Ramsey numbers of ordered graphs

Martin Balko, Josef Cibulka, Karel Král, and Jan Kynčl

Charles University in Prague, Czech Republic

February 27, 2016

• "Every sufficiently large system contains a well-organized subsystem."

• "Every sufficiently large system contains a well-organized subsystem."

Ramsey's theorem for graphs

• "Every sufficiently large system contains a well-organized subsystem."

Ramsey's theorem for graphs

- Ramsey number $R(G_1, \ldots, G_c)$ of G_1, \ldots, G_c is the smallest such N.
- If all G_1, \ldots, G_c are isomorphic to G, we write R(G; c) or R(G) if c = 2.

• "Every sufficiently large system contains a well-organized subsystem."

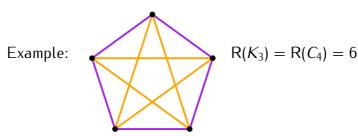
Ramsey's theorem for graphs

- Ramsey number $R(G_1, \ldots, G_c)$ of G_1, \ldots, G_c is the smallest such N.
- If all G_1, \ldots, G_c are isomorphic to G, we write R(G; c) or R(G) if c = 2.
- Classical bounds of Erdős and Szekeres: $2^{n/2} \le R(K_n) \le 2^{2n}$.

• "Every sufficiently large system contains a well-organized subsystem."

Ramsey's theorem for graphs

- Ramsey number $R(G_1, \ldots, G_c)$ of G_1, \ldots, G_c is the smallest such N.
- If all G_1, \ldots, G_c are isomorphic to G, we write R(G; c) or R(G) if c = 2.
- Classical bounds of Erdős and Szekeres: $2^{n/2} \le R(K_n) \le 2^{2n}$.



• An ordered graph $\mathcal G$ is a pair (G, \prec) where G is a graph and \prec is a total ordering of its vertices.

- An ordered graph \mathcal{G} is a pair (G, \prec) where G is a graph and \prec is a total ordering of its vertices.
- (H, \prec_1) is an ordered subgraph of (G, \prec_2) if $H \subseteq G$ and $\prec_1 \subseteq \prec_2$.

- An ordered graph \mathcal{G} is a pair (\mathcal{G}, \prec) where \mathcal{G} is a graph and \prec is a total ordering of its vertices.
- (H, \prec_1) is an ordered subgraph of (G, \prec_2) if $H \subseteq G$ and $\prec_1 \subseteq \prec_2$.
- The ordered Ramsey number $\overline{R}(\mathcal{G}_1, \ldots, \mathcal{G}_c)$ for ordered graphs $\mathcal{G}_1, \ldots, \mathcal{G}_c$ is the least number N such that every c-coloring of edges of \mathcal{K}_N contains \mathcal{G}_i of color i for some $i \in [c]$ as an ordered subgraph.

- An ordered graph \mathcal{G} is a pair (G, \prec) where G is a graph and \prec is a total ordering of its vertices.
- (H, \prec_1) is an ordered subgraph of (G, \prec_2) if $H \subseteq G$ and $\prec_1 \subseteq \prec_2$.
- The ordered Ramsey number $\overline{\mathbb{R}}(\mathcal{G}_1,\ldots,\mathcal{G}_c)$ for ordered graphs $\mathcal{G}_1,\ldots,\mathcal{G}_c$ is the least number N such that every c-coloring of edges of \mathcal{K}_N contains \mathcal{G}_i of color i for some $i\in[c]$ as an ordered subgraph.

Observation

For ordered graphs
$$\mathcal{G}_1 = (G_1, \prec_1), \ldots, \mathcal{G}_c = (G_c \prec_c)$$
 we have

$$\mathsf{R}(\mathcal{G}_1,\ldots,\mathcal{G}_c) \leq \overline{\mathsf{R}}(\mathcal{G}_1,\ldots,\mathcal{G}_c) \leq \mathsf{R}(\mathcal{K}_{|V(\mathcal{G}_1)|},\ldots,\mathcal{K}_{|V(\mathcal{G}_c)|}).$$

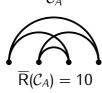
- An ordered graph \mathcal{G} is a pair (\mathcal{G}, \prec) where \mathcal{G} is a graph and \prec is a total ordering of its vertices.
- (H, \prec_1) is an ordered subgraph of (G, \prec_2) if $H \subseteq G$ and $\prec_1 \subseteq \prec_2$.
- The ordered Ramsey number $R(\mathcal{G}_1, \dots, \mathcal{G}_c)$ for ordered graphs $\mathcal{G}_1, \dots, \mathcal{G}_c$ is the least number N such that every c-coloring of edges of \mathcal{K}_N contains \mathcal{G}_i of color i for some $i \in [c]$ as an ordered subgraph.

Observation

For ordered graphs
$$\mathcal{G}_1 = (G_1, \prec_1), \ldots, \mathcal{G}_c = (G_c \prec_c)$$
 we have

$$\mathsf{R}(\mathcal{G}_1,\ldots,\mathcal{G}_c) \leq \overline{\mathsf{R}}(\mathcal{G}_1,\ldots,\mathcal{G}_c) \leq \mathsf{R}(\mathcal{K}_{|V(\mathcal{G}_1)|},\ldots,\mathcal{K}_{|V(\mathcal{G}_c)|}).$$

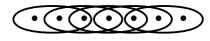
Example:



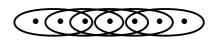
$$\overline{\mathbb{R}}(\mathcal{C}_B) = 11$$

• The k-uniform monotone path (P_n^k, \prec_{mon}) is a k-uniform hypergraph with n vertices and edges formed by k-tuples of consecutive vertices.

• The k-uniform monotone path (P_n^k, \prec_{mon}) is a k-uniform hypergraph with n vertices and edges formed by k-tuples of consecutive vertices.

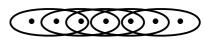


• The k-uniform monotone path (P_n^k, \prec_{mon}) is a k-uniform hypergraph with n vertices and edges formed by k-tuples of consecutive vertices.



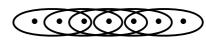
• $t_h(x)$ is a tower function given by $t_1(x) = x$ and $t_h(x) = 2^{t_{h-1}(x)}$.

• The k-uniform monotone path (P_n^k, \prec_{mon}) is a k-uniform hypergraph with n vertices and edges formed by k-tuples of consecutive vertices.



- $t_h(x)$ is a tower function given by $t_1(x) = x$ and $t_h(x) = 2^{t_{h-1}(x)}$.
- Choudum and Ponnusamy, 2002: $\overline{R}((P_{n_1}, \prec_{mon}), \dots, (P_{n_c}, \prec_{mon})) = 1 + \prod_{i=1}^{c} (n_i 1).$
- Fox, Pach, Sudakov, and Suk, 2011: $t_{k-1}(Cn^{c-1}) \leq \overline{\mathbb{R}}((P_n^k, \prec_{mon}); c) \leq t_{k-1}(C'n^{c-1} \log n).$
- Moshkovitz and Shapira, 2012: $t_{k-1}(n^{c-1}/2\sqrt{c}) \leq \overline{\mathbb{R}}((P_n^k, \prec_{mon}); c) \leq t_{k-1}(2n^{c-1}).$
- Cibulka, Gao, Krčál, Valla, and Valtr, 2013: Every ordered path \mathcal{P}_n satisfies $\overline{R}(\mathcal{P}_n) \leq O(n^{\log n})$.

• The k-uniform monotone path (P_n^k, \prec_{mon}) is a k-uniform hypergraph with n vertices and edges formed by k-tuples of consecutive vertices.



- $t_h(x)$ is a tower function given by $t_1(x) = x$ and $t_h(x) = 2^{t_{h-1}(x)}$.
- Choudum and Ponnusamy, 2002: $\overline{R}((P_{n_1}, \prec_{mon}), \dots, (P_{n_c}, \prec_{mon})) = 1 + \prod_{i=1}^{c} (n_i 1).$
- Fox, Pach, Sudakov, and Suk, 2011: $t_{k-1}(Cn^{c-1}) \leq \overline{\mathbb{R}}((P_n^k, \prec_{mon}); c) \leq t_{k-1}(C'n^{c-1} \log n).$
- Moshkovitz and Shapira, 2012: $t_{k-1}(n^{c-1}/2\sqrt{c}) \leq \overline{R}((P_n^k, \prec_{mon}); c) \leq t_{k-1}(2n^{c-1}).$
- Cibulka, Gao, Krčál, Valla, and Valtr, 2013: Every ordered path \mathcal{P}_n satisfies $\overline{\mathbb{R}}(\mathcal{P}_n) \leq O(n^{\log n})$.
- Similar results discovered independently by Conlon, Fox, Lee, and Sudakov, 2014+.

• Unordered case (Burr and Roberts, 1973):

$$\mathsf{R}(\mathcal{K}_{1,n-1};c) = egin{cases} c(n-2)+1 & \text{if } c \equiv n-1 \equiv 0 \ (\text{mod } 2), \\ c(n-2)+2 & \text{otherwise.} \end{cases}$$

• Unordered case (Burr and Roberts, 1973):

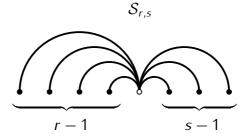
$$\mathsf{R}(\mathcal{K}_{1,n-1};c) = egin{cases} c(n-2)+1 & ext{if } c \equiv n-1 \equiv 0 \ (\mathsf{mod}\ 2), \\ c(n-2)+2 & ext{otherwise}. \end{cases}$$

Possible orderings:

• Unordered case (Burr and Roberts, 1973):

$$\mathsf{R}(\mathsf{K}_{1,n-1};c) = egin{cases} c(n-2)+1 & \text{if } c \equiv n-1 \equiv 0 \ (\text{mod } 2), \\ c(n-2)+2 & \text{otherwise.} \end{cases}$$

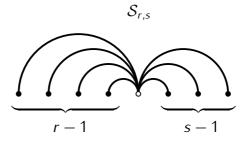
• Possible orderings:



• Unordered case (Burr and Roberts, 1973):

$$\mathsf{R}(\mathcal{K}_{1,n-1};c) = egin{cases} c(n-2)+1 & \text{if } c \equiv n-1 \equiv 0 \ (\text{mod } 2), \\ c(n-2)+2 & \text{otherwise.} \end{cases}$$

• Possible orderings:



• The 2-colored ordered case was resolved by Choudum and Ponnusamy.

Theorem (Choudum and Ponnusamy, 2002)

For positive integers r_1 , r_2 , we have $\overline{R}(S_{1,r_1},S_{1,r_2})=r_1+r_2-2$ and for $r_2\geq r_1>2$

$$\overline{\mathsf{R}}(\mathcal{S}_{1,r_1},\mathcal{S}_{r_2,1}) = \left| \frac{-1 + \sqrt{1 + 8(r_1 - 2)(r_2 - 2)}}{2} \right| + r_1 + r_2 - 2.$$

For arbitrary ordered stars we have

$$\overline{R}(\mathcal{S}_{1,r_1},\mathcal{S}_{r_2,s_2}) = \overline{R}(\mathcal{S}_{1,r_1},\mathcal{S}_{r_2,1}) + r_1 + s_2 - 3$$

and

$$\overline{\mathsf{R}}(\mathcal{S}_{r_1, \mathsf{s}_1}, \mathcal{S}_{r_2, \mathsf{s}_2}) = \overline{\mathsf{R}}(\mathcal{S}_{r_1, 1}, \mathcal{S}_{r_2, \mathsf{s}_2}) + \overline{\mathsf{R}}(\mathcal{S}_{1, \mathsf{s}_1}, \mathcal{S}_{r_2, \mathsf{s}_2}) - 1.$$

Theorem (Choudum and Ponnusamy, 2002)

For positive integers r_1 , r_2 , we have $\overline{R}(S_{1,r_1}, S_{1,r_2}) = r_1 + r_2 - 2$ and for $r_2 \ge r_1 > 2$

$$\overline{\mathsf{R}}(\mathcal{S}_{1,r_1},\mathcal{S}_{r_2,1}) = \left| \frac{-1 + \sqrt{1 + 8(r_1 - 2)(r_2 - 2)}}{2} \right| + r_1 + r_2 - 2.$$

For arbitrary ordered stars we have

$$\overline{\mathsf{R}}(\mathcal{S}_{1,\mathit{r}_{1}},\mathcal{S}_{\mathit{r}_{2},\mathit{s}_{2}}) = \overline{\mathsf{R}}(\mathcal{S}_{1,\mathit{r}_{1}},\mathcal{S}_{\mathit{r}_{2},1}) + \mathit{r}_{1} + \mathit{s}_{2} - 3$$

and

$$\overline{\mathsf{R}}(\mathcal{S}_{r_1,s_1},\mathcal{S}_{r_2,s_2}) = \overline{\mathsf{R}}(\mathcal{S}_{r_1,1},\mathcal{S}_{r_2,s_2}) + \overline{\mathsf{R}}(\mathcal{S}_{1,s_1},\mathcal{S}_{r_2,s_2}) - 1.$$

• For the multicolored case the ordered Ramsey numbers remain linear in the number of vertices.

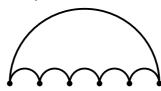
• Unordered case (Faudree and Schelp, 1974):

$$\mathsf{R}(\textit{C}_r, \textit{C}_s) = \begin{cases} 2r - 1 & \text{if } (r, s) \neq (3, 3) \text{ and } 3 \leq s \leq r, s \text{ is odd,} \\ r + s/2 - 1 & \text{if } (r, s) \neq (4, 4), \, 4 \leq s \leq r, r \text{ and s even,} \\ \max\{r + s/2 - 1, 2s - 1\} & \text{if } 4 \leq s < r, s \text{ even, } r \text{ odd.} \end{cases}$$

• Unordered case (Faudree and Schelp, 1974):

$$\mathsf{R}(\mathit{C}_r,\mathit{C}_s) = \begin{cases} 2r-1 & \text{if } (r,s) \neq (3,3) \text{ and } 3 \leq s \leq r, s \text{ is odd,} \\ r+s/2-1 & \text{if } (r,s) \neq (4,4), \, 4 \leq s \leq r, r \text{ and } s \text{ even,} \\ \max\{r+s/2-1,2s-1\} & \text{if } 4 \leq s < r, s \text{ even, } r \text{ odd.} \end{cases}$$

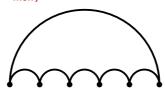
• A monotone cycle (C_n, \prec_{mon}) :



• Unordered case (Faudree and Schelp, 1974):

$$\mathsf{R}(\mathit{C}_r, \mathit{C}_s) = \begin{cases} 2r - 1 & \text{if } (r, s) \neq (3, 3) \text{ and } 3 \leq s \leq r, s \text{ is odd,} \\ r + s/2 - 1 & \text{if } (r, s) \neq (4, 4), \, 4 \leq s \leq r, r \text{ and } s \text{ even,} \\ \max\{r + s/2 - 1, 2s - 1\} & \text{if } 4 \leq s < r, s \text{ even, } r \text{ odd.} \end{cases}$$

• A monotone cycle (C_n, \prec_{mon}) :



Theorem

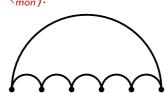
For integers $r \geq 2$ and $s \geq 2$, we have

$$\overline{\mathsf{R}}((C_r, \prec_{mon}), (C_s, \prec_{mon})) = 2rs - 3r - 3s + 6.$$

• Unordered case (Faudree and Schelp, 1974):

$$\mathsf{R}(\mathit{C}_r, \mathit{C}_s) = \begin{cases} 2r - 1 & \text{if } (r, s) \neq (3, 3) \text{ and } 3 \leq s \leq r, s \text{ is odd,} \\ r + s/2 - 1 & \text{if } (r, s) \neq (4, 4), \, 4 \leq s \leq r, r \text{ and } s \text{ even,} \\ \max\{r + s/2 - 1, 2s - 1\} & \text{if } 4 \leq s < r, s \text{ even, } r \text{ odd.} \end{cases}$$

• A monotone cycle (C_n, \prec_{mon}) :



Theorem

For integers $r \geq 2$ and $s \geq 2$, we have

$$\overline{\mathsf{R}}((C_r, \prec_{mon}), (C_s, \prec_{mon})) = 2rs - 3r - 3s + 6.$$

• Settles a question of Károlyi et al. about geometric Ramsey numbers.

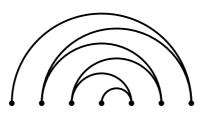
• Unordered case (Gerensér and Gyárfás, 1967): $R(P_r, P_s) = s - 1 + \lfloor \frac{r}{2} \rfloor$.

- Unordered case (Gerensér and Gyárfás, 1967): $R(P_r, P_s) = s 1 + \lfloor \frac{r}{2} \rfloor$.
- We know that $\overline{R}((P_n, \prec_{mon})) = (n-1)^2 + 1$.

- Unordered case (Gerensér and Gyárfás, 1967): $R(P_r, P_s) = s 1 + \lfloor \frac{r}{2} \rfloor$.
- We know that $\overline{\mathsf{R}}((P_n, \prec_{mon})) = (n-1)^2 + 1$.
- The alternating path (P_n, \prec_{alt}) :

Specific orderings: ordered paths

- Unordered case (Gerensér and Gyárfás, 1967): $R(P_r, P_s) = s 1 + \lfloor \frac{r}{2} \rfloor$.
- We know that $\overline{R}((P_n, \prec_{mon})) = (n-1)^2 + 1$.
- The alternating path (P_n, \prec_{alt}) :



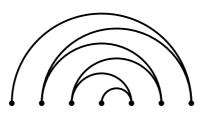
Proposition

For every positive integer n > 2, we have

$$2.5n - O(1) \leq \overline{\mathsf{R}}((P_n, \prec_{\mathit{alt}})) \leq (2 + \sqrt{2})n.$$

Specific orderings: ordered paths

- Unordered case (Gerensér and Gyárfás, 1967): $R(P_r, P_s) = s 1 + \lfloor \frac{r}{2} \rfloor$.
- We know that $\overline{R}((P_n, \prec_{mon})) = (n-1)^2 + 1$.
- The alternating path (P_n, \prec_{alt}) :



Proposition

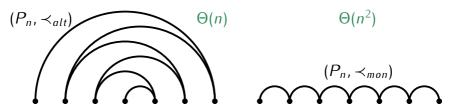
For every positive integer n > 2, we have

$$2.5n - O(1) \leq \overline{R}((P_n, \prec_{alt})) \leq (2 + \sqrt{2})n.$$

• Asymptotically different Ramsey numbers for different orderings.

Specific orderings: ordered paths

- Unordered case (Gerensér and Gyárfás, 1967): $R(P_r, P_s) = s 1 + \lfloor \frac{r}{2} \rfloor$.
- We know that $\overline{R}((P_n, \prec_{mon})) = (n-1)^2 + 1$.
- The alternating path (P_n, \prec_{alt}) :



Proposition

For every positive integer n > 2, we have

$$2.5n - O(1) \le \overline{\mathsf{R}}((P_n, \prec_{\mathit{alt}})) \le (2 + \sqrt{2})n.$$

• Asymptotically different Ramsey numbers for different orderings.

• How fast can Ramsey numbers grow for bounded-degree ordered graphs?

• How fast can Ramsey numbers grow for bounded-degree ordered graphs?

Theorem (Chvátal, Rödl, Szemerédi, and Trotter, 1983)

For every $\Delta \in \mathbb{N}$ there exists $C = C(\Delta)$ such that for every graph G with n vertices and maximum degree Δ satisfies

$$R(G) \leq C \cdot n$$
.

• How fast can Ramsey numbers grow for bounded-degree ordered graphs?

Theorem (Chvátal, Rödl, Szemerédi, and Trotter, 1983)

For every $\Delta \in \mathbb{N}$ there exists $C = C(\Delta)$ such that for every graph G with n vertices and maximum degree Δ satisfies

$$R(G) \leq C \cdot n$$
.

Does not hold for ordered graphs.

• How fast can Ramsey numbers grow for bounded-degree ordered graphs?

Theorem (Chvátal, Rödl, Szemerédi, and Trotter, 1983)

For every $\Delta \in \mathbb{N}$ there exists $C = C(\Delta)$ such that for every graph G with n vertices and maximum degree Δ satisfies

$$R(G) \leq C \cdot n$$
.

• Does not hold for ordered graphs.

Theorem

There are arbitrarily large ordered matchings \mathcal{M}_n on n vertices such that

$$\overline{\mathsf{R}}(\mathcal{M}_n) \geq n^{\frac{\log n}{5 \log \log n}}.$$

• How fast can Ramsey numbers grow for bounded-degree ordered graphs?

Theorem (Chvátal, Rödl, Szemerédi, and Trotter, 1983)

For every $\Delta \in \mathbb{N}$ there exists $C = C(\Delta)$ such that for every graph G with n vertices and maximum degree Δ satisfies

$$R(G) \leq C \cdot n$$
.

• Does not hold for ordered graphs.

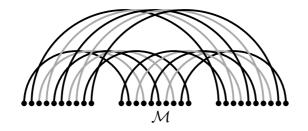
Theorem

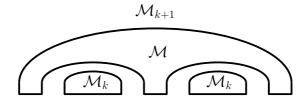
There are arbitrarily large ordered matchings \mathcal{M}_n on n vertices such that

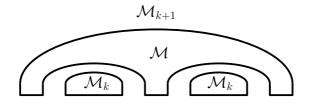
$$\overline{\mathsf{R}}(\mathcal{M}_n) \geq n^{\frac{\log n}{5\log\log n}}.$$

• Conlon et al.: almost every ordered *n*-vertex matching \mathcal{M}_n satisfies

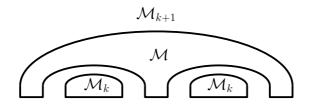
$$\overline{\mathsf{R}}(\mathcal{M}_n) \geq n^{\Omega\left(\frac{\log n}{\log\log n}\right)}.$$







• The coloring is not constructive.



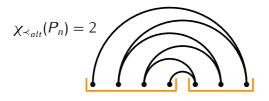
• The coloring is not constructive.

Corollary

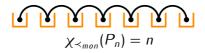
There is arbitrarily large n-vertex graph G with two orderings G' and G' such that $\overline{\mathbb{R}}(G)$ is super-polynomial in n and $\overline{\mathbb{R}}(G')$ is linear in n.

• The interval chromatic number $\chi_{\prec}(G)$ of (G, \prec) is the minimum number of intervals V(G) can be partitioned into so that no two adjacent vertices are in the same interval.

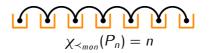
• The interval chromatic number $\chi_{\prec}(G)$ of (G, \prec) is the minimum number of intervals V(G) can be partitioned into so that no two adjacent vertices are in the same interval.



• The interval chromatic number $\chi_{\prec}(G)$ of (G, \prec) is the minimum number of intervals V(G) can be partitioned into so that no two adjacent vertices are in the same interval.



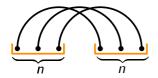
• The interval chromatic number $\chi_{\prec}(G)$ of (G, \prec) is the minimum number of intervals V(G) can be partitioned into so that no two adjacent vertices are in the same interval.



Proposition

$$\overline{\mathsf{R}}((M,\prec)) \leq O(n^2).$$

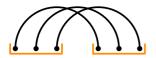
• The interval chromatic number $\chi_{\prec}(G)$ of (G, \prec) is the minimum number of intervals V(G) can be partitioned into so that no two adjacent vertices are in the same interval.



Proposition

$$\overline{\mathsf{R}}((M,\prec)) \leq O(n^2).$$

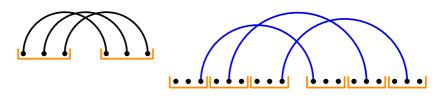
• The interval chromatic number $\chi_{\prec}(G)$ of (G, \prec) is the minimum number of intervals V(G) can be partitioned into so that no two adjacent vertices are in the same interval.



Proposition

$$\overline{\mathsf{R}}((M,\prec)) \leq O(n^2).$$

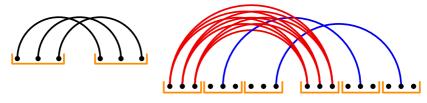
• The interval chromatic number $\chi_{\prec}(G)$ of (G, \prec) is the minimum number of intervals V(G) can be partitioned into so that no two adjacent vertices are in the same interval.



Proposition

$$\overline{\mathsf{R}}((M,\prec)) \leq O(n^2).$$

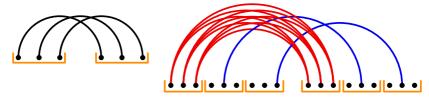
• The interval chromatic number $\chi_{\prec}(G)$ of (G, \prec) is the minimum number of intervals V(G) can be partitioned into so that no two adjacent vertices are in the same interval.



Proposition

$$\overline{\mathsf{R}}((M,\prec)) \leq O(n^2).$$

• The interval chromatic number $\chi_{\prec}(G)$ of (G, \prec) is the minimum number of intervals V(G) can be partitioned into so that no two adjacent vertices are in the same interval.

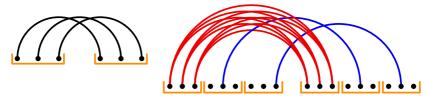


Theorem

For arbitrary k and p every k-degenerate ordered graph (G, \prec) with n vertices and $\chi_{\prec}(G) = p$ satisfies

$$\overline{\mathsf{R}}((G,\prec)) \leq n^{O(k)^{\log p}}$$

• The interval chromatic number $\chi_{\prec}(G)$ of (G, \prec) is the minimum number of intervals V(G) can be partitioned into so that no two adjacent vertices are in the same interval.



Theorem

For arbitrary k and p every k-degenerate ordered graph (G, \prec) with n vertices and $\chi_{\prec}(G) = p$ satisfies

$$\overline{\mathsf{R}}((G,\prec)) \leq n^{O(k)^{\log p}}.$$

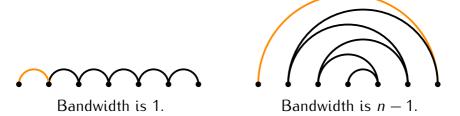
• Conlon et al. showed $\overline{R}(\mathcal{G}) \leq n^{O(k \log p)}$.

• The length of an edge uv in $\mathcal{G} = (G, \prec)$ is |i - j| if u is the ith vertex and v is the jth vertex of G in \prec .

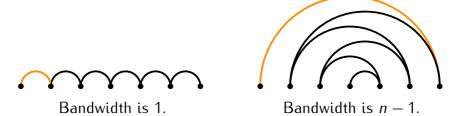
- The length of an edge uv in $\mathcal{G} = (G, \prec)$ is |i j| if u is the ith vertex and v is the jth vertex of G in \prec .
- The bandwidth of \mathcal{G} is the length of the longest edge in \mathcal{G} .

- The length of an edge uv in $\mathcal{G} = (G, \prec)$ is |i j| if u is the ith vertex and v is the jth vertex of G in \prec .
- The bandwidth of \mathcal{G} is the length of the longest edge in \mathcal{G} .

- The length of an edge uv in $\mathcal{G} = (G, \prec)$ is |i j| if u is the ith vertex and v is the jth vertex of G in \prec .
- ullet The bandwidth of ${\cal G}$ is the length of the longest edge in ${\cal G}$.



- The length of an edge uv in $\mathcal{G} = (G, \prec)$ is |i j| if u is the ith vertex and v is the jth vertex of G in \prec .
- The bandwidth of \mathcal{G} is the length of the longest edge in \mathcal{G} .



Theorem

For every $k \in \mathbb{N}$, there is a constant C'_k such that every n-vertex ordered graph \mathcal{G} of bandwidth k satisfies $\overline{\mathbb{R}}(\mathcal{G}) \leq C'_k \cdot n^{128k}$.

- The length of an edge uv in $\mathcal{G} = (G, \prec)$ is |i j| if u is the ith vertex and v is the jth vertex of G in \prec .
- The bandwidth of \mathcal{G} is the length of the longest edge in \mathcal{G} .

Bandwidth is n-1.

Theorem

For every $k \in \mathbb{N}$, there is a constant C'_k such that every n-vertex ordered graph G of bandwidth k satisfies $\overline{R}(G) \leq C'_k \cdot n^{128k}$.

• Solves a problem of Conlon et al.

• Specific classes of ordered graphs

- Specific classes of ordered graphs
 - Computing precise formulas for other classes of ordered graphs.
 - Multicolored stars, monotone cycles, etc.

- Specific classes of ordered graphs
 - Computing precise formulas for other classes of ordered graphs.
 - Multicolored stars, monotone cycles, etc.
- Growth rate of ordered Ramsey numbers

- Specific classes of ordered graphs
 - Computing precise formulas for other classes of ordered graphs.
 - Multicolored stars, monotone cycles, etc.
- Growth rate of ordered Ramsey numbers
 - Lower bounds for bounded-degree ordered graphs of constant interval chromatic number?
 - Lower bounds for bounded-degree ordered graphs of constant bandwidth?
 - What is the ordering of a path with minimum ordered Ramsey number?

- Specific classes of ordered graphs
 - Computing precise formulas for other classes of ordered graphs.
 - Multicolored stars, monotone cycles, etc.
- Growth rate of ordered Ramsey numbers
 - Lower bounds for bounded-degree ordered graphs of constant interval chromatic number?
 - Lower bounds for bounded-degree ordered graphs of constant bandwidth?
 - What is the ordering of a path with minimum ordered Ramsey number?

Thank you.