Topological methods in combinatorics

Martin Balko

6th lecture

April 1st 2022

The Ham sandwich theorem and its applications

Source: https://www.seekpng.com/

The Ham sandwich theorem

The Ham sandwich theorem

Given finite sets A₁,..., A_d of points in ℝ^d, there is a hyperplane H that contains at most ⌊|A_i|/2⌋ points from each set A_i in each open halfspace determined by H.

Sources: https://ejarzo.github.io and https://curiosamathematica.tumblr.com

The Ham sandwich theorem

Given finite sets A₁,..., A_d of points in ℝ^d, there is a hyperplane H that contains at most [|A_i|/2] points from each set A_i in each open halfspace determined by H.

Sources: https://ejarzo.github.io and https://curiosamathematica.tumblr.com

The Ham sandwich theorem for Borel measures

Let μ_1, \ldots, μ_d be finite Borel measures on \mathbb{R}^d such that every hyperplane has measure 0 for each μ_i . Then there is a hyperplane H such that $\mu_i(H^+) = \mu_i(\mathbb{R}^d)/2$ for $i = 1, \ldots, d$.

• The Ham Sandwich theorem for measures ⇒ any mass distribution in the plane can be dissected into 4 equal parts by 2 lines (exercise).

Source: Matoušek: Using the Borsuk-Ulam Theorem (colored)

• The Ham Sandwich theorem for measures ⇒ any mass distribution in the plane can be dissected into 4 equal parts by 2 lines (exercise).

Source: Matoušek: Using the Borsuk-Ulam Theorem (colored)

• Any mass distribution in \mathbb{R}^3 can be partitioned into $2^3 = 8$ equal pieces by 3 planes (not easy).

• The Ham Sandwich theorem for measures ⇒ any mass distribution in the plane can be dissected into 4 equal parts by 2 lines (exercise).

Source: Matoušek: Using the Borsuk-Ulam Theorem (colored)

- Any mass distribution in \mathbb{R}^3 can be partitioned into $2^3 = 8$ equal pieces by 3 planes (not easy).
- For $d \ge 5$, equipartition into 2^d equal parts by d hyperplanes fails.

• The Ham Sandwich theorem for measures ⇒ any mass distribution in the plane can be dissected into 4 equal parts by 2 lines (exercise).

Source: Matoušek: Using the Borsuk-Ulam Theorem (colored)

- Any mass distribution in ℝ³ can be partitioned into 2³ = 8 equal pieces by 3 planes (not easy).
- For $d \ge 5$, equipartition into 2^d equal parts by d hyperplanes fails.
- For d = 4, the problem is open.

• Two thieves have stolen a necklace with precious stones (even number of each kind) and they want to divide the stones of each kind evenly by as few cuts as possible.

• Two thieves have stolen a necklace with precious stones (even number of each kind) and they want to divide the stones of each kind evenly by as few cuts as possible.

Source: Matoušek: Using the Borsuk-Ulam Theorem (colored) and https://media.istockphoto.com/

• Two thieves have stolen a necklace with precious stones (even number of each kind) and they want to divide the stones of each kind evenly by as few cuts as possible.

Source: Matoušek: Using the Borsuk-Ulam Theorem (colored) and https://media.istockphoto.com/

• Every open necklace with *d* kinds of stones can be divided between two thieves using no more than *d* cuts.

• Two thieves have stolen a necklace with precious stones (even number of each kind) and they want to divide the stones of each kind evenly by as few cuts as possible.

Sources: Matoušek: Using the Borsuk-Ulam Theorem (colored) and https://media.istockphoto.com/

• Every open necklace with *d* kinds of stones can be divided between two thieves using no more than *d* cuts.

Division of a necklace by the Ham sandwich theorem

Division of a necklace by the Ham sandwich theorem

Source: Matoušek: Using the Borsuk-Ulam Theorem (colored)

Thank you for your attention.