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e “Every sufficiently large system contains a well-organized subsystem.”

Ramsey's theorem for graphs

For every collection Gi, ..., G. of graphs there is a sufficiently large

N = N(Gy, ..., G.) such that every c-coloring of the edges of K contains a
copy of G; in color i for some i € [c].

e Ramsey number R(Gy, ..., G.) of Gi, ..., G, is the smallest such N.

o If all Gy,..., G, are isomorphic to G, we write R(G; ¢) or R(G) if c = 2.
o Classical bounds of Erdds and Szekeres: 22 < R(K,,) < 22",

Example: R(K3) = R(Cs) = 6
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Ordered graphs

e An ordered graph G is a pair (G, <) where G is a graph and < is a total
ordering of its vertices.
e (H,<1) is an ordered subgraph of (G, <) if H C G and <;C<s.

o The ordered Ramsey number R(Gy, ..., G.) for ordered graphs
G1,-..,Gc is the least number N such that every c-coloring of edges of
Kn contains G; of color i for some i € [c] as an ordered subgraph.

Observation
For ordered graphs G; = (G, <1), ..., G = (G <) we have

R(Gi,...,G) <R(G1,...,G) <R(Kviay), - --» Kivia))-

Cs

R(CA) = 10 R(Cs) = 11 R(Cc) = 14
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Known results

@ The k-uniform monotone path (PX <,..,) is a k-uniform hypergraph
with n vertices and edges formed by k-tuples of consecutive vertices.

AARAAS CCOOD D >

e t,(x) is a tower function given by t;(x) = x and ty(x) = 2819,

e Choudum and Ponnusamy, 2002:
R((Pays =mon)s - s (Pncy <mon)) = 1+ [Ty (ni — 1).
e Fox, Pach, Sudakov, and Suk, 2011:
i 1(Cne L) < R((PY, < mon); €) < ti_1(C'n*Vlog n).
e Moshkovitz and Shapira, 2012:
te-1(n“/23/€) < R((Py, <mon);i €) < te-1(2n°7).
e Cibulka, Gao, Kr&al, Valla, and Valtr, 2013:
Every ordered path P, satisfies R(P,) < O(n'°&").
e Similar results discovered independently by Conlon, Fox, Lee, and
Sudakov, 2014+.
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Specific orderings: ordered stars |

e Unordered case (Burr and Roberts, 1973):

c(n—2)+1 ifc=n—1=0(mod 2),
c(n—2)+2 otherwise.

R(Kin-1:¢) = {

e Possible orderings:

r—1 s—1

@ The 2-colored ordered case was resolved by Choudum and Ponnusamy.
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Theorem (Choudum and Ponnusamy, 2002)

For positive integers r1, r,, we have ﬁ(SL,l,SLQ) =r+rn—2and for
Hn>n>2

— —1++/1+8(nr—2 -2
R(Sl,rl,srz,l) = \/ (2r1 )(r2 ) +nrn+n-—2.

For arbitrary ordered stars we have

ﬁ("5‘1,1‘17‘90,52) — ﬁ(‘S'l,rla‘srz,l) +n+ S — 3
and B B B
R(Sfl,slv 8r2,52) = R(Srl,lv Srz,sz) + R(Sl,SU Srz,sz) — L
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Theorem (Choudum and Ponnusamy, 2002)

For positive integers r1, r,, we have ﬁ(SL,l,SLQ) =r+rn—2and for
rn>n> 2

—1++/1+8(nr—2 -2
R(Sl,rl,srz,l) = \/ (2r1 )(r2 ) +nrn+n-—2.

For arbitrary ordered stars we have

ﬁ('5].,1‘17‘9r2,52) — ﬁ(‘Sl,rla‘srz,l) +n+ S — 3
and B B B
R(Srl»sl78r27s2) = R(Sr17178r2752) —"_ R(Slysl78r2752) — 1'

@ For the multicolored case the ordered Ramsey numbers remain linear in
the number of vertices.
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e Unordered case (Faudree and Schelp, 1974):

2r—1 if (r,s) # (3,3) and 3 < s < r,s is odd,
R(C,C)=<r+s/2-1 if (r,s) # (4,4),4<s<r,rand s even,
max{r+s/2—1,2s —1} if4<s<r,s even, r odd.

e A monotone cycle (G, <mon):

Theorem
For integers r > 2 and s > 2, we have

ﬁ((CM <mon)7 (Csa <mon)) =2rs —3r — 35 + 6.

e Settles a question of Karolyi et al. about geometric Ramsey numbers.
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o Unordered case (Gerensér and Gyarfds, 1967): R(P,,P;) =s—1+ |£].
o We know that R((P,, <mon)) = (n — 1)% + 1.
e The alternating path (P,, <)

(Pn, <att) O(n) O(n?)

(Pnr ‘<mon)

Y Y Y Y YN

Proposition
For every positive integer n > 2, we have

250 — O(1) < R((Pn, <a)) < (24 V2)n.

e Asymptotically different Ramsey numbers for different orderings.
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Bounded-degree ordered graphs

e How fast can Ramsey numbers grow for bounded-degree ordered graphs?
Theorem (Chvatal, Rodl, Szemerédi, and Trotter, 1983)

For every A € N there exists C = C(A) such that for every graph G with n
vertices and maximum degree A satisfies

R(G) < C-n.

@ Does not hold for ordered graphs.
Theorem

There are arbitrarily large ordered matchings M, on n vertices such that

R(Mn) Z n5|<|:;glggn .

e Conlon et al.: almost every ordered n-vertex matching M, satisfies

R(M,) > n?(esten)
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Growth rate for bounded-degree ordered graphs

@ The coloring is not constructive.

Corollary

There is arbitrarily large n-vertex graph G with two orderings G’ and G’ such
that R(G) is super-polynomial in n and R(G’) is linear in n.
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e The interval chromatic number xy-(G) of (G, <) is the minimum
number of intervals V(G) can be partitioned into so that no two
adjacent vertices are in the same interval.

Theorem

For arbitrary k and p every k-degenerate ordered graph (G, <) with n
vertices and y<(G) = p satisfies

R((G, <)) < nOt**,

e Conlon et al. showed R(G) < n©(klogp),
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SO YN .

Bandwidth is 1. Bandwidth is n — 1.

Theorem

For every k € N, there is a constant C; such that every n-vertex ordered
graph G of bandwidth k satisfies R(G) < Cj - n28k.

@ Solves a problem of Conlon et al.
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o Computing precise formulas for other classes of ordered graphs.
o Multicolored stars, monotone cycles, etc.

e Growth rate of ordered Ramsey numbers
o Lower bounds for bounded-degree ordered graphs of constant
interval chromatic number?
o Lower bounds for bounded-degree ordered graphs of constant
bandwidth?
o What is the ordering of a path with minimum ordered Ramsey
number?

Thank you.



