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Preliminaries

Theorem (Erdds, Szekeres, 1935)

For each k € N, every sufficiently large point set in general position contains k
points in convex position.

@ A k-hole in a point set S is a convex polygon with k vertices from S
and with no points of S in its interior.

e Erdds, 1978: For every k € N, does every large enough point set in
general position contain a k-hole?
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@ On the other hand, every sufficiently large point set in general position
contains a 6-hole (Gerken, 2008 and Nicolds, 2007).

e We study the existence of large holes in restricted point sets.
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Results about /-convex sets

@ The notion of /-convex polygons was introduced by Aichholzer,
Aurenhammer, Demaine, Hurtado, Ramos, Urrutia, 2012.

o Every 2-convex polygon on n vertices contains [1/n/2] vertices in
convex position.

e The notion of /-convex point sets was introduced by Aichholzer,
Aurenhammer, Hackl, Pilz, Ramos, Urrutia, Valtr, Vogtenhuber, 2014.

o Every set S of n points in general position contains a 2-convex
subset of size Q(log n) with no points of S in its interior.

e We study holes in 2-convex point sets.

Theorem

Every 2-convex point set of size n in general position has an Q(log n)-hole
and this is tight.

@ As n grows, the size of the largest hole increases.
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Thank you.



