Induced Ramsey-type results and binary predicates for point sets

Martin Balko, Jan Kynčl, Stefan Langerman, Alexander Pilz

Charles University and Ben-Gurion University of the Negev

August 31, 2017
Introduction

Let P and Q be finite sets of points in \mathbb{R}^2 in general position.

Let $(X)_p$ be the set of all ordered p-tuples of distinct elements from X.

We use $\Delta_P : (P)_3 \to \{-, +\}$ to denote the function that assigns an orientation to every triple from $(P)_3$.

The sets P and Q have the same order type if there is a bijection $f : P \to Q$ such that every $T \in (P)_3$ has the same orientation as $f(T)$.
Let P and be Q finite sets of points in \mathbb{R}^2 in general position.
Let P and Q be finite sets of points in \mathbb{R}^2 in general position.

- Let \mathcal{P} be the set of all ordered \mathcal{P}-tuples of distinct elements from \mathcal{X}.

We use $\Delta_P : (\mathcal{P})_3 \to \{-\}$ to denote the function that assigns an orientation to every triple from $(\mathcal{P})_3$.

The sets P and Q have the same order type if there is a bijection $f : P \to Q$ such that every $T \in (\mathcal{P})_3$ has the same orientation as $f(T)$.

\begin{itemize}
 \item Let P and be Q finite sets of points in \mathbb{R}^2 in general position.
\end{itemize}
Let P and be Q finite sets of points in \mathbb{R}^2 in general position.

Let $(X)_p$ be the set of all ordered p-tuples of distinct elements from X.
Let P and be Q finite sets of points in \mathbb{R}^2 in general position.

Let $(X)_p$ be the set of all ordered p-tuples of distinct elements from X.

We use $\Delta_P : (P)_3 \rightarrow \{-, +\}$ to denote the function that assigns an orientation to every triple from $(P)_3$.
Let P and be Q finite sets of points in \mathbb{R}^2 in general position.

Let $(X)_p$ be the set of all ordered p-tuples of distinct elements from X.

We use $\Delta_P : (P)_3 \to \{-, +\}$ to denote the function that assigns an orientation to every triple from $(P)_3$.
Let P and be Q finite sets of points in \mathbb{R}^2 in general position.

Let $(X)_p$ be the set of all ordered p-tuples of distinct elements from X.

We use $\Delta_P : (P)_3 \rightarrow \{-, +\}$ to denote the function that assigns an orientation to every triple from $(P)_3$.
Let P and Q be finite sets of points in \mathbb{R}^2 in general position.

Let $(X)_p$ be the set of all ordered p-tuples of distinct elements from X.

We use $\Delta_P : (P)_3 \to \{ -, + \}$ to denote the function that assigns an orientation to every triple from $(P)_3$.

The sets P and Q have the same order type if there is a bijection $f : P \to Q$ such that every $T \in (P)_3$ has the same orientation as $f(T)$.
Let P and be Q finite sets of points in \mathbb{R}^2 in general position.

Let $(X)_p$ be the set of all ordered p-tuples of distinct elements from X.

We use $\Delta_P : (P)_3 \rightarrow \{- , +\}$ to denote the function that assigns an orientation to every triple from $(P)_3$.

The sets P and Q have the same order type if there is a bijection $f : P \rightarrow Q$ such that every $T \in (P)_3$ has the same orientation as $f(T)$.
Let P and be Q finite sets of points in \mathbb{R}^2 in general position.

Let $(X)_p$ be the set of all ordered p-tuples of distinct elements from X.

We use $\Delta_P : (P)_3 \rightarrow \{-, +\}$ to denote the function that assigns an orientation to every triple from $(P)_3$.

The sets P and Q have the same order type if there is a bijection $f : P \rightarrow Q$ such that every $T \in (P)_3$ has the same orientation as $f(T)$.
Ramsey point sets

For $k, p \in \mathbb{N}$, a point set Q is (k, p)-Ramsey if there is a point set P such that for every k-coloring of (P, p) there is a subset of P that has monochromatic p-tuples and has the same order type as Q.

Which point sets are (k, p)-Ramsey?

Known results (Neˇsetˇril and Valtr, 1994–98):

For $k \in \mathbb{N}$, all point sets are $(k, 1)$-Ramsey.

If $k, p \geq 2$, then not all point sets are (k, p)-Ramsey.

For $k \in \mathbb{N}$, the non-convex 4-tuple is $(k, 2)$-Ramsey.
Ramsey point sets

- For \(k, p \in \mathbb{N} \), a point set \(Q \) is \((k, p)\)-Ramsey if there is a point set \(P \) such that for every \(k \)-coloring of \(\binom{P}{p} \) there is a subset of \(P \) that has monochromatic \(p \)-tuples and has the same order type as \(Q \).
For $k, p \in \mathbb{N}$, a point set Q is (k, p)-Ramsey if there is a point set P such that for every k-coloring of $\binom{P}{p}$ there is a subset of P that has monochromatic p-tuples and has the same order type as Q.
For $k, p \in \mathbb{N}$, a point set Q is (k, p)-Ramsey if there is a point set P such that for every k-coloring of $\binom{P}{p}$ there is a subset of P that has monochromatic p-tuples and has the same order type as Q. Which point sets are (k, p)-Ramsey?

Known results (Neˇsetˇril and Valtr, 1994–98):

- For $k \in \mathbb{N}$, all point sets are $(k, 1)$-Ramsey.
- If $k, p \geq 2$, then not all point sets are (k, p)-Ramsey.
- For $k \in \mathbb{N}$, the non-convex 4-tuple is $(k, 2)$-Ramsey.
Ramsey point sets

For $k, p \in \mathbb{N}$, a point set Q is (k, p)-Ramsey if there is a point set P such that for every k-coloring of $\binom{P}{p}$ there is a subset of P that has monochromatic p-tuples and has the same order type as Q.

Which point sets are (k, p)-Ramsey?

Known results (Neˇ setˇ ril and Valtr, 1994–98):

For $k \in \mathbb{N}$, all point sets are $(k, 1)$-Ramsey.

If $k, p \geq 2$, then not all point sets are (k, p)-Ramsey.

For $k \in \mathbb{N}$, the non-convex 4-tuple is $(k, 2)$-Ramsey.
Ramsey point sets

For \(k, p \in \mathbb{N} \), a point set \(Q \) is \((k, p)\)-Ramsey if there is a point set \(P \) such that for every \(k \)-coloring of \(\binom{P}{p} \) there is a subset of \(P \) that has monochromatic \(p \)-tuples and has the same order type as \(Q \).

\[k = 2 = p \]
Ramsey point sets

- For $k, p \in \mathbb{N}$, a point set Q is (k, p)-Ramsey if there is a point set P such that for every k-coloring of $\binom{P}{p}$ there is a subset of P that has monochromatic p-tuples and has the same order type as Q.

Which point sets are (k, p)-Ramsey?
Ramsey point sets

- For $k, p \in \mathbb{N}$, a point set Q is (k, p)-Ramsey if there is a point set P such that for every k-coloring of $\binom{P}{p}$ there is a subset of P that has monochromatic p-tuples and has the same order type as Q.

- Which point sets are (k, p)-Ramsey?
- Known results (Nešetřil and Valtr, 1994–98):

\[k = 2 = p \]
Ramsey point sets

For $k, p \in \mathbb{N}$, a point set Q is (k, p)-Ramsey if there is a point set P such that for every k-coloring of $\binom{P}{p}$ there is a subset of P that has monochromatic p-tuples and has the same order type as Q.

Which point sets are (k, p)-Ramsey?

Known results (Nešetřil and Valtr, 1994–98):
- For $k \in \mathbb{N}$, all point sets are $(k, 1)$-Ramsey.
Ramsey point sets

- For $k, p \in \mathbb{N}$, a point set Q is (k, p)-Ramsey if there is a point set P such that for every k-coloring of $\binom{P}{p}$ there is a subset of P that has monochromatic p-tuples and has the same order type as Q.

Which point sets are (k, p)-Ramsey?

- Known results (Nešetřil and Valtr, 1994–98):
 - For $k \in \mathbb{N}$, all point sets are $(k, 1)$-Ramsey.
 - If $k, p \geq 2$, then not all point sets are (k, p)-Ramsey.
Ramsey point sets

- For \(k, p \in \mathbb{N} \), a point set \(Q \) is \((k, p)\)-Ramsey if there is a point set \(P \) such that for every \(k \)-coloring of \(\binom{P}{p} \) there is a subset of \(P \) that has monochromatic \(p \)-tuples and has the same order type as \(Q \).

Which point sets are \((k, p)\)-Ramsey?

- Known results (Nešetřil and Valtr, 1994–98):
 - For \(k \in \mathbb{N} \), all point sets are \((k, 1)\)-Ramsey.
 - If \(k, p \geq 2 \), then not all point sets are \((k, p)\)-Ramsey.
 - For \(k \in \mathbb{N} \), the non-convex 4-tuple is \((k, 2)\)-Ramsey.
Ordered Ramsey point sets

We introduce a new family of \((k,2)\)-Ramsey point sets. To do so, we first introduce an ordered variant of \((k,p)\)-Ramsey sets. Point sets \(P = \{p_1, \ldots, p_n\}\) and \(Q = \{q_1, \ldots, q_n\}\) ordered by increasing \(x\)-coordinate have the same signature, if \(\Delta P(p_i, p_j, p_k) = \Delta Q(q_i, q_j, q_k)\) for all \(1 \leq i < j < k \leq n\).

Distinguishing point sets by signatures is finer than by order types. A point set \(Q\) is ordered \((k,p)\)-Ramsey if there is a point set \(P\) such that for every \(k\)-coloring of \((P)p\) there is a subset of \(P\) that has monochromatic \(p\)-tuples and has the same signature as \(Q\). If a point set is ordered \((k,p)\)-Ramsey, then it is \((k,p)\)-Ramsey.
Ordered Ramsey point sets

- We introduce a new family of \((k, 2)\)-Ramsey point sets.
Ordered Ramsey point sets

- We introduce a new family of \((k, 2)\)-Ramsey point sets.
- To do so, we first introduce an ordered variant of \((k, p)\)-Ramsey sets.
We introduce a new family of \((k, 2)\)-Ramsey point sets.

To do so, we first introduce an ordered variant of \((k, p)\)-Ramsey sets.

Point sets \(P = \{p_1, \ldots, p_n\}\) and \(Q = \{q_1, \ldots, q_n\}\) ordered by increasing \(x\)-coordinate have the same signature, if \(\Delta_P(p_i, p_j, p_k) = \Delta_Q(q_i, q_j, q_k)\) for all \(1 \leq i < j < k \leq n\).
Ordered Ramsey point sets

- We introduce a new family of \((k, 2)\)-Ramsey point sets.
- To do so, we first introduce an ordered variant of \((k, p)\)-Ramsey sets.
- Point sets \(P = \{p_1, \ldots, p_n\}\) and \(Q = \{q_1, \ldots, q_n\}\) ordered by increasing \(x\)-coordinate have the same signature, if \(\Delta_P(p_i, p_j, p_k) = \Delta_Q(q_i, q_j, q_k)\) for all \(1 \leq i < j < k \leq n\).
- Distinguishing point sets by signatures is finer than by order types.
Ordered Ramsey point sets

- We introduce a new family of $(k, 2)$-Ramsey point sets.
- To do so, we first introduce an ordered variant of (k, p)-Ramsey sets.
- Point sets $P = \{p_1, \ldots, p_n\}$ and $Q = \{q_1, \ldots, q_n\}$ ordered by increasing x-coordinate have the same signature, if $\Delta_P(p_i, p_j, p_k) = \Delta_Q(q_i, q_j, q_k)$ for all $1 \leq i < j < k \leq n$.
- Distinguishing point sets by signatures is finer than by order types.
Ordered Ramsey point sets

- We introduce a new family of $(k, 2)$-Ramsey point sets.
- To do so, we first introduce an ordered variant of (k, p)-Ramsey sets.
- Point sets $P = \{p_1, \ldots, p_n\}$ and $Q = \{q_1, \ldots, q_n\}$ ordered by increasing x-coordinate have the same signature, if $\Delta_P(p_i, p_j, p_k) = \Delta_Q(q_i, q_j, q_k)$ for all $1 \leq i < j < k \leq n$.
- Distinguishing point sets by signatures is finer than by order types.

![Diagram showing same order type, distinct signatures.]

Same order type, distinct signatures.
Ordered Ramsey point sets

- We introduce a new family of \((k, 2)\)-Ramsey point sets.
- To do so, we first introduce an ordered variant of \((k, p)\)-Ramsey sets.
- Point sets \(P = \{p_1, \ldots, p_n\}\) and \(Q = \{q_1, \ldots, q_n\}\) ordered by increasing \(x\)-coordinate have the same signature, if \(\Delta_P(p_i, p_j, p_k) = \Delta_Q(q_i, q_j, q_k)\) for all \(1 \leq i < j < k \leq n\).
- Distinguishing point sets by signatures is finer than by order types.

\[
P = \{p_1, p_2, p_3, p_4, p_5\}
\]

\[
Q = \{q_1, q_2, q_3, q_4, q_5\}
\]

Same order type, distinct signatures.

- A point set \(Q\) is ordered \((k, p)\)-Ramsey if there is a point set \(P\) such that for every \(k\)-coloring of \(\binom{P}{p}\) there is a subset of \(P\) that has monochromatic \(p\)-tuples and has the same signature as \(Q\).
Ordered Ramsey point sets

- We introduce a new family of \((k, 2)\)-Ramsey point sets.
- To do so, we first introduce an ordered variant of \((k, p)\)-Ramsey sets.
- Point sets \(P = \{p_1, \ldots, p_n\}\) and \(Q = \{q_1, \ldots, q_n\}\) ordered by increasing \(x\)-coordinate have the same signature, if \(\Delta_P(p_i, p_j, p_k) = \Delta_Q(q_i, q_j, q_k)\) for all \(1 \leq i < j < k \leq n\).
- Distinguishing point sets by signatures is finer than by order types.

A point set \(Q\) is ordered \((k, p)\)-Ramsey if there is a point set \(P\) such that for every \(k\)-coloring of \(\binom{P}{p}\) there is a subset of \(P\) that has monochromatic \(p\)-tuples and has the same signature as \(Q\).
- If a point set is ordered \((k, p)\)-Ramsey, then it is \((k, p)\)-Ramsey.
Decomposable sets are ordered Ramsey

A point set P is decomposable if $|P| = 1$ or if P admits the following partition into non-empty decomposable sets P_1 and P_2:

Theorem 1
For every $k \in \mathbb{N}$, every decomposable set is ordered $(k, 2)$-Ramsey.

For each $k \in \mathbb{N}$, all point sets are ordered $(k, 1)$-Ramsey.

For $k \geq 2$ and $p \geq 3$, (k, p)-Ramsey sets are exactly sets in convex position and ordered (k, p)-Ramsey sets are exactly caps and cups.

Theorem 1 has an application in the theory of combinatorial encodings of point sets.
Decomposable sets are ordered Ramsey

- A point set P is decomposable if $|P| = 1$ or if P admits the following partition into non-empty decomposable sets P_1 and P_2:

Theorem 1

- For every $k \in \mathbb{N}$, every decomposable set is ordered $(k, 2)$-Ramsey.
- For each $k \in \mathbb{N}$, all point sets are ordered $(k, 1)$-Ramsey.
- For $k \geq 2$ and $p \geq 3$, (k, p)-Ramsey sets are exactly sets in convex position and ordered (k, p)-Ramsey sets are exactly caps and cups.

Theorem 1 has an application in the theory of combinatorial encodings of point sets.
Decomposable sets are ordered Ramsey

A point set P is decomposable if $|P| = 1$ or if P admits the following partition into non-empty decomposable sets P_1 and P_2:

\[P \]

Theorem 1

For every $k \in \mathbb{N}$, every decomposable set is ordered $(k,2)$-Ramsey.

For each $k \in \mathbb{N}$, all point sets are ordered $(k,1)$-Ramsey.

For $k \geq 2$ and $p \geq 3$, (k,p)-Ramsey sets are exactly sets in convex position and ordered (k,p)-Ramsey sets are exactly caps and cups.

Theorem 1 has an application in the theory of combinatorial encodings of point sets.
Decomposable sets are ordered Ramsey

- A point set P is decomposable if $|P| = 1$ or if P admits the following partition into non-empty decomposable sets P_1 and P_2:
A point set P is decomposable if $|P| = 1$ or if P admits the following partition into non-empty decomposable sets P_1 and P_2:

Theorem 1

For every $k \in \mathbb{N}$, every decomposable set is ordered $(k, 2)$-Ramsey.

For each $k \in \mathbb{N}$, all point sets are ordered $(k, 1)$-Ramsey.

For $k \geq 2$ and $p \geq 3$, (k, p)-Ramsey sets are exactly sets in convex position and ordered (k, p)-Ramsey sets are exactly caps and cups.

Theorem 1 has an application in the theory of combinatorial encodings of point sets.
Decomposable sets are ordered Ramsey

- A point set P is decomposable if $|P| = 1$ or if P admits the following partition into non-empty decomposable sets P_1 and P_2:

Theorem 1
For every $k \in \mathbb{N}$, every decomposable set is ordered $(k, 2)$-Ramsey.
Decomposable sets are ordered Ramsey

A point set \(P \) is decomposable if \(|P| = 1 \) or if \(P \) admits the following partition into non-empty decomposable sets \(P_1 \) and \(P_2 \):

\[
\begin{align*}
\text{Theorem 1} \\
\text{For every } k \in \mathbb{N}, \text{ every decomposable set is ordered } (k, 2)\text{-Ramsey.}
\end{align*}
\]

- For each \(k \in \mathbb{N} \), all point sets are ordered \((k, 1)\)-Ramsey.
Decomposable sets are ordered Ramsey

- A point set P is decomposable if $|P| = 1$ or if P admits the following partition into non-empty decomposable sets P_1 and P_2:

![Partition of a point set into non-empty decomposable sets](image)

Theorem 1

- For every $k \in \mathbb{N}$, every decomposable set is ordered $(k, 2)$-Ramsey.
- For each $k \in \mathbb{N}$, all point sets are ordered $(k, 1)$-Ramsey.
- For $k \geq 2$ and $p \geq 3$, (k, p)-Ramsey sets are exactly sets in convex position and ordered (k, p)-Ramsey sets are exactly caps and cups.
Decomposable sets are ordered Ramsey

- A point set P is *decomposable* if $|P| = 1$ or if P admits the following partition into non-empty decomposable sets P_1 and P_2:

Theorem 1

For every $k \in \mathbb{N}$, every decomposable set is ordered $(k, 2)$-Ramsey.

- For each $k \in \mathbb{N}$, all point sets are ordered $(k, 1)$-Ramsey.
- For $k \geq 2$ and $p \geq 3$, (k, p)-Ramsey sets are exactly sets in convex position and ordered (k, p)-Ramsey sets are exactly caps and cups.
- Theorem 1 has an application in the theory of combinatorial encodings of point sets.
Point-set predicates

Let P be the set of all finite point sets in the plane in general position. For $t \in \mathbb{N}$ and a finite set Z, a t-ary point-set predicate with codomain Z is a collection $\Gamma = \{ \Gamma_P : P \in P \}$, where $\Gamma_P : (P)^t \to Z$.

Example: ternary predicate $\Delta = \{ \Delta_P : P \in P \}$ with codomain $\{-, +\}$.

We say that Γ encodes the order types if whenever there is a bijection $f : P \to Q$ such that $\Gamma_P(p_1, \ldots, p_t) = \Gamma_Q(f(p_1), \ldots, f(p_t))$ for every $(p_1, \ldots, p_t) \in (P)^t$, then P and Q have the same order type via f.

For $n \in \mathbb{N}$, there are $2^{\Theta(n^3)}$ ternary functions $f : ([n])^3 \to \{-, +\}$, but only $2^{\Theta(n \log n)}$ order types of point sets of size n. Is the encoding by Δ effective? Is it possible to use a binary predicate?
Let \mathcal{P} be the set of all finite point sets in the plane in general position.
Let \mathcal{P} be the set of all finite point sets in the plane in general position. For $t \in \mathbb{N}$ and a finite set Z, a t-ary point-set predicate with codomain Z is a collection $\Gamma = \{ \Gamma_P : P \in \mathcal{P} \}$, where $\Gamma_P : (P)_t \to Z$.

Example: ternary predicate $\Delta = \{ \Delta_P : P \in \mathcal{P} \}$ with codomain $\{-, +\}$.

We say that Γ encodes the order types if whenever there is a bijection $f : P \to Q$ such that $\Gamma_P(p_1, \ldots, p_t) = \Gamma_Q(f(p_1), \ldots, f(p_t))$ for every $(p_1, \ldots, p_t) \in (P)_t$, then P and Q have the same order type via f.

For $n \in \mathbb{N}$, there are $2^{\Theta(n^3)}$ ternary functions $f : ([n])_3 \to \{-, +\}$, but only $2^{\Theta(n \log n)}$ order types of point sets of size n. Is the encoding by Δ effective? Is it possible to use a binary predicate?
Point-set predicates

- Let \mathcal{P} be the set of all finite point sets in the plane in general position.
- For $t \in \mathbb{N}$ and a finite set Z, a t-ary point-set predicate with codomain Z is a collection $\Gamma = \{\Gamma_P : P \in \mathcal{P}\}$, where $\Gamma_P : (P)_t \to Z$.
- **Example:** ternary predicate $\Delta = \{\Delta_P : P \in \mathcal{P}\}$ with codomain $\{-, +\}$.
Point-set predicates

- Let \mathcal{P} be the set of all finite point sets in the plane in general position.
- For $t \in \mathbb{N}$ and a finite set Z, a t-ary point-set predicate with codomain Z is a collection $\Gamma = \{\Gamma_P : P \in \mathcal{P}\}$, where $\Gamma_P : (P)_t \to Z$.
- Example: ternary predicate $\Delta = \{\Delta_P : P \in \mathcal{P}\}$ with codomain $\{-, +\}$.
- We say that Γ encodes the order types if whenever there is a bijection $f : P \to Q$ such that $\Gamma_P(p_1, \ldots, p_t) = \Gamma_Q(f(p_1), \ldots, f(p_t))$ for every $(p_1, \ldots, p_t) \in (P)_t$, then P and Q have the same order type via f.
Let \mathcal{P} be the set of all finite point sets in the plane in general position.

For $t \in \mathbb{N}$ and a finite set Z, a t-ary point-set predicate with codomain Z is a collection $\Gamma = \{\Gamma_P : P \in \mathcal{P}\}$, where $\Gamma_P : (P)_t \to Z$.

Example: ternary predicate $\Delta = \{\Delta_P : P \in \mathcal{P}\}$ with codomain $\{-, +\}$.

We say that Γ encodes the order types if whenever there is a bijection $f : P \to Q$ such that $\Gamma_P(p_1, \ldots, p_t) = \Gamma_Q(f(p_1), \ldots, f(p_t))$ for every $(p_1, \ldots, p_t) \in (P)_t$, then P and Q have the same order type via f.

For $n \in \mathbb{N}$, there are $2^{\Theta(n^3)}$ ternary functions $f : ([n])_3 \to \{-, +\}$, but only $2^{\Theta(n \log n)}$ order types of point sets of size n.
Point-set predicates

- Let \mathcal{P} be the set of all finite point sets in the plane in general position.
- For $t \in \mathbb{N}$ and a finite set Z, a t-ary point-set predicate with codomain Z is a collection $\Gamma = \{\Gamma_P : P \in \mathcal{P}\}$, where $\Gamma_P : (P)_t \to Z$.
- Example: ternary predicate $\Delta = \{\Delta_P : P \in \mathcal{P}\}$ with codomain $\{-, +\}$.

We say that Γ encodes the order types if whenever there is a bijection $f : P \to Q$ such that $\Gamma_P(p_1, \ldots, p_t) = \Gamma_Q(f(p_1), \ldots, f(p_t))$ for every $(p_1, \ldots, p_t) \in (P)_t$, then P and Q have the same order type via f.

- For $n \in \mathbb{N}$, there are $2^{\Theta(n^3)}$ ternary functions $f : ([n])_3 \to \{-, +\}$, but only $2^{\Theta(n \log n)}$ order types of point sets of size n.
- Is the encoding by Δ effective? Is it possible to use a binary predicate?
Locally consistent predicates

A binary predicate that encodes the order types exists. (Felsner, 1997). However, unlike Δ, this predicate does not behave locally.

Is there a binary predicate that encodes order types and behaves locally?

A binary predicate Γ is locally consistent on $P \in \mathcal{P}$ if, for any distinct subsets $\{a_1, a_2, a_3\}$ and $\{b_1, b_2, b_3\}$ of P, having $\Gamma_P(a_i, a_j) = \Gamma_P(b_i, b_j)$ for every $(i, j) \in \{3\}^2$ implies $\Delta_P(a_1, a_2, a_3) = \Delta_P(b_1, b_2, b_3)$.

Theorem 2
For every finite set Z, there is a point set $P = P(Z)$ such that no binary predicate with codomain Z is locally consistent on P.

The proof is based on Theorem 1.
Locally consistent predicates

- A binary predicate that encodes the order types exists. (Felsner, 1997).
Locally consistent predicates

- A binary predicate that encodes the order types exists. (Felsner, 1997).
- However, unlike Δ, this predicate does not behave locally.
Locally consistent predicates

- A binary predicate that encodes the order types exists. (Felsner, 1997).
- However, unlike Δ, this predicate does not behave locally.
- Is there a binary predicate that encodes order types and behaves locally?
Locally consistent predicates

- A binary predicate that encodes the order types exists. (Felsner, 1997).
- However, unlike Δ, this predicate does not behave locally.
- Is there a binary predicate that encodes order types and behaves locally?

- A binary predicate Γ is locally consistent on $P \in \mathcal{P}$ if, for any distinct subsets $\{a_1, a_2, a_3\}$ and $\{b_1, b_2, b_3\}$ of P, having $\Gamma_P(a_i, a_j) = \Gamma_P(b_i, b_j)$ for every $(i, j) \in ([3])_2$ implies $\Delta_P(a_1, a_2, a_3) = \Delta_P(b_1, b_2, b_3)$.
Locally consistent predicates

- A binary predicate that encodes the order types exists. (Felsner, 1997).
- However, unlike Δ, this predicate does not behave locally.
- Is there a binary predicate that encodes order types and behaves locally?
- A binary predicate Γ is locally consistent on $P \in \mathcal{P}$ if, for any distinct subsets $\{a_1, a_2, a_3\}$ and $\{b_1, b_2, b_3\}$ of P, having $\Gamma_P(a_i, a_j) = \Gamma_P(b_i, b_j)$ for every $(i, j) \in ([3])_2$ implies $\Delta_P(a_1, a_2, a_3) = \Delta_P(b_1, b_2, b_3)$.

Theorem 2

For every finite set Z, there is a point set $P = P(Z)$ such that no binary predicate with codomain Z is locally consistent on P.
Locally consistent predicates

- A binary predicate that encodes the order types exists. (Felsner, 1997).
- However, unlike Δ, this predicate does not behave locally.
- Is there a binary predicate that encodes order types and behaves locally?

A binary predicate Γ is **locally consistent on** $P \in \mathcal{P}$ if, for any distinct subsets $\{a_1, a_2, a_3\}$ and $\{b_1, b_2, b_3\}$ of P, having $\Gamma_P(a_i, a_j) = \Gamma_P(b_i, b_j)$ for every $(i, j) \in ([3])_2$ implies $\Delta_P(a_1, a_2, a_3) = \Delta_P(b_1, b_2, b_3)$.

Theorem 2

For every finite set Z, there is a point set $P = P(Z)$ such that no binary predicate with codomain Z is locally consistent on P.

- The proof is based on Theorem 1.
Locally consistent predicates

- A binary predicate that encodes the order types exists. (Felsner, 1997).
- However, unlike Δ, this predicate does not behave locally.
- Is there a binary predicate that encodes order types and behaves locally?

A binary predicate Γ is **locally consistent on** $P \in \mathcal{P}$ if, for any distinct subsets $\{a_1, a_2, a_3\}$ and $\{b_1, b_2, b_3\}$ of P, having $\Gamma_P(a_i, a_j) = \Gamma_P(b_i, b_j)$ for every $(i, j) \in \binom{[3]}{2}$ implies $\Delta_P(a_1, a_2, a_3) = \Delta_P(b_1, b_2, b_3)$.

Theorem 2

For every finite set Z, there is a point set $P = P(Z)$ such that no binary predicate with codomain Z is locally consistent on P.

- The proof is based on Theorem 1.
What can we encode with locally consistent predicates?

Codomains of size only 2 are already sufficient to encode exponentially many order types of point sets of size n for every $n \in \mathbb{N}$.

Proposition 1
The order types of wheel sets can be encoded with a binary predicate Φ with codomain $\{-, +\}$ such that Φ is locally consistent on all wheel sets.
What can we encode with locally consistent predicates?
What can we encode with locally consistent predicates?

Codomains of size only 2 are already sufficient to encode exponentially many order types of point sets of size n for every $n \in \mathbb{N}$.
What can we encode with locally consistent predicates?
Codomains of size only 2 are already sufficient to encode exponentially many order types of point sets of size n for every $n \in \mathbb{N}$.

Proposition 1
The order types of wheel sets can be encoded with a binary predicate Φ with codomain $\{-, +\}$ such that Φ is locally consistent on all wheel sets.
Encoding wheel sets

- What can we encode with locally consistent predicates?
- Codomains of size only 2 are already sufficient to encode exponentially many order types of point sets of size n for every $n \in \mathbb{N}$.

Proposition 1

The order types of wheel sets can be encoded with a binary predicate Φ with codomain $\{-, +\}$ such that Φ is locally consistent on all wheel sets.
Let $h(k)$ be the largest integer such that there is a binary predicate with codomain of size k that is locally consistent on all point sets of size $h(k)$ and that encodes their order types. By Theorem 2, $h(k)$ is finite for every $k \in \mathbb{N}$.

We show a superlinear lower bound on $h(k)$.

Proposition 2

We have $h(k) \geq c \cdot k^{3/2}$ for some constant $c > 0$.

The proof is based on Lovász’s Local Lemma and the fact that there are $2^{O(k \log k)}$ order types of point sets of size k.

Question 1

What is the growth rate of $h(k)$?
Let \(h(k) \) be the largest integer such that there is a binary predicate with codomain of size \(k \) that is locally consistent on all point sets of size \(h(k) \) and that encodes their order types.

By Theorem 2, \(h(k) \) is finite for every \(k \in \mathbb{N} \).

We show a superlinear lower bound on \(h(k) \).

Proposition 2

We have \(h(k) \geq c \cdot k^{3/2} \) for some constant \(c > 0 \).

The proof is based on Lovász's Local Lemma and the fact that there are \(2^{O(k \log k)} \) order types of point sets of size \(k \).

Question 1

What is the growth rate of \(h(k) \)?
Let $h(k)$ be the largest integer such that there is a binary predicate with codomain of size k that is locally consistent on all point sets of size $h(k)$ and that encodes their order types.

By Theorem 2, $h(k)$ is finite for every $k \in \mathbb{N}$.
Let $h(k)$ be the largest integer such that there is a binary predicate with codomain of size k that is locally consistent on all point sets of size $h(k)$ and that encodes their order types.

By Theorem 2, $h(k)$ is finite for every $k \in \mathbb{N}$.

We show a superlinear lower bound on $h(k)$.
Let $h(k)$ be the largest integer such that there is a binary predicate with codomain of size k that is locally consistent on all point sets of size $h(k)$ and that encodes their order types.

By Theorem 2, $h(k)$ is finite for every $k \in \mathbb{N}$.

We show a superlinear lower bound on $h(k)$.

Proposition 2

We have $h(k) \geq c \cdot k^{3/2}$ for some constant $c > 0$.
Let $h(k)$ be the largest integer such that there is a binary predicate with codomain of size k that is locally consistent on all point sets of size $h(k)$ and that encodes their order types.

By Theorem 2, $h(k)$ is finite for every $k \in \mathbb{N}$.

We show a superlinear lower bound on $h(k)$.

Proposition 2

We have $h(k) \geq c \cdot k^{3/2}$ for some constant $c > 0$.

The proof is based on Lovász’s Local Lemma and the fact that there are only $2^{O(k \log k)}$ order types of point sets of size k.
Encoding small sets

- Let $h(k)$ be the largest integer such that there is a binary predicate with codomain of size k that is locally consistent on all point sets of size $h(k)$ and that encodes their order types.
- By Theorem 2, $h(k)$ is finite for every $k \in \mathbb{N}$.
- We show a superlinear lower bound on $h(k)$.

Proposition 2

We have $h(k) \geq c \cdot k^{3/2}$ for some constant $c > 0$.

- The proof is based on Lovász’s Local Lemma and the fact that there are only $2^{O(k \log k)}$ order types of point sets of size k.

Question 1

What is the growth rate of $h(k)$?
An open problem about ordered Ramsey sets

Recall that all point sets are ordered $(k, 1)$-Ramsey, but not ordered $(k, 2)$-Ramsey. Ordered (k, p)-Ramsey sets for $p \geq 3$ are caps and cups.

Signatures can be defined also for generalized point sets, where lines are replaced by pseudolines. We can thus introduce ordered (k, p)-Ramsey generalized point sets.

For $p = 1$ and $p \geq 3$, analogous results hold for generalized point sets. However, the case $p = 2$ is wide open.

Question 2

Is there a generalized point set that is not ordered $(2, 2)$-Ramsey?

Generalized point sets correspond to ordered 3-uniform hypergraphs with 8 forbidden induced sub-hypergraphs. However, known structural results do not seem to apply here.

All ordered 3-uniform hypergraphs are ordered $(2, 2)$-Ramsey (Neˇ setˇ ril and R¨ odl, 1983).

Thank you.
An open problem about ordered Ramsey sets

- Recall that all point sets are ordered \((k, 1)\)-Ramsey, but not ordered \((k, 2)\)-Ramsey. Ordered \((k, p)\)-Ramsey sets for \(p \geq 3\) are caps and cups.
An open problem about ordered Ramsey sets

- Recall that all point sets are ordered \((k, 1)\)-Ramsey, but not ordered \((k, 2)\)-Ramsey. Ordered \((k, p)\)-Ramsey sets for \(p \geq 3\) are caps and cups.
- Signatures can be defined also for generalized point sets, where lines are replaced by pseudolines. We can thus introduce ordered \((k, p)\)-Ramsey generalized point sets.
An open problem about ordered Ramsey sets

- Recall that all point sets are ordered \((k, 1)\)-Ramsey, but not ordered \((k, 2)\)-Ramsey. Ordered \((k, p)\)-Ramsey sets for \(p \geq 3\) are caps and cups.
- Signatures can be defined also for generalized point sets, where lines are replaced by pseudolines. We can thus introduce ordered \((k, p)\)-Ramsey generalized point sets.
- For \(p = 1\) and \(p \geq 3\), analogous results hold for generalized point sets. However, the case \(p = 2\) is wide open.
An open problem about ordered Ramsey sets

- Recall that all point sets are ordered \((k,1)\)-Ramsey, but not ordered \((k,2)\)-Ramsey. Ordered \((k,p)\)-Ramsey sets for \(p \geq 3\) are caps and cups.
- Signatures can be defined also for generalized point sets, where lines are replaced by pseudolines. We can thus introduce ordered \((k,p)\)-Ramsey generalized point sets.
- For \(p = 1\) and \(p \geq 3\), analogous results hold for generalized point sets. However, the case \(p = 2\) is wide open.

Question 2

Is there a generalized point set that is not ordered \((2,2)\)-Ramsey?
An open problem about ordered Ramsey sets

- Recall that all point sets are ordered \((k, 1)\)-Ramsey, but not ordered \((k, 2)\)-Ramsey. Ordered \((k, p)\)-Ramsey sets for \(p \geq 3\) are caps and cups.
- Signatures can be defined also for generalized point sets, where lines are replaced by pseudolines. We can thus introduce ordered \((k, p)\)-Ramsey generalized point sets.
- For \(p = 1\) and \(p \geq 3\), analogous results hold for generalized point sets. However, the case \(p = 2\) is wide open.

Question 2

Is there a generalized point set that is not ordered \((2, 2)\)-Ramsey?

- Generalized point sets correspond to ordered 3-uniform hypergraphs with 8 forbidden induced sub-hypergraphs. However, known structural results do not seem to apply here.
An open problem about ordered Ramsey sets

- Recall that all point sets are ordered \((k, 1)\)-Ramsey, but not ordered \((k, 2)\)-Ramsey. Ordered \((k, p)\)-Ramsey sets for \(p \geq 3\) are caps and cups.
- Signatures can be defined also for generalized point sets, where lines are replaced by pseudolines. We can thus introduce ordered \((k, p)\)-Ramsey generalized point sets.
- For \(p = 1\) and \(p \geq 3\), analogous results hold for generalized point sets. However, the case \(p = 2\) is wide open.

Question 2

Is there a generalized point set that is not ordered \((2, 2)\)-Ramsey?

- Generalized point sets correspond to ordered 3-uniform hypergraphs with 8 forbidden induced sub-hypergraphs. However, known structural results do not seem to apply here.
- All ordered 3-uniform hypergraphs are ordered \((2, 2)\)-Ramsey (Nešetřil and Rödl, 1983).
An open problem about ordered Ramsey sets

- Recall that all point sets are ordered \((k, 1)\)-Ramsey, but not ordered \((k, 2)\)-Ramsey. Ordered \((k, p)\)-Ramsey sets for \(p \geq 3\) are caps and cups.
- Signatures can be defined also for generalized point sets, where lines are replaced by pseudolines. We can thus introduce ordered \((k, p)\)-Ramsey generalized point sets.
- For \(p = 1\) and \(p \geq 3\), analogous results hold for generalized point sets. However, the case \(p = 2\) is wide open.

Question 2

Is there a generalized point set that is not ordered \((2, 2)\)-Ramsey?

- Generalized point sets correspond to ordered 3-uniform hypergraphs with 8 forbidden induced sub-hypergraphs. However, known structural results do not seem to apply here.
- All ordered 3-uniform hypergraphs are ordered \((2, 2)\)-Ramsey (Nešetřil and Rödl, 1983).

Thank you.