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Preliminaries

Theorem (Erdés, Szekeres, 1935)

For each k € N, every sufficiently large point set in general position (no 3
points are collinear) in the plane contains k points in convex position.

e A k-hole in a point set S is a k-tuple of points from S in convex
position with no points of S in the interior of their convex hull.

e Every set of 3 points contains a 3-hole. Also, 5 points — 4-hole and 10
points — 5-hole (Harborth, 1978).
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e Every sufficiently large point set in general position contains a 6-hole
(Gerken, 2008 and Nicolas, 2007).
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e Every sufficiently large set of points in general position contains a
k-hole for k € {3,4,5,6}.

e How many k-holes do we always have?

e Let hi(n) be the minimum number of k-holes among all sets of n
points in the plane in general position.

e The following bounds are known:

hs3(n) and h4(n) are in ©(n?).

hs(n) is in Q(nlog*® n) and O(n?).

he(n) is in Q(n) and O(n?).

hi(n) = 0 for every k > 7 (Horton, 1983).

e Holes were also considered in higher dimensions.

e There are d-dimensional Horton sets not containing k-holes for
sufficiently large k = k(d) (Valtr, 1992).

e The minimum number of (d + 1)-holes (empty simplices) in an n-point
set in R¥ is in ©(n9) (Barany, Fiiredi, 1987).
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Random point sets

e Random point sets give the upper bound O(n?) on the number of
empty simplices.

e Let k be a positive integer and let K C R? be a convex body of volume
M(K) =1

o Let EH[,(n) be the expected number of k-holes in sets of n points
chosen independently and uniformly at random from K.

e Bardny and Furedi showed that

EH! 41(n) < (2d)>* - (Z)
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e We extend previous bounds to larger holes and even to islands.
e An island in a point set P is a subset Q of P with PN conv(Q) = Q.

Theorem 1

Let d > 2 and k > d + 1 be integers and let K be a convex body in R? with
Md(K) =1.If Sis a set of n > k points chosen uniformly and independently
at random from K, then the expected number of k-islands in S is at most

(o) 0 B o
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e The bound from Theorem 1 is asymptotically optimal, but the leading
constant can be improved for k-holes.

Theorem 2

Let d > 2 and k > d + 1 be integers and let K be a convex body in R9 with
Ad(K) =1.If S is a set of n > k points chosen uniformly and independently
at random from K, then the expected number EHéfk(n) of k-holes is at most

(L)) T g <O

e Theorem 2 even gives better bounds then earlier results.
o For empty simplices in RY Theorem 2 gives the estimate

EHY 4.1 (n) <2970 dl - (Z)

o For 4-holes in the plane, we get EHJ,(n) < 12n* 4 o(n?).
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e We cannot have the bound O(n9) for k-islands if k is not fixed.

Theorem 3

Let d > 2 be an integer and let K be a convex body in R? with \y(K) = 1.
Then, for every set S of n points chosen uniformly and independently at
random from K, the expected number of islands in S is in 2O(n(@= /(D)

e Theorem 1 is the first nontrivial bound for k-islands in R? for d > 2.

e In the plane, the O(n?) bound can be achieved by Horton sets
(Fabila-Monroy and Huemer, 2012).

e d-dimensional Horton sets with d > 2 do not give the O(n“) bound.

Theorem 4
Let d > 2 and k be fixed positive integers. Then every d-dimensional

Horton set H with n points contains at least Q(n™"2* "4}) k-islands in H.
If k <3-291 then H even contains at least Q(n™"2* k1) k-holes in H.
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Sketch of the proof of Theorem 1: the plane case

e We want to prove the bound O(n?) on the number of k-islands in sets
of n points in the plane.

e We assume that the drawn points are in a canonical order py, ..., px:
A = conv({p1p2ps}) is the triangle of the largest volume, p;p, is its
longest edge, points outside of A have increasing distances to the
convex hull of the previously placed points and the points inside A are
uniquely ordered.

e We draw the points in the canonical order and estimate the probability
in every step.

e We start by estimating the probability that the vertices py, po, p3 of A
with a points py, ..., p3., inside A form an island in S.
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e The probability that the drawn points in A are an island in S is at most

2/l |I,nK| ol ) ? ol lp 23
f72/\/0| a!~(/<hfaf3)! ) ( 02 ) ’ <1 -3 > dh.
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e The probability that the drawn points in A are an island in S is at most
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e Now, we just put the estimates together.

e Since,
Ea,a+3 2 Ea,a+4 2 T 2 Ea,k

the probability that k points form an island in the canonical order is

P<’“3 4 15[ 16k
s (n—k+1)2t! a1 i+1
4
< (16K 3. (k —2). .
< (16k)7 - (k= 2) (n— k + 1)k2

e The expected number of k-islands in S is then at most

n(n—1)---(n—k+1)-P/2.
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Future work

How good is the estimate?
We believe that the leading constant is optimal for empty triangles in
the plane.

We plan to improve the bounds for 4-holes.
Is there a better lower/upper bound for (d + 2)-holes?

Thank you for your attention.



