On ordered Ramsey numbers of bounded-degree graphs

Martin Balko, Vít Jelínek, Pavel Valtr

Charles University in Prague,
Czech Republic

June 9, 2016
Ramsey theory

Ramsey's theorem for graphs

For every graph G there is an integer $N = N(G)$ such that every 2-coloring of the edges of K_N contains a monochromatic copy of G.

Ramsey number $R(G)$ of G is the smallest such N.

Example: $R(C_4) = 6$
Ramsey theory

Ramsey’s theorem for graphs

For every graph G there is an integer $N = N(G)$ such that every 2-coloring of the edges of K_N contains a monochromatic copy of G.

Example: $R(C_4) = 6$
Ramsey theory

Ramsey’s theorem for graphs

For every graph G there is an integer $N = N(G)$ such that every 2-coloring of the edges of K_N contains a monochromatic copy of G.

- Ramsey number $R(G)$ of G is the smallest such N.

Example: $R(C_4) = 6$
Ramsey theory

Ramsey’s theorem for graphs

For every graph G there is an integer $N = N(G)$ such that every 2-coloring of the edges of K_N contains a monochromatic copy of G.

- Ramsey number $R(G)$ of G is the smallest such N.

Example: $R(C_4) = 6$
Ordered Ramsey numbers

An ordered graph G is a pair (G, \prec) where G is a graph and \prec is a total ordering of its vertices. (H, \prec_1) is an ordered subgraph of (G, \prec_2) if $H \subseteq G$ and $\prec_1 \subseteq \prec_2$.

The ordered Ramsey number $R(G)$ of an ordered graph G is the least number N such that every 2-coloring of edges of K_N contains a monochromatic copy of G as an ordered subgraph.
Ordered Ramsey numbers

- An ordered graph G is a pair (G, \prec) where G is a graph and \prec is a total ordering of its vertices.
Ordered Ramsey numbers

- An ordered graph G is a pair (G, \prec) where G is a graph and \prec is a total ordering of its vertices.
- (H, \prec_1) is an ordered subgraph of (G, \prec_2) if $H \subseteq G$ and $\prec_1 \subseteq \prec_2$.
Ordered Ramsey numbers

- An ordered graph G is a pair (G, \prec) where G is a graph and \prec is a total ordering of its vertices.
- (H, \prec_1) is an ordered subgraph of (G, \prec_2) if $H \subseteq G$ and $\prec_1 \subseteq \prec_2$.

![Diagram of ordered Ramsey number concept]
Ordered Ramsey numbers

- An ordered graph \mathcal{G} is a pair (G, \prec) where G is a graph and \prec is a total ordering of its vertices.
- (H, \prec_1) is an ordered subgraph of (G, \prec_2) if $H \subseteq G$ and $\prec_1 \subseteq \prec_2$.
Ordered Ramsey numbers

- An ordered graph G is a pair (G, \prec) where G is a graph and \prec is a total ordering of its vertices.
- (H, \prec_1) is an ordered subgraph of (G, \prec_2) if $H \subseteq G$ and $\prec_1 \subseteq \prec_2$.

- The ordered Ramsey number $\overline{R}(G)$ of an ordered graph G is the least number N such that every 2-coloring of edges of K_N contains a monochromatic copy of G as an ordered subgraph.
Ordered Ramsey numbers

- An ordered graph G is a pair (G, \prec) where G is a graph and \prec is a total ordering of its vertices.
- (H, \prec_1) is an ordered subgraph of (G, \prec_2) if $H \subseteq G$ and $\prec_1 \subseteq \prec_2$.

The ordered Ramsey number $\overline{R}(G)$ of an ordered graph G is the least number N such that every 2-coloring of edges of K_N contains a monochromatic copy of G as an ordered subgraph.
Bounded-degree graphs

We consider graphs with the maximum degree bounded by a constant. There is a substantial difference between ordered and unordered case.

Theorem (Chvátal, Rödl, Szemerédi, Trotter, 1983)
Every graph G on n vertices with bounded maximum degree satisfies $R(G) \leq O(n)$.

Theorem (B., Cibulka, Král, Kynčl and Conlon, Fox, Lee, Sudakov, 2014)
There are arbitrarily large ordered matchings M_n on n vertices such that $R(M_n) \geq n\Omega(\log n \log \log n)$.

Conlon et al. showed that this holds for almost every ordered matching.
We consider graphs with the maximum degree bounded by a constant.
Bounded-degree graphs

- We consider graphs with the maximum degree bounded by a constant.
- There is a substantial difference between ordered and unordered case.
Bounded-degree graphs

- We consider graphs with the maximum degree bounded by a constant.
- There is a substantial difference between ordered and unordered case.

Theorem (Chvátal, Rödl, Szemerédi, Trotter, 1983)

Every graph G on n vertices with bounded maximum degree satisfies

$$R(G) \leq O(n).$$

Theorem (B., Cibulka, Král, Kyncl and Conlon, Fox, Lee, Sudakov, 2014)

There are arbitrarily large ordered matchings M_n on n vertices such that

$$R(M_n) \geq n \Omega\left(\log n \log \log n\right).$$

Conlon et al. showed that this holds for almost every ordered matching.
Bounded-degree graphs

- We consider graphs with the maximum degree bounded by a constant.
- There is a substantial difference between ordered and unordered case.

Theorem (Chvátal, Rödl, Szemerédi, Trotter, 1983)

Every graph G on n vertices with bounded maximum degree satisfies

$$R(G) \leq O(n).$$

Theorem (B., Cibulka, Král, Kynčl and Conlon, Fox, Lee, Sudakov, 2014)

There are arbitrarily large ordered matchings \mathcal{M}_n on n vertices such that

$$\overline{R}(\mathcal{M}_n) \geq n^{\Omega\left(\frac{\log n}{\log \log n}\right)}.$$
Bounded-degree graphs

- We consider graphs with the maximum degree bounded by a constant.
- There is a substantial difference between ordered and unordered case.

Theorem (Chvátal, Rödl, Szemerédi, Trotter, 1983)

Every graph G on n vertices with bounded maximum degree satisfies

$$R(G) \leq O(n).$$

Theorem (B., Cibulka, Král, Kynčl and Conlon, Fox, Lee, Sudakov, 2014)

There are arbitrarily large ordered matchings M_n on n vertices such that

$$\overline{R}(M_n) \geq n^{\Omega\left(\frac{\log n}{\log \log n}\right)}.$$

- Conlon et al. showed that this holds for almost every ordered matching.
Smallest ordered Ramsey numbers

There are \(n \)-vertex ordered matchings \(M \) with \(R(M) \) linear in \(n \).

Which orderings have asymptotically smallest ordered Ramsey numbers?

When can we attain linear ordered Ramsey numbers?

Problem (Conlon, Fox, Lee, Sudakov, 2014)

Do random 3-regular graphs have superlinear ordered Ramsey numbers for all orderings?
Smallest ordered Ramsey numbers

- There are n-vertex ordered matchings \mathcal{M} with $\overline{R}(\mathcal{M})$ linear in n.

Problem (Conlon, Fox, Lee, Sudakov, 2014)

- Do random 3-regular graphs have superlinear ordered Ramsey numbers for all orderings?
There are n-vertex ordered matchings \mathcal{M} with $\overline{R}(\mathcal{M})$ linear in n.

$\overline{R}(\mathcal{M}_1), \overline{R}(\mathcal{M}_2) \leq 2n - 2$
Smallest ordered Ramsey numbers

- There are n-vertex ordered matchings \mathcal{M} with $\overline{R}(\mathcal{M})$ linear in n.

- Which orderings have asymptotically smallest ordered Ramsey numbers?

$\overline{R}(\mathcal{M}_1), \overline{R}(\mathcal{M}_2) \leq 2n - 2$
Smallest ordered Ramsey numbers

- There are n-vertex ordered matchings \mathcal{M} with $\overline{R}(\mathcal{M})$ linear in n.

\[\overline{R}(\mathcal{M}_1), \overline{R}(\mathcal{M}_2) \leq 2n - 2 \]

- Which orderings have asymptotically smallest ordered Ramsey numbers?
- When can we attain linear ordered Ramsey numbers?
Smallest ordered Ramsey numbers

- There are n-vertex ordered matchings \mathcal{M} with $\overline{R}(\mathcal{M})$ linear in n.

- Which orderings have asymptotically smallest ordered Ramsey numbers?
- When can we attain linear ordered Ramsey numbers?

Problem (Conlon, Fox, Lee, Sudakov, 2014)
Do random 3-regular graphs have superlinear ordered Ramsey numbers for all orderings?
Superlinear lower bound

We give a positive answer to the problem of Conlon et al. \(R(G) \) is the minimum of \(R(G) \) over all orderings \(G \) of \(G \).

Theorem

For every \(d \geq 3 \), almost every \(d \)-regular graph \(G \) on \(n \) vertices satisfies

\[
\min R(G) \geq \frac{n}{3} - \frac{1}{d} 4 \log n \log \log n.
\]

For \(3 \)-regular graphs, we obtain \(\min R(G) \geq \frac{n}{7} 4 \log n \log \log n \).
Superlinear lower bound

- We give a positive answer to the problem of Conlon et al.
Superlinear lower bound

- We give a positive answer to the problem of Conlon et al.
- \(\min \overline{R}(G) \) is the minimum of \(\overline{R}(G) \) over all orderings \(G \) of \(G \).
We give a positive answer to the problem of Conlon et al.

\(\min\overline{R}(G) \) is the minimum of \(\overline{R}(G) \) over all orderings \(G \) of \(G \).

Theorem

For every \(d \geq 3 \), almost every \(d \)-regular graph \(G \) on \(n \) vertices satisfies

\[
\min\overline{R}(G) \geq \frac{n^{3/2-1/d}}{4 \log n \log \log n}.
\]
We give a positive answer to the problem of Conlon et al.

min-$\overline{R}(G)$ is the minimum of $\overline{R}(G)$ over all orderings G of G.

Theorem

For every $d \geq 3$, almost every d-regular graph G on n vertices satisfies

$$\min-\overline{R}(G) \geq \frac{n^{3/2 - 1/d}}{4 \log n \log \log n}.$$

For 3-regular graphs, we obtain $\min-\overline{R}(G) \geq \frac{n^{7/6}}{4 \log n \log \log n}$.
Sketch of the proof

For $d \geq 3$, let G be a d-regular graph on n vertices.

Key lemma: Almost every such G satisfies the following: for every partition of $V(G)$ into few sets X_1, \ldots, X_t, each of size at most s, there are many pairs (X_i, X_j) with an edge between them. Here, $t = \frac{n}{2 \log n \log \log n}$ and $s = \frac{n}{2} - \frac{1}{2d}$. We use an estimate by Bender and Canfield and by Wormald for the number of d-regular graphs on n vertices.
Sketch of the proof

- For $d \geq 3$, let G be a d-regular graph on n vertices.
Sketch of the proof

- For $d \geq 3$, let G be a d-regular graph on n vertices.

- **Key lemma**: Almost every such G satisfies the following: for every partition of $V(G)$ into few sets X_1, \ldots, X_t, each of size at most s, there are many pairs (X_i, X_j) with an edge between them. Here, $t = n/(2 \log n \log \log n)$ and $s = n^{1/2 - 1/d}/2$.

We use an estimate by Bender and Canfield and by Wormald for the number of d-regular graphs on n vertices.
Sketch of the proof

- For $d \geq 3$, let G be a d-regular graph on n vertices.
- **Key lemma**: Almost every such G satisfies the following: for every partition of $V(G)$ into few sets X_1, \ldots, X_t, each of size at most s, there are many pairs (X_i, X_j) with an edge between them. Here, $t = n/(2 \log n \log \log n)$ and $s = n^{1/2 - 1/d}/2$.

![Graph G](image)
Sketch of the proof

- For $d \geq 3$, let G be a d-regular graph on n vertices.
- **Key lemma:** Almost every such G satisfies the following: for every partition of $V(G)$ into few sets X_1, \ldots, X_t, each of size at most s, there are many pairs (X_i, X_j) with an edge between them. Here, $t = n/(2 \log n \log \log n)$ and $s = n^{1/2-1/d}/2$.

![Diagram of a d-regular graph](image)
For $d \geq 3$, let G be a d-regular graph on n vertices.

Key lemma: Almost every such G satisfies the following: for every partition of $V(G)$ into few sets X_1, \ldots, X_t, each of size at most s, there are many pairs (X_i, X_j) with an edge between them. Here, $t = n/(2 \log n \log \log n)$ and $s = n^{1/2-1/d}/2$.

We use an estimate by Bender and Canfield and by Wormald for the number of d-regular graphs on n vertices.
For \(d \geq 3 \), let \(G \) be a \(d \)-regular graph on \(n \) vertices.

Key lemma: Almost every such \(G \) satisfies the following: for every partition of \(V(G) \) into few sets \(X_1, \ldots, X_t \), each of size at most \(s \), there are many pairs \((X_i, X_j) \) with an edge between them. Here,
\[
t = \frac{n}{(2 \log n \log \log n)} \quad \text{and} \quad s = n^{1/2 - 1/d}/2.
\]
Sketch of the proof

- For $d \geq 3$, let G be a d-regular graph on n vertices.
- **Key lemma**: Almost every such G satisfies the following: for every partition of $V(G)$ into few sets X_1, \ldots, X_t, each of size at most s, there are many pairs (X_i, X_j) with an edge between them. Here, $t = n/(2 \log n \log \log n)$ and $s = n^{1/2 - 1/d}/2$.

![Diagram of graphs](image-url)
Sketch of the proof

- For $d \geq 3$, let G be a d-regular graph on n vertices.
- Key lemma: Almost every such G satisfies the following: for every partition of $V(G)$ into few sets X_1, \ldots, X_t, each of size at most s, there are many pairs (X_i, X_j) with an edge between them. Here, $t = n/(2 \log n \log \log n)$ and $s = n^{1/2 - 1/d}/2$.

![Graph diagrams](image-url)
Sketch of the proof

- For $d \geq 3$, let G be a d-regular graph on n vertices.
- **Key lemma**: Almost every such G satisfies the following: for every partition of $V(G)$ into few sets X_1, \ldots, X_t, each of size at most s, there are many pairs (X_i, X_j) with an edge between them. Here, $t = n/(2 \log n \log \log n)$ and $s = n^{1/2 - 1/d}/2$.

\[G \]

\[G \]

\[G \]

\[G \]
Sketch of the proof

- For $d \geq 3$, let G be a d-regular graph on n vertices.
- **Key lemma:** Almost every such G satisfies the following: for every partition of $V(G)$ into few sets X_1, \ldots, X_t, each of size at most s, there are many pairs (X_i, X_j) with an edge between them. Here, $t = n/(2 \log n \log \log n)$ and $s = n^{1/2 - 1/d}/2$.

We use an estimate by Bender and Canfield and by Wormald for the number of d-regular graphs on n vertices.
2-regular graphs?
2-regular graphs?

- Each \(n \)-vertex 1-regular graph has an ordering \(\mathcal{M} \) with \(\bar{R}(\mathcal{M}) \) linear in \(n \).
2-regular graphs?

- Each n-vertex 1-regular graph has an ordering \mathcal{M} with $\overline{R}(\mathcal{M})$ linear in n.
- No longer true for d-regular graphs with $d \geq 3$.
2-regular graphs?

- Each n-vertex 1-regular graph has an ordering \mathcal{M} with $\overline{R}(\mathcal{M})$ linear in n.
- No longer true for d-regular graphs with $d \geq 3$.
- How about 2-regular graphs?
2-regular graphs

Theorem

Every graph G with n vertices and with maximum degree at most two satisfies $\min R(G) \leq O(n)$.

First, for every n, we find an ordering C_n of C_n with $R(C_n)$ linear in n.

Second, we find an ordering of a disjoint union G of these ordered cycles with linear $R(G)$. Placing cycles sequentially does not work.
Theorem

Every graph G with n vertices and with maximum degree at most two satisfies

$$\min-\bar{R}(G) \leq O(n).$$
Theorem

Every graph G with n vertices and with maximum degree at most two satisfies

$$\min-\overline{\mathcal{R}}(G) \leq O(n).$$

- First, for every n, we find an ordering C_n of C_n with $\overline{\mathcal{R}}(C_n)$ linear in n.
Every graph G with n vertices and with maximum degree at most two satisfies
\[\min \overline{R}(G) \leq O(n). \]

- First, for every n, we find an ordering C_n of C_n with $\overline{R}(C_n)$ linear in n.
- Second, we find an ordering of a disjoint union G of these ordered cycles with linear $\overline{R}(G)$.
2-regular graphs

Theorem

Every graph G with n vertices and with maximum degree at most two satisfies

$$\min \overline{R}(G) \leq O(n).$$

- First, for every n, we find an ordering C_n of C_n with $\overline{R}(C_n)$ linear in n.
- Second, we find an ordering of a disjoint union G of these ordered cycles with linear $\overline{R}(G)$.
- Placing cycles sequentially does not work.
2-regular graphs

Theorem

Every graph G with n vertices and with maximum degree at most two satisfies

$$\min\overline{R}(G) \leq O(n).$$

- First, for every n, we find an ordering C_n of C_n with $\overline{R}(C_n)$ linear in n.
- Second, we find an ordering of a disjoint union G of these ordered cycles with linear $\overline{R}(G)$.
- Placing cycles sequentially does not work.
2-regular graphs

Theorem

Every graph G with n vertices and with maximum degree at most two satisfies

$$\min \mathcal{R}(G) \leq O(n).$$

- First, for every n, we find an ordering C_n of C_n with $\mathcal{R}(C_n)$ linear in n.
- Second, we find an ordering of a disjoint union G of these ordered cycles with linear $\mathcal{R}(G)$.
- Placing cycles sequentially does not work.
Sketch of the proof

Linear ordering of cycles are based on alternating paths P_n. B., Cibulka, Král, Kyncl showed $R(P_n) \leq O(n)$.

Lemma

For every $\varepsilon > 0$ and every $n \in \mathbb{N}$, every ordered graph on $N \geq n/\varepsilon$ vertices with at least εN^2 edges contains P_n as an ordered subgraph.

We use this result to "blow-up" P_n and obtain linear orderings of cycles.
Sketch of the proof I

- Linear ordering of cycles are based on alternating paths \mathcal{P}_n.

B., Cibulka, Král, Kyncl showed $R(\mathcal{P}_n) \leq O(n)$.

Lemma: For every $\varepsilon > 0$ and every $n \in \mathbb{N}$, every ordered graph on $\mathbb{N} \geq n/\varepsilon$ vertices with at least εN^2 edges contains \mathcal{P}_n as an ordered subgraph.

We use this result to "blow-up" \mathcal{P}_n and obtain linear orderings of cycles.
Linear ordering of cycles are based on alternating paths \mathcal{P}_n.
Sketch of the proof I

- Linear ordering of cycles are based on alternating paths \mathcal{P}_n.

- B., Cibulka, Král, Kynčl showed $\overline{R}(\mathcal{P}_n) \leq O(n)$.
Sketch of the proof I

- Linear ordering of cycles are based on alternating paths \mathcal{P}_n.

- B., Cibulka, Král, Kynčl showed $\overline{R}(\mathcal{P}_n) \leq O(n)$.

Lemma

For every $\varepsilon > 0$ and every $n \in \mathbb{N}$, every ordered graph on $N \geq n/\varepsilon$ vertices with at least εN^2 edges contains \mathcal{P}_n as an ordered subgraph.
Sketch of the proof

- Linear ordering of cycles are based on alternating paths \mathcal{P}_n.

- B., Cibulka, Král, Kynčl showed $\overline{R}(\mathcal{P}_n) \leq O(n)$.

Lemma

For every $\varepsilon > 0$ and every $n \in \mathbb{N}$, every ordered graph on $N \geq n/\varepsilon$ vertices with at least εN^2 edges contains \mathcal{P}_n as an ordered subgraph.

- We use this result to “blow-up” \mathcal{P}_n and obtain linear orderings of cycles.
Sketch of the proof

- Linear ordering of cycles are based on alternating paths \mathcal{P}_n.

- B., Cibulka, Král, Kynčl showed $\overline{R}(\mathcal{P}_n) \leq O(n)$.

Lemma

For every $\varepsilon > 0$ and every $n \in \mathbb{N}$, every ordered graph on $N \geq n/\varepsilon$ vertices with at least εN^2 edges contains \mathcal{P}_n as an ordered subgraph.

- We use this result to “blow-up” \mathcal{P}_n and obtain linear orderings of cycles.
Sketch of the proof 1

- Linear ordering of cycles are based on alternating paths \mathcal{P}_n.

- B., Cibulka, Král, Kynčl showed $\overline{R}(\mathcal{P}_n) \leq O(n)$.

Lemma

For every $\varepsilon > 0$ and every $n \in \mathbb{N}$, every ordered graph on $N \geq n/\varepsilon$ vertices with at least εN^2 edges contains \mathcal{P}_n as an ordered subgraph.

- We use this result to “blow-up” \mathcal{P}_n and obtain linear orderings of cycles.
Sketch of the proof I

- Linear ordering of cycles are based on alternating paths \mathcal{P}_n.

- B., Cibulka, Král, Kynčl showed $\overline{R}(\mathcal{P}_n) \leq O(n)$.

Lemma

For every $\varepsilon > 0$ and every $n \in \mathbb{N}$, every ordered graph on $N \geq n/\varepsilon$ vertices with at least εN^2 edges contains \mathcal{P}_n as an ordered subgraph.

- We use this result to “blow-up” \mathcal{P}_n and obtain linear orderings of cycles.
Sketch of the proof I

- Linear ordering of cycles are based on alternating paths \mathcal{P}_n.

- B., Cibulka, Král, Kynčl showed $\overline{R}(\mathcal{P}_n) \leq O(n)$.

Lemma

For every $\varepsilon > 0$ and every $n \in \mathbb{N}$, every ordered graph on $N \geq n/\varepsilon$ vertices with at least εN^2 edges contains \mathcal{P}_n as an ordered subgraph.

- We use this result to “blow-up” \mathcal{P}_n and obtain linear orderings of cycles.
Orderings of disjoint union of cycles are constructed as follows. For bipartite 2-regular graphs we obtain a stronger Turán-type result.

Theorem

For each ε > 0, there is C(ε) such that, for every n ∈ \mathbb{N}, every bipartite graph G on n vertices with maximum degree 2 admits an ordering G of G that is contained in every ordered graph with N ≥ C(ε)n vertices and with at least εN^2 edges.

No longer true if G contains an odd cycle.
Orderings of disjoint union of cycles are constructed as follows.

For bipartite 2-regular graphs we obtain a stronger Turán-type result.

Theorem

For each $\varepsilon > 0$, there is $C(\varepsilon)$ such that, for every $n \in \mathbb{N}$, every bipartite graph G on n vertices with maximum degree 2 admits an ordering of G that is contained in every ordered graph with $N \geq C(\varepsilon)n$ vertices and with at least εN^2 edges.

No longer true if G contains an odd cycle.
Orderings of disjoint union of cycles are constructed as follows.
Orderings of disjoint union of cycles are constructed as follows.
Orderings of disjoint union of cycles are constructed as follows.
Sketch of the proof II

- Orderings of disjoint union of cycles are constructed as follows.

- For bipartite 2-regular graphs we obtain a stronger Turán-type result.
Sketch of the proof II

- Orderings of disjoint union of cycles are constructed as follows.

- For bipartite 2-regular graphs we obtain a stronger Turán-type result.

Theorem

For each $\varepsilon > 0$, there is $C(\varepsilon)$ such that, for every $n \in \mathbb{N}$, every bipartite graph G on n vertices with maximum degree 2 admits an ordering G of G that is contained in every ordered graph with $N \geq C(\varepsilon)n$ vertices and with at least εN^2 edges.
Sketch of the proof II

- Orderings of disjoint union of cycles are constructed as follows.

- For bipartite 2-regular graphs we obtain a stronger Turán-type result.

Theorem

For each $\varepsilon > 0$, there is $C(\varepsilon)$ such that, for every $n \in \mathbb{N}$, every bipartite graph G on n vertices with maximum degree 2 admits an ordering \mathcal{G} of G that is contained in every ordered graph with $N \geq C(\varepsilon)n$ vertices and with at least εN^2 edges.

- No longer true if \mathcal{G} contains an odd cycle.
Final remarks

A result of Conlon, Fox, Lee, Sudakov gives a polynomial upper bound.

Corollary

Every graph G with n vertices and with maximum degree d satisfies

$$\min R(G) \leq O(n(d+1)\lceil \log(d+1) \rceil + 1).$$

The upper and lower bounds for $\min R(G)$ are far apart.

Problem

Improve the upper and lower bounds on $\min R(G)$ for 3-regular graphs G.

Thank you.
Final remarks

- A result of Conlon, Fox, Lee, Sudakov gives a polynomial upper bound.

Corollary

Every graph G with n vertices and with maximum degree d satisfies

$$\min_R(G) \leq O(n(d+1)\lceil \log(d+1) \rceil + 1).$$

The upper and lower bounds for $\min_R(G)$ are far apart.

Problem

Improve the upper and lower bounds on $\min_R(G)$ for 3-regular graphs G.
A result of Conlon, Fox, Lee, Sudakov gives a polynomial upper bound.

Corollary

Every graph G with n vertices and with maximum degree d satisfies

$$\min-\overline{R}(G) \leq O(n^{(d+1)[\log(d+1)]+1}).$$
Final remarks

- A result of Conlon, Fox, Lee, Sudakov gives a polynomial upper bound.

Corollary

Every graph G with n vertices and with maximum degree d satisfies

$$\min-\overline{R}(G) \leq O(n^{(d+1)\lceil \log (d+1) \rceil + 1}).$$

- The upper and lower bounds for $\min-\overline{R}(G)$ are far apart.
Final remarks

- A result of Conlon, Fox, Lee, Sudakov gives a polynomial upper bound.

Corollary

Every graph G with n vertices and with maximum degree d satisfies

$$\min-\overline{R}(G) \leq O(n^{(d+1)[\log(d+1)]+1}).$$

- The upper and lower bounds for $\min-\overline{R}(G)$ are far apart.

Problem

Improve the upper and lower bounds on $\min-\overline{R}(G)$ for 3-regular graphs G.
Final remarks

- A result of Conlon, Fox, Lee, Sudakov gives a polynomial upper bound.

Corollary

Every graph G with n vertices and with maximum degree d satisfies

$$\min\overline{\chi}(G) \leq O(n^{(d+1)\lceil\log(d+1)\rceil+1}).$$

- The upper and lower bounds for $\min\overline{\chi}(G)$ are far apart.

Problem

Improve the upper and lower bounds on $\min\overline{\chi}(G)$ for 3-regular graphs G.

Thank you.