is not 3-colorable, it follows that G2,2 is not 3-colorable. By an argument symmetrical to
the one for G1,1, we conclude that G2,2 contains a Pl4,4f -graph G′2,2 as a subgraph such that
V (G2,2) \ V (G′2,2) ⊆ {v1, v3} and each vertex v ∈ V (G2,2) \ V (G′2,2) is only adjacent to v2
and v4 in G2,2.

Suppose that G′1,1 6= G1,1, and thus say v2 ∈ V (G1,1) \ V (G′1,1) is adjacent in G1 only
to v1 and v3. Since v2v4 is a diamond edge of G′2,2, vertex v2 has degree 3 in G′2,2. If
G′2,2 = G2,2, this would imply that v1 and v3 are the only neighbors of v2 in G2, and thus
v2 would have degree two in G, contrary to the assumption that G is 4-critical. Hence, we
can assume that say v1 ∈ V (G2,2) \ V (G′2,2) is adjacent in G2 only to v2 and v4. Since G′1,1
and G′2,2 are 4-critical, there exist 3-colorings ϕ1 of G′1,1 − v1v3 and ϕ2 of G′2,2 − v2v4 such
that ϕ1(v1) = ϕ1(v3) = 1, ϕ1(v

′
2) = 2, ϕ1(v

′
4) = 3, ϕ2(v2) = ϕ2(v4) = 3, ϕ2(v

′
1) = 2 and

ϕ2(v
′
3) = 1. Then each vertex of G is colored by ϕ1 or ϕ2 and if a vertex (v3 or v4) belongs

to both G′1,1 and G′2,2, then it is assigned the same color by ϕ1 and ϕ2. Thus the union of
ϕ1 and ϕ2 gives a 3-coloring of G, which is a contradiction.

Therefore, G′1,1 = G1,1, and by symmetry, G′2,2 = G2,2. It follows that G has no 4-face,
and thus G is a Pl4,4f -graph. This is a contradiction. �

(3) If K is a separating 5-cycle in G and ∆ is a region of the plane bounded by K such
that ∆ contains at most one triangle, then ∆ contains exactly one vertex, which has three
neighbors in K.

Proof. By Theorem 14 and the criticality of G, ∆ contains a triangle T , as ∆ is not a face of
G. Since K is separating, Theorem 18 implies that T shares exactly one edge with K. Let
{z} = V (T ) \ V (K). Note that T ∪K contains a 6-cycle, bounding an open region ∆0 ⊂ ∆.
Since all edges incident with z are drawn in the closure of ∆0, (1) implies that ∆0 contains
no vertices, and thus z is the only vertex in ∆. �

(4) The following configuration does not appear in G: a path z1z2z3 and a vertex z of degree
3 adjacent to z1, z2 and z3.

Proof. Since G does not contain separating triangles, if z1 is adjacent to z3, then G = K4.
This is a contradiction, since G is not a Pl4,4f -graph.

Let G′ be the graph obtained from G − z by identifying z1 with z3 to a new vertex u.
Since G is not 3-colorable, G′ also is not 3-colorable. Let G′′ be a 4-critical subgraph of G′.
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Note that G′′ has at least four triangles, and since the triangles zz1z2 and zz2z3 disappear
during the construction of G′, we conclude that G′′ contains at least two triangles ux1x2
and uy1y2 such that z1x1x2z3 and z1y1y2z3 are (not necessarily disjoint) paths between z1
and z3 in G − {z, z2}. Since G′′ contains no separating triangles by Claim 22, we conclude
that G′′ contains exactly two such triangles, and thus t(G′′) = 4. Let ∆1 be the open disk
bounded by z1zz3x2x1 in G corresponding to the face ux1x2 of G′, and let ∆2 be the open
disk bounded by z1z2z3y2y1 in G corresponding to the face uy1y2 of G′. By swapping the
labels of xi and yi (for i ∈ {1, 2}) if necessary, we can assume that ∆1 and ∆2 are disjoint.
Note that since t(G′′) = 4, neither ∆1 nor ∆2 contains a triangle of G, and thus ∆1 and ∆2

are faces of G by (3).
By the minimality of G, it follows that G′′ is an expanded Pl4,4f -graph, and all faces of

G′′ have length at most 5. By Lemma 13 and Theorem 14, all faces of G′′ other than ux1x2
and uy1y2 are also faces of G. In particular, since G does not contain patches, G′′ also does
not contain patches, and thus G′′ has no 4-faces. It follows that G has no 4-faces. Therefore,
G is a Pl4,4f -graph, which is a contradiction. �

(5) The following configuration does not appear in G: a triangle T = z1z2z3 such that all
vertices of T have degree 3 and z3 is adjacent to a vertex x3 distinct from z1 and z2 that has
degree 3 and belongs to a triangle.

Proof. Let x1 and x2 be the neighbors of z1 and z2, respectively, outside of T . By (4), we
have x1 6= x2 6= x3 6= x1. Furthermore, the vertices x1, x2 and x3 form an independent set in
G, as otherwise every 3-coloring of G−V (T ) would extend to G, contrary to the 4-criticality
of G. Let G′ be the graph obtained from G−V (T )−x3 by adding the edge x1x2. Note that
every 3-coloring of G′ extends to a 3-coloring of G, and thus G′ is not 3-colorable. Let G′′ be
a 4-critical subgraph of G. Note that G′′ contains at least four triangles, and since T as well
as the triangle incident with x3 disappear during the construction of G′, it follows that x1x2
belongs to at least two triangles in G′′. By Claim 22, x1x2 belongs to exactly two triangles,
each of them bounding a face of G′′. Therefore, G contains a 4-cycle x1ux2v separating two
of its triangles from T . By (2), it follows that u is adjacent to v. By (3), either x1z1z2x2u or
x1z1z2x2v bounds a face, and thus u or v has degree 3 . This contradicts (4). �

Let v1v2v3v4 be a 4-face in G, if possible chosen so that it contains two adjacent vertices
that are only incident with 4-faces. Since G contains no separating triangles, v1v3 and v2v4
are not edges. Suppose that v1 and v3 are joined by a path v1x1x2v3 ⊂ G − {v2, v4} of
length 3 , and that v2 and v4 are joined by a path v2y1y2v4 ⊂ G − {v1, v3} of length 3 .
By symmetry and planarity, we can assume that x1 = y1. If both v1 and v2 have degree
3, then every 3-coloring of G − {v1, v2} extends to G, contrary to the assumption that G
is 4-critical. By symmetry, v1 has degree at least 4, and since v4y2y1v1 is not a separating
4-cycle, v1 is adjacent to y2. By (3) applied to the 5-cycle v4v1v2y1y2, we have x2 = y2. But
then V (G) = {v1, v2, v3, v4, x1, x2} and G is 3-colorable.
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Therefore, we can by symmetry assume that v1 and v3 are not joined by a path of length
3 in G− {v2, v4}. Let G′ be the graph obtained from G by identifying v1 and v3 to a single
vertex w. Clearly, G′ has exactly the four triangles that originally belonged to G (possibly
with v1 or v3 relabelled to w). Since every 3-coloring of G′ gives a 3-coloring of G, we conclude
that G′ is not 3-colorable. Let G′′ be a 4-critical subgraph of G′. By the minimality of G, G′′

is an expanded Pl4,4f -graph. In particular, all faces of G′′ have length at most 5. For a face
f of G′′, let Cf denote the corresponding cycle in G (either equal to f up to relabelling of w
to v1 or v3, or obtained from f by replacing w by the path v1v2v3). Since all triangles of G
are faces of G′′, Theorem 14 implies that if |Cf | = |f |, then Cf is a face of G. Furthermore,
if |Cf | = |f | + 2, then 4 ≤ |f | ≤ 5 and Cf does not bound a face of G, since v2 has degree
at least 3 . Let Gf denote the subgraph of G drawn in the region of the plane bounded by
Cf and corresponding to f , and note that Gf is one of the graphs described by Theorem 14
or Theorem 16. Therefore, the following holds.

(6) The graph G is obtained by stretching from an expanded Pl4,4f -graph G0 at a vertex w0,
where G and G0 have the same triangles.

In particular, all faces of G have length at most 5. By the choice of the 4-face v1v2v3v4,
we can also assume that the following property is satisfied.

(7) Let G0 and w0 be as in (6). Let v1v2v3 be the path replacing w0 in the intermediate
graph of the stretching. The path v1v2v3 is contained in the boundary of a 4-face in G.
Furthermore, if G contains an edge whose vertices are only incident with 4-faces, then v1 is
only incident with 4-faces.

Let G0 and w0 satisfying (6) be chosen so that if G0 contains at least one patch, then (7)
is satisfied, and subject to that with |V (G0)| as small as possible. Observe that G0 does not
necessarily have to be created from G by contracting a 4-face. Let G1 be the intermediate
graph of the stretching, let f1 and h1 be its special faces and let f0 and h0 be the corresponding
faces of G0.

(8) The graph G0 has no 4-faces.

Proof. Suppose that G0 has a 4-face, and thus it contains a patch P0 bounded by a 6-cycle
C0 = z1z2z3z4z5z6, where z2, z4 and z6 only have neighbors in P0. Let r2, r4 and r6 be the
faces of G0 incident with z2, z4 and z6, respectively, whose length is not four. Since G0 is
2-connected, these faces are pairwise distinct. If C0 is a 6-cycle in G, then the open region ∆
corresponding to P0 contains only 4-faces and at least one vertex of G lies inside ∆. There
exists k ∈ {2, 4, 6} such that f0 6= rk 6= h0, and thus all edges incident with zk in G are
drawn in the closure of ∆. This contradicts (1); hence, C0 contains w0 and corresponds to
an 8-cycle C1 in G1 containing the path v1v2v3. Note that all faces of G drawn in the open
region Λ of the plane bounded by C1 and corresponding to P0 have length 4. By symmetry,
we can assume that w0 ∈ {z1, z2} and f0 is contained in the patch P0.

Suppose that h0 does not share an edge with C0; then, w0 = z1, r2 and r6 are faces of G
and v1 is incident with one of them. Since neither r2 nor r6 is a 4-face, (7) implies that G does
not contain an edge whose vertices are only incident with 4-faces. Hence, |V (P0)\V (C0)| = 1
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Figure 6: Possibilities for a fragment F .

and the only neighbors of z1 in P0 are z2 and z6. By (7), G contains a 4-face v1v2v3z. If z
lies inside Λ, then note that it is adjacent neither to z2 nor to z6, and thus z has a neighbor
inside Λ. If z lies outside Λ, then similarly v2 has a neighbor inside Λ. In both cases G
contains an edge whose vertices are incident only with 4-faces, a contradiction. Therefore,
h0 shares an edge with C0 (we can assume that h0 = r2). Since the same conclusions would
have to hold for any other patch in G0, the only patch in G0 is P0.

Label the vertices of C1 so that the vertices of V (C0) \ {w0} retain their labels and
C1 = z1xyz2z3z4z5z6. Note that all edges incident with y, z2, z4 and z6 in G1 are drawn in
the closure of Λ. Also, either x is adjacent to z1 in G0 and |h1| = |h0| = 5, or |h0| = 5 and
|h1| = 7 and all edges incident with x are drawn in the closure of Λ. Let h0 = z1z2z3ab,
where b may be equal to x. Since C = z1baz3z4z5z6 is a 7-cycle in G whose interior (the part
of the plane bounded by C and containing Λ) does not contain any triangle, it satisfies (b)
or (c) of Theorem 16. Let G′0 be the graph obtained from G0 by replacing the patch P0 with
a 3-vertex z′ adjacent to z1, z3 and z5. Since G0 has only one patch, G′0 has no patches and
it is a Pl4,4f -graph. Furthermore, G is obtained from G′0 by stretching at vertex z′ (split out
the edge z′z3, then make its new endvertex adjacent to z5 and relabel the vertices created
from z′ by z4 and z6). Since |V (G′0)| < |V (G0)|, this is a contradiction with the choice of
G0. �

Suppose that {a, c} is a vertex-cut in G0 and F is an induced subgraph of G0 such that
all edges of G0 incident with V (F ) \ {a, c} belong to F . We say that F is a fragment with
attachments a and c if F either isomorphic to the Havel’s quasiedge H0 and a and c are its
vertices of degree two, or if F consists of a 4-cycle au1u2u3 and edges u1u3 and u2c. See
Figure 6 for an illustration. Since all triangles of G0 belong to G and stretching does not
preserve size of at least one face, G0 is not K4, and thus G0 contains two fragments.

Since stretching has at most two special faces and fragment contains configurations for-
bidden by (4) and (5), the stretching must occur at a vertex of each of the fragments. Hence,
G0 does not have two vertex-disjoint fragments, and we conclude that G is one of the graphs
M and K ′4 depicted in Figures 2 and 3. The possible intermediate graphs G1 are drawn in
Figure 7. Thus we have the three cases below.

Case 1: G1 = X1. Let ψ be a 3-coloring of G1 such that ψ(v1) = ψ(x) = ψ(v4) = 1,
ψ(v2) = ψ(x1) = ψ(x2) = 2 and ψ(v3) = ψ(x3) = ψ(x4) = 3. This coloring does not extend
to a 3-coloring of G, and by symmetry, we can assume that it does not extend to a 3-coloring
of Gh0 . By Fact 17, it follows that x, x3 and v4 are incident with a common 5-face in G, and
thus x3 has degree 3 . This contradicts (4).

17



x

x1

v4

x3

x2

v1

x4

f1

v2 v3

h1

X1

v2 v3

y1

y

y2

v1

x1

x

x2

f1

h1

X2

x1

x

x2

v3v2v1

y2y1

y4y3

f1

h1

Y1

G0 G1

Figure 7: Stretchable Pl4,4f -graphs.
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Case 2: G1 = X2. Let ψ be a 3-coloring of G1 such that ψ(v1) = ψ(x) = ψ(y1) = 1,
ψ(v2) = ψ(x1) = ψ(y2) = 2 and ψ(v3) = ψ(x2) = ψ(y) = 3. By symmetry, ψ does not extend
to Gh0 , and by Theorem 16, x2 is adjacent to v3 and xx2v3y2y is a 5-face. However, then y2
has degree 3 and we again obtain a contradiction with (4).

Case 3: G1 = Y1. Let ψ be a 3-coloring of G1 such that ψ(v1) = ψ(x1) = ψ(y4) = 1,
ψ(v2) = ψ(y2) = ψ(x2) = ψ(y3) = 2 and ψ(v3) = ψ(x) = ψ(y1) = 3. If ψ does not extend to
a 3-coloring of Gf0 , then by Fact 17, G contains a 5-face incident with v3, x2 and x; hence,
x2 has degree 3 and contradicts (4). Since G is not 3-colorable, it follows that ψ does not
extend to a 3-coloring of Gh0 . By Fact 17, G contains a 5-face incident with v1, y3 and x,
and by Theorem 14, y4 is incident with the 5-face as well. However, then both y3 and y4
have degree 3 in G, which contradicts (5).

This finishes the proof of Lemma 23. �

Proof of Theorem 5. By Lemma 19, every graph obtained from a Pl4,4f -graph by replacing
non-adjacent 3-vertices with critical patches is 4-critical and has exactly four triangles. Con-
versely, if G is a Pl4-graph, then it is an expanded Pl4,4f -graph by Lemma 23, and since G
is 4-critical, all the patches in G are critical by Lemma 19. �
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[7] Borodin, O. V. A new proof of Grünbaum’s 3 color theorem. Discrete Math. 169
(1997), 177–183.

19



[8] Borodin, O. V. Colorings of plane graphs: A survey. Discrete Math. 313 (2013),
517–533.
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