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Preliminaries

Theorem (Erdős, Szekeres, 1935)

For each k ∈ N, every sufficiently large point set in general position (no 3
points are collinear) in the plane contains k points in convex position.

• A k-hole in a point set S is a k-tuple of points from S in convex
position with no points of S in the interior of their convex hull.

• Every set of 3 points contains a 3-hole. Also, 5 points → 4-hole and 10
points → 5-hole (Harborth, 1978).
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Sets with no large holes

• Erdős, 1978: For every k ∈ N, does every large enough point set in
general position contain a k-hole?

• No. There are arbitrarily large point sets with no 7-hole (Horton, 1983).

• Every sufficiently large point set in general position contains a 6-hole
(Gerken, 2008 and Nicolás, 2007).
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• Erdős, 1978: For every k ∈ N, does every large enough point set in
general position contain a k-hole?

• No. There are arbitrarily large point sets with no 7-hole (Horton, 1983).

• Every sufficiently large point set in general position contains a 6-hole
(Gerken, 2008 and Nicolás, 2007).



Sets with no large holes
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• Erdős, 1978: For every k ∈ N, does every large enough point set in
general position contain a k-hole?

• No. There are arbitrarily large point sets with no 7-hole (Horton, 1983).

• Every sufficiently large point set in general position contains a 6-hole
(Gerken, 2008 and Nicolás, 2007).



Sets with no large holes
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Counting k-holes

• Every sufficiently large set of points in general position contains a
k-hole for k ∈ {3, 4, 5, 6}.
• How many k-holes do we always have?

• Let hk(n) be the minimum number of k-holes among all sets of n
points in the plane in general position.

• The following bounds are known:

• h3(n) and h4(n) are in Θ(n2).
• h5(n) is in Ω(n log4/5 n) and O(n2).
• h6(n) is in Ω(n) and O(n2).
• hk(n) = 0 for every k ≥ 7 (Horton, 1983).

• Holes were also considered in higher dimensions.

• There are d-dimensional Horton sets not containing k-holes for
sufficiently large k = k(d) (Valtr, 1992).

• The minimum number of (d + 1)-holes (empty simplices) in an n-point
set in Rd is in Θ(nd) (Bárány, Füredi, 1987).
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Counting k-holes

• Every sufficiently large set of points in general position contains a
k-hole for k ∈ {3, 4, 5, 6}.
• How many k-holes do we always have?

• Let hk(n) be the minimum number of k-holes among all sets of n
points in the plane in general position.

• The following bounds are known:

• h3(n) and h4(n) are in Θ(n2).
• h5(n) is in Ω(n log4/5 n) and O(n2).
• h6(n) is in Ω(n) and O(n2).
• hk(n) = 0 for every k ≥ 7 (Horton, 1983).

• Holes were also considered in higher dimensions.

• There are d-dimensional Horton sets not containing k-holes for
sufficiently large k = k(d) (Valtr, 1992).

• The minimum number of (d + 1)-holes (empty simplices) in an n-point
set in Rd is in Θ(nd) (Bárány, Füredi, 1987).
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Random point sets

• Random point sets give the upper bound O(nd) on the number of
empty simplices.

• Let k be a positive integer and let K ⊆ Rd be a convex body of volume
λd(K ) = 1.

• Let EHK
d ,k(n) be the expected number of k-holes in sets of n points

chosen independently and uniformly at random from K .

• Bárány and Füredi showed that

EHK
d ,d+1(n) ≤ (2d)2d2 ·

(
n

d

)
.
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Our results I

• We extend previous bounds to larger holes and even to islands.

• An island in a point set P is a subset Q of P with P ∩ conv(Q) = Q.

Theorem 1

Let d ≥ 2 and k ≥ d + 1 be integers and let K be a convex body in Rd with
λd(K ) = 1. If S is a set of n ≥ k points chosen uniformly and independently
at random from K , then the expected number of k-islands in S is at most

2d−1 ·
(

2d2d−1

(
k

bd/2c

))k−d−1

· (k − d) · n(n − 1) · · · (n − k + 2)

(n − k + 1)k−d−1
∈ O(nd).
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Our results II

• The bound from Theorem 1 is asymptotically optimal, but the leading
constant can be improved for k-holes.

Theorem 2

Let d ≥ 2 and k ≥ d + 1 be integers and let K be a convex body in Rd with
λd(K ) = 1. If S is a set of n ≥ k points chosen uniformly and independently
at random from K , then the expected number EHK

d ,k(n) of k-holes is at most

2d−1 ·
(

2d2d−1

(
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bd/2c

))k−d−1

· n(n − 1) · · · (n − k + 2)

(k − d − 1)! · (n − k + 1)k−d−1
∈ O(nd).

• Theorem 2 even gives better bounds then earlier results.
◦ For empty simplices in Rd Theorem 2 gives the estimate

EHK
d ,d+1(n) ≤ 2d−1 · d ! ·

(
n

d

)
.

◦ For 4-holes in the plane, we get EHK
2,4(n) ≤ 12n2 + o(n2).
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d ,k(n) of k-holes is at most

2d−1 ·
(

2d2d−1

(
k

bd/2c

))k−d−1

· n(n − 1) · · · (n − k + 2)

(k − d − 1)! · (n − k + 1)k−d−1
∈ O(nd).

• Theorem 2 even gives better bounds then earlier results.
◦ For empty simplices in Rd Theorem 2 gives the estimate

EHK
d ,d+1(n) ≤ 2d−1 · d ! ·

(
n

d

)
.

◦ For 4-holes in the plane, we get EHK
2,4(n) ≤ 12n2 + o(n2).
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Our results III

• We cannot have the bound O(nd) for k-islands if k is not fixed.

Theorem 3

Let d ≥ 2 be an integer and let K be a convex body in Rd with λd(K ) = 1.
Then, for every set S of n points chosen uniformly and independently at
random from K , the expected number of islands in S is in 2Θ(n(d−1)/(d+1)).

• Theorem 1 is the first nontrivial bound for k-islands in Rd for d > 2.

• In the plane, the O(n2) bound can be achieved by Horton sets
(Fabila-Monroy and Huemer, 2012).

• d-dimensional Horton sets with d > 2 do not give the O(nd) bound.

Theorem 4

Let d ≥ 2 and k be fixed positive integers. Then every d-dimensional
Horton set H with n points contains at least Ω(nmin{2d−1,k}) k-islands in H .
If k ≤ 3 · 2d−1, then H even contains at least Ω(nmin{2d−1,k}) k-holes in H .
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Sketch of the proof of Theorem 1: the plane case

• We want to prove the bound O(n2) on the number of k-islands in sets
of n points in the plane.

• We assume that the drawn points are in a canonical order p1, . . . , pk :
∆ = conv({p1p2p3}) is the triangle of the largest volume, p1p2 is its
longest edge, points outside of ∆ have increasing distances to the
convex hull of the previously placed points and the points inside ∆ are
uniquely ordered.

• We draw the points in the canonical order and estimate the probability
in every step.

• We start by estimating the probability that the vertices p1, p2, p3 of ∆
with a points p4, . . . , p3+a inside ∆ form an island in S .
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Sketch of the proof of Theorem 1: the plane case

• The probability that the drawn points in ∆ are an island in S is at most∫ 2/|I0|
−2/|I0|

|Ih∩K |
a!·(k−a−3)!

·
(
|I0|·|h|

2

)a
·
(

1− |I0|·|h|
2

)n−a−3

dh.
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• The probability that the drawn points in ∆ are an island in S is at most

4

(n − k + 1)a+1
.



Sketch of the proof of Theorem 1: the plane case

• For i = a + 3, . . . , k , let Ea,i be the event that {p1, . . . , pi} is an island
in S . We estimate the probability Pr[Ea,i | Ea,i−1].

Pr[Ea,i | Ea,i−1] ≤ 16k

n − i + 1
.
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Sketch of the proof of Theorem 1: the plane case

• Now, we just put the estimates together.

• Since,
Ea,a+3 ⊇ Ea,a+4 ⊇ · · · ⊇ Ea,k

the probability that k points form an island in the canonical order is

P ≤
k−3∑
a=0

4

(n − k + 1)a+1
·

k∏
i=a+4

16k

n − i + 1

≤ (16k)k−3 · (k − 2) · 4

(n − k + 1)k−2
.

• The expected number of k-islands in S is then at most

n(n − 1) · · · (n − k + 1) · P/2.
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Future work

• How good is the estimate?

• We believe that the leading constant is optimal for empty triangles in
the plane.

• We plan to improve the bounds for 4-holes.

• Is there a better lower/upper bound for (d + 2)-holes?

Thank you for your attention.
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