### Topological methods in combinatorics

Martin Balko

4th lecture

March 18th 2022





Source: https://scientificgems.wordpress.com/

### The Borsuk–Ulam theorem: history

### The Borsuk–Ulam theorem: history

• First mentioned by Lyusternik and Shnirel'man (1930). The first proof was given by Karol Borsuk (1933), where the formulation of the problem was attributed to Stanislaw Ulam.





#### Figure: Karol Borsuk (1905–1982) a Stanislaw Ulam (1909–1984).

Sources: https://www.komputerswiat.pl/ and https://en.wikipedia.org

### The Borsuk–Ulam theorem: history

• First mentioned by Lyusternik and Shnirel'man (1930). The first proof was given by Karol Borsuk (1933), where the formulation of the problem was attributed to Stanislaw Ulam.





Figure: Karol Borsuk (1905–1982) a Stanislaw Ulam (1909–1984).

Sources: https://www.komputerswiat.pl/ and https://en.wikipedia.org

• Implies the Brouwer's fixed point theorem.

#### The Borsuk–Ulam theorem

For every  $n \ge 0$ , the following statements are equivalent, and true: (BU1a) For every  $f: S^n \to \mathbb{R}^n$  there is  $x \in S^n$  with f(x) = f(-x). (BU1b) For every antipodal  $f: S^n \to \mathbb{R}^n$  there is  $x \in S^n$  with f(x) = 0. (BU2a) There is no antipodal  $f: S^n \to S^{n-1}$ . (BU2b) There is no  $f: B^n \to S^{n-1}$  that is antipodal on  $\partial B^n = S^{n-1}$ . (LS-c) For any closed cover  $F_1, \ldots, F_{n+1}$  of  $S^n$ , there is  $i \in [n+1]$  and  $x \in S^n$  with  $x, -x \in F_i$ . (LS-o) For any open cover  $U_1, \ldots, U_{n+1}$  of  $S^n$ , there is  $i \in [n+1]$  and  $x \in S^n$  with  $x, -x \in U_i$ .

#### The Borsuk–Ulam theorem

For every  $n \ge 0$ , the following statements are equivalent, and true: (BU1a) For every  $f: S^n \to \mathbb{R}^n$  there is  $x \in S^n$  with f(x) = f(-x). (BU1b) For every antipodal  $f: S^n \to \mathbb{R}^n$  there is  $x \in S^n$  with f(x) = 0. (BU2a) There is no antipodal  $f: S^n \to S^{n-1}$ . (BU2b) There is no  $f: B^n \to S^{n-1}$  that is antipodal on  $\partial B^n = S^{n-1}$ . (LS-c) For any closed cover  $F_1, \ldots, F_{n+1}$  of  $S^n$ , there is  $i \in [n+1]$  and  $x \in S^n$  with  $x, -x \in F_i$ . (LS-o) For any open cover  $U_1, \ldots, U_{n+1}$  of  $S^n$ , there is  $i \in [n+1]$  and  $x \in S^n$  with  $x, -x \in U_i$ .



Source: Matoušek: Using the Borsuk-Ulam Theorem (colored)



Source: Hatcher: Algebraic topology (colored)

**Aufgabe 360:** k und n seien zwei natürliche Zahlen,  $k \leq n$ ; N sei eine Menge mit n Elementen,  $N_k$  die Menge derjenigen Teilmengen von N, die genau k Elemente enthalten; f sei eine Abbildung von  $N_k$  auf eine Menge M, mit der Eigenschaft, daß  $f(K_1) \neq f(K_2)$  ist falls der Durchschnitt  $K_1 \cap K_2$ leer ist; m(k, n, f) sei die Anzahl der Elemente von M und m(k, n) =Min m(k, n, f). Man beweise: Bei festem k gibt es Zahlen  $m_0 = m_0(k)$  und  $f_0 = n_0(k)$  derart, daß $m(k, n) = n - m_0$ ist für  $n \geq n_0$ ; dabei ist  $m_0(k) \geq 2k - 2$ und  $n_0(k) \geq 2k - 1$ ; in beiden Ungleichungen ist vermutlich das Gleichheitszeichen richtig.

Heidelberg.

MARTIN KNESER.

Source: Matoušek: Using the Borsuk-Ulam Theorem

 For all n ≥ 2k − 1, the chromatic number of the Kneser graph KG<sub>n,k</sub> is n − 2k + 2.





### Figure: Martin Kneser (1928–2004) a Lászlo lovász (born 1948).

Source: https://en.wikipedia.org and https://web.cs.elte.hu/ lovasz/

 For all n ≥ 2k − 1, the chromatic number of the Kneser graph KG<sub>n,k</sub> is n − 2k + 2.





#### Figure: Martin Kneser (1928–2004) a Lászlo lovász (born 1948).

Source: https://en.wikipedia.org and https://web.cs.elte.hu/ lovasz/

• Solved by Lovász in 1978 using topological methods.





Figure: Ulam's spiral.

Source: https://en.wikipedia.org



Figure: Ulam's spiral.

Source: https://en.wikipedia.org

Thank you for your attention.