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Preliminaries

Theorem (Erdős, Szekeres, 1935)

For each k ∈ N, every sufficiently large point set in general position contains k
points in convex position.

A k-hole in a point set S is a convex polygon with k vertices from S
and with no points of S in its interior.

Erdős, 1978: For every k ∈ N, does every large enough point set in
general position contain a k-hole?
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Sets with no large holes

No. There are arbitrarily large point sets with no 7-hole (Horton, 1983).

On the other hand, every sufficiently large point set in general position
contains a 6-hole (Gerken, 2008 and Nicolás, 2007).

We study the existence of large holes in restricted point sets.
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Results about l-convex sets

The notion of l-convex polygons was introduced by Aichholzer,
Aurenhammer, Demaine, Hurtado, Ramos, Urrutia, 2012.

Every 2-convex polygon on n vertices contains d
√

n/2e vertices in
convex position.

The notion of l-convex point sets was introduced by Aichholzer,
Aurenhammer, Hackl, Pilz, Ramos, Urrutia, Valtr, Vogtenhuber, 2014.

Every set S of n points in general position contains a 2-convex
subset of size Ω(log n) with no points of S in its interior.

We study holes in 2-convex point sets.

Theorem

Every 2-convex point set of size n in general position has an Ω(log n)-hole
and this is tight.

As n grows, the size of the largest hole increases.
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of P not containing any vertices of conv(P) except for its endpoints.
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all vertices of C1 and C3 are convex and all vertices of C2 are reflex.
Moreover, the interior of a convex polygon defined by C1, C2, or C3 does not
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Sketch of the proof I

We show: the 2-convex set S with n points has a hole of size Ω(log n).

A pocket of P(S) with log n vertices, gives us a large hole in S .

Assume that all pockets of S have less than log n vertices.

We partition the boundary into log n intervals [qi , qi+1], each with at
least n/ log2 n pockets of P(S).

If the polygon 〈q0, . . . , qlog n−1〉 is a hole in S , then we are done.
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A point p from S controls an interval [Kr ,Ks ] of pockets of S if
p sees points from distinct pockets of [Kr ,Ks ] in the
counterclockwise order,
conv(∪s

i=rKi) ∩ (S \ ∪s
i=rKi) = ∅,

conv(∪s
i=rKi ∪ {p}) ∩ (S \ ∪s

i=rKi) contains only points from a
pocket that contains p.

If an interval of pockets controlled by some point of S contains a
(suitable) (k − 1)-hole H , then H can be extended to a (suitable) k-hole.
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