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The Ham sandwich theorem
and its applications

Source: https://www.seekpng.com/



The Ham sandwich theorem

• Given finite sets A1, . . . ,Ad of points in Rd , there is a hyperplane H
that contains at most b|Ai |/2c points from each set Ai in each open
halfspace determined by H .

Sources: https://ejarzo.github.io and https://curiosamathematica.tumblr.com

The Ham sandwich theorem for Borel measures

Let µ1, . . . , µd be finite Borel measures on Rd such that every hyperplane
has measure 0 for each µi . Then there is a hyperplane H such that
µi(H

+) = µi(Rd)/2 for i = 1, . . . , d .
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Equipartitions by hyperplanes

• The Ham Sandwich theorem for measures ⇒ any mass distribution in
the plane can be dissected into 4 equal parts by 2 lines (exercise).

Source: Matoušek: Using the Borsuk–Ulam Theorem (colored)

• Any mass distribution in R3 can be partitioned into 23 = 8 equal pieces
by 3 planes (not easy).
• For d ≥ 5, equipartition into 2d equal parts by d hyperplanes fails.
• For d = 4, the problem is open.
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Multicolored partitions

• For d ≥ 1 and sets A1, . . . ,Ad , each containing n points from Rd with
∪di=1Ai in general position, the points from ∪d

i=1Ai can be partitioned
into rainbow d-tuples with disjoint convex hulls.
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Division of a necklace

• Two thieves have stolen a necklace with precious stones (even number
of each kind) and they want to divide the stones of each kind evenly by
as few cuts as possible.
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• Every open necklace with d kinds of stones can be divided between two
thieves using no more than d cuts.
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Source: Matoušek: Using the Borsuk–Ulam Theorem (colored) and https://media.istockphoto.com/

• Every open necklace with d kinds of stones can be divided between two
thieves using no more than d cuts.



Division of a necklace

• Two thieves have stolen a necklace with precious stones (even number
of each kind) and they want to divide the stones of each kind evenly by
as few cuts as possible.
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Division of a necklace by the Ham sandwich theorem

Source: Matoušek: Using the Borsuk–Ulam Theorem (colored)
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Thank you for your attention.
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