Bounding the pseudolinear crossing number of K_n via simulated annealing

Martin Balko, and Jan Kynčl

Charles University in Prague, Czech Republic

July 1, 2015

• In a drawing of a graph, vertices are points in the plane and edges are simple continuous arcs.

- In a drawing of a graph, vertices are points in the plane and edges are simple continuous arcs.
- Forbidden:

- In a drawing of a graph, vertices are points in the plane and edges are simple continuous arcs.
- Forbidden:

vertices

- In a drawing of a graph, vertices are points in the plane and edges are simple continuous arcs.
- Forbidden:

- In a drawing of a graph, vertices are points in the plane and edges are simple continuous arcs.
- Forbidden:

- In a drawing of a graph, vertices are points in the plane and edges are simple continuous arcs.
- Forbidden:

- In a drawing of a graph, vertices are points in the plane and edges are simple continuous arcs.
- Forbidden:

• A drawing is pseudolinear if its edges can be extended to form an arrangement of pseudolines.

- In a drawing of a graph, vertices are points in the plane and edges are simple continuous arcs.
- Forbidden:

- A drawing is pseudolinear if its edges can be extended to form an arrangement of pseudolines.
- A drawing is rectilinear if its edges are straight line segments.

- In a drawing of a graph, vertices are points in the plane and edges are simple continuous arcs.
- Forbidden:

- A drawing is pseudolinear if its edges can be extended to form an arrangement of pseudolines.
- A drawing is rectilinear if its edges are straight line segments.
- Every rectilinear drawing is pseudolinear.

- In a drawing of a graph, vertices are points in the plane and edges are simple continuous arcs.
- Forbidden:

- A drawing is pseudolinear if its edges can be extended to form an arrangement of pseudolines.
- A drawing is rectilinear if its edges are straight line segments.
- Every rectilinear drawing is pseudolinear.
- We assume that all pseudolinear drawings are *x*-monotone.

• Let G be a graph and D be its drawing.

- Let G be a graph and D be its drawing.
- ullet A crossing in D is a common interior point of two edges in D.

- Let G be a graph and D be its drawing.
- ullet A crossing in D is a common interior point of two edges in D.
- Let cr(D) be the number of crossings in D.

- Let G be a graph and D be its drawing.
- ullet A crossing in D is a common interior point of two edges in D.
- Let cr(D) be the number of crossings in D.

- Let G be a graph and D be its drawing.
- ullet A crossing in D is a common interior point of two edges in D.
- Let cr(D) be the number of crossings in D.

- Let G be a graph and D be its drawing.
- ullet A crossing in D is a common interior point of two edges in D.
- Let cr(D) be the number of crossings in D.

• Pseudolinear crossing number $\widetilde{cr}(G)$ is min cr(D) over pseudolinear D.

- Let G be a graph and D be its drawing.
- ullet A crossing in D is a common interior point of two edges in D.
- Let cr(D) be the number of crossings in D.

- Pseudolinear crossing number $\widetilde{cr}(G)$ is min cr(D) over pseudolinear D.
- Rectilinear crossing number $\overline{cr}(G)$ is min cr(D) over rectilinear D.

- Let G be a graph and D be its drawing.
- A crossing in *D* is a common interior point of two edges in *D*.
- Let cr(D) be the number of crossings in D.

- Pseudolinear crossing number $\widetilde{cr}(G)$ is min cr(D) over pseudolinear D.
- Rectilinear crossing number $\overline{cr}(G)$ is min cr(D) over rectilinear D.
- We have $\widetilde{\operatorname{cr}}(G) \leq \overline{\operatorname{cr}}(G)$ for every G.

Problem

Problem

What are the leading constants in $\widetilde{cr}(K_n)$ and $\overline{cr}(K_n)$?

• The current best lower bound: $\overline{\operatorname{cr}}(K_n) \geq \widetilde{\operatorname{cr}}(K_n) > 0.379972\binom{n}{4} - O(n^3)$ [Ábrego, Cetina, Fernández-Merchant, Leaños, Salazar (2012)]

Problem

- The current best lower bound: $\overline{\operatorname{cr}}(K_n) \geq \widetilde{\operatorname{cr}}(K_n) > 0.379972\binom{n}{4} O(n^3)$ [Ábrego, Cetina, Fernández-Merchant, Leaños, Salazar (2012)]
- Bounding $\overline{\operatorname{cr}}(K_n)$ from above has attracted a lot of attention.

Problem

- The current best lower bound: $\overline{\operatorname{cr}}(K_n) \geq \widetilde{\operatorname{cr}}(K_n) > 0.379972\binom{n}{4} O(n^3)$ [Ábrego, Cetina, Fernández-Merchant, Leaños, Salazar (2012)]
- Bounding $\overline{\operatorname{cr}}(K_n)$ from above has attracted a lot of attention.
 - $\overline{\operatorname{cr}}(K_n) < 0.380559\binom{n}{4} + O(n^3)$ [Ábrego, Fernández-Merchant (2007)]

Problem

- The current best lower bound: $\overline{\operatorname{cr}}(K_n) \geq \widetilde{\operatorname{cr}}(K_n) > 0.379972\binom{n}{4} O(n^3)$ [Ábrego, Cetina, Fernández-Merchant, Leaños, Salazar (2012)]
- Bounding $\overline{\operatorname{cr}}(K_n)$ from above has attracted a lot of attention.
 - $\overline{\operatorname{cr}}(K_n) < 0.380559 \binom{n}{4} + O(n^3)$ [Ábrego, Fernández-Merchant (2007)]
 - $\overline{\operatorname{cr}}(K_n) < 0.380488 \binom{n}{4} + O(n^3)$ [Ábrego, Cetina, Fernández-Merchant, Leaños, Salazar (2010)]

Problem

- The current best lower bound: $\overline{\operatorname{cr}}(K_n) \geq \widetilde{\operatorname{cr}}(K_n) > 0.379972\binom{n}{4} O(n^3)$ [Ábrego, Cetina, Fernández-Merchant, Leaños, Salazar (2012)]
- Bounding $\overline{\operatorname{cr}}(K_n)$ from above has attracted a lot of attention.
 - $\overline{\operatorname{cr}}(K_n) < 0.380559 \binom{n}{4} + O(n^3)$ [Ábrego, Fernández-Merchant (2007)]
 - $\overline{\operatorname{cr}}(K_n) < 0.380488\binom{n}{4} + O(n^3)$ [Ábrego, Cetina, Fernández-Merchant, Leaños, Salazar (2010)]
 - $\overline{\operatorname{cr}}(K_n) < 0.380473\binom{n}{4} + O(n^3)$ [Fabila-Monroy, López (2014)]

Problem

- The current best lower bound: $\overline{\operatorname{cr}}(K_n) \geq \widetilde{\operatorname{cr}}(K_n) > 0.379972\binom{n}{4} O(n^3)$ [Ábrego, Cetina, Fernández-Merchant, Leaños, Salazar (2012)]
- Bounding $\overline{\operatorname{cr}}(K_n)$ from above has attracted a lot of attention.
 - $\overline{\operatorname{cr}}(K_n) < 0.380559 \binom{n}{4} + O(n^3)$ [Ábrego, Fernández-Merchant (2007)]
 - $\overline{\operatorname{cr}}(K_n) < 0.380488\binom{n}{4} + O(n^3)$ [Ábrego, Cetina, Fernández-Merchant, Leaños, Salazar (2010)]
 - $\overline{\text{cr}}(K_n) < 0.380473\binom{n}{4} + O(n^3)$ [Fabila-Monroy, López (2014)]
- All upper bounds on $\widetilde{\operatorname{cr}}(K_n)$ follow from upper bounds on $\overline{\operatorname{cr}}(K_n)$.

Theorem

$$\widetilde{\mathrm{cr}}(K_n) < 0.380448 \binom{n}{4} + O(n^3).$$

Theorem

$$\widetilde{\mathrm{cr}}(K_n) < 0.380448 \binom{n}{4} + O(n^3).$$

Theorem

$$\widetilde{\operatorname{cr}}(K_n) < 0.380448 \binom{n}{4} + O(n^3).$$

Theorem

$$\widetilde{\operatorname{cr}}(K_n) < 0.380448 \binom{n}{4} + O(n^3).$$

Theorem

$$\widetilde{\operatorname{cr}}(K_n) < 0.380448 \binom{n}{4} + O(n^3).$$

Representation of pseudolinear drawings of K_n I

• An *n*-signature is a function $\sigma: \binom{[n]}{3} \to \{+, -\}$.

- An *n*-signature is a function $\sigma: \binom{[n]}{3} \to \{+, -\}$.
- An *n*-signature σ is realized by a pseudolinear drawing D of K_n if

- An *n*-signature is a function $\sigma: \binom{[n]}{3} \to \{+, -\}$.
- ullet An *n*-signature σ is realized by a pseudolinear drawing D of K_n if

- An *n*-signature is a function $\sigma: \binom{[n]}{3} \to \{+, -\}$.
- An *n*-signature σ is realized by a pseudolinear drawing D of K_n if

- An *n*-signature is a function $\sigma: \binom{[n]}{3} \to \{+, -\}$.
- An *n*-signature σ is realized by a pseudolinear drawing D of K_n if

• An *n*-signature σ is realizable, if there is a pseudolinear D realizing σ .

- An *n*-signature is a function $\sigma: \binom{[n]}{3} \to \{+, -\}$.
- An *n*-signature σ is realized by a pseudolinear drawing D of K_n if

- An *n*-signature σ is realizable, if there is a pseudolinear D realizing σ .
- For $1 \le i < j < k < l \le n$, the form of the 4-tuple $\{i, j, k, l\}$ in σ is

$$\sigma(i,j,k)\sigma(i,j,l)\sigma(i,k,\ell)\sigma(j,k,l)$$

- An *n*-signature is a function $\sigma: \binom{[n]}{3} \to \{+, -\}$.
- An *n*-signature σ is realized by a pseudolinear drawing D of K_n if

- An *n*-signature σ is realizable, if there is a pseudolinear D realizing σ .
- For $1 \le i < j < k < l \le n$, the form of the 4-tuple $\{i, j, k, l\}$ in σ is

$$\sigma(i,j,k)\sigma(i,j,l)\sigma(i,k,\ell)\sigma(j,k,l)$$

- An *n*-signature is a function $\sigma: \binom{[n]}{3} \to \{+, -\}$.
- An *n*-signature σ is realized by a pseudolinear drawing D of K_n if

- An *n*-signature σ is realizable, if there is a pseudolinear D realizing σ .
- For $1 \le i < j < k < l \le n$, the form of the 4-tuple $\{i, j, k, l\}$ in σ is

$$\sigma(i,j,k)\sigma(i,j,l)\sigma(i,k,\ell)\sigma(j,k,l)$$

- An *n*-signature is a function $\sigma: \binom{[n]}{3} \to \{+, -\}$.
- An *n*-signature σ is realized by a pseudolinear drawing D of K_n if

- An *n*-signature σ is realizable, if there is a pseudolinear D realizing σ .
- For $1 \le i < j < k < l \le n$, the form of the 4-tuple $\{i, j, k, l\}$ in σ is

$$\sigma(i,j,k)\sigma(i,j,l)\sigma(i,k,\ell)\sigma(j,k,l)$$

- An *n*-signature is a function $\sigma: \binom{[n]}{3} \to \{+, -\}$.
- An *n*-signature σ is realized by a pseudolinear drawing D of K_n if

- An *n*-signature σ is realizable, if there is a pseudolinear D realizing σ .
- For $1 \le i < j < k < l \le n$, the form of the 4-tuple $\{i, j, k, l\}$ in σ is

$$\sigma(i,j,k)\sigma(i,j,l)\sigma(i,k,\ell)\sigma(j,k,l)$$

- An *n*-signature is a function $\sigma: \binom{[n]}{3} \to \{+, -\}$.
- An *n*-signature σ is realized by a pseudolinear drawing D of K_n if

- An *n*-signature σ is realizable, if there is a pseudolinear D realizing σ .
- For $1 \le i < j < k < l \le n$, the form of the 4-tuple $\{i, j, k, l\}$ in σ is

$$\sigma(i,j,k)\sigma(i,j,l)\sigma(i,k,\ell)\sigma(j,k,l)$$

- An *n*-signature is a function $\sigma: \binom{[n]}{3} \to \{+, -\}$.
- An *n*-signature σ is realized by a pseudolinear drawing D of K_n if

- An *n*-signature σ is realizable, if there is a pseudolinear D realizing σ .
- For $1 \le i < j < k < l \le n$, the form of the 4-tuple $\{i, j, k, l\}$ in σ is

$$\sigma(i,j,k)\sigma(i,j,l)\sigma(i,k,\ell)\sigma(j,k,l)$$

- An *n*-signature is a function $\sigma: \binom{[n]}{3} \to \{+, -\}$.
- An *n*-signature σ is realized by a pseudolinear drawing D of K_n if

- An *n*-signature σ is realizable, if there is a pseudolinear D realizing σ .
- For $1 \le i < j < k < l \le n$, the form of the 4-tuple $\{i, j, k, l\}$ in σ is

$$\sigma(i,j,k)\sigma(i,j,l)\sigma(i,k,\ell)\sigma(j,k,l)$$

Theorem [B., Fulek, Kynčl (2013)]

Theorem [B., Fulek, Kynčl (2013)]

Theorem [B., Fulek, Kynčl (2013)]

Theorem [B., Fulek, Kynčl (2013)]

• To prove the main result, we use random perturbations.

- To prove the main result, we use random perturbations.
- A switch of a sign $\sigma(i,j,k)$ is change of this sign to the opposite value.

- To prove the main result, we use random perturbations.
- A switch of a sign $\sigma(i,j,k)$ is change of this sign to the opposite value.
- Let σ_0 be a given realizable *n*-signature realized by D_{σ_0} .

- To prove the main result, we use random perturbations.
- A switch of a sign $\sigma(i,j,k)$ is change of this sign to the opposite value.
- Let σ_0 be a given realizable *n*-signature realized by D_{σ_0} .
- In step i, switch a random switchable triple in σ_{i-1} and proceed to σ_i .

- To prove the main result, we use random perturbations.
- A switch of a sign $\sigma(i, j, k)$ is change of this sign to the opposite value.
- Let σ_0 be a given realizable *n*-signature realized by D_{σ_0} .
- In step i, switch a random switchable triple in σ_{i-1} and proceed to σ_i .
 - A triple $\{i,j,k\} \in {[n] \choose 3}$ is switchable in σ_i if σ_i is realizable after the switch of $\sigma(i,j,k)$.

- To prove the main result, we use random perturbations.
- A switch of a sign $\sigma(i, j, k)$ is change of this sign to the opposite value.
- Let σ_0 be a given realizable *n*-signature realized by D_{σ_0} .
- In step *i*, switch a random switchable triple in σ_{i-1} and proceed to σ_i .
 - A triple $\{i,j,k\} \in {[n] \choose 3}$ is switchable in σ_i if σ_i is realizable after the switch of $\sigma(i,j,k)$.
 - There is always a switchable triple and all switchable triples in σ_i can be found in time O(n).

- To prove the main result, we use random perturbations.
- A switch of a sign $\sigma(i, j, k)$ is change of this sign to the opposite value.
- Let σ_0 be a given realizable *n*-signature realized by D_{σ_0} .
- In step i, switch a random switchable triple in σ_{i-1} and proceed to σ_i .
 - A triple $\{i,j,k\} \in {[n] \choose 3}$ is switchable in σ_i if σ_i is realizable after the switch of $\sigma(i,j,k)$.
 - There is always a switchable triple and all switchable triples in σ_i can be found in time O(n).
- Accept a switch with probability $\exp\{\min\{0, (\operatorname{cr}(D_{\sigma_i}) \operatorname{cr}(D_{\sigma_{i+1}}))/T_i\}\}$ depending on a parameter $T_i \in \mathbb{R}^+$.

- To prove the main result, we use random perturbations.
- A switch of a sign $\sigma(i, j, k)$ is change of this sign to the opposite value.
- Let σ_0 be a given realizable *n*-signature realized by D_{σ_0} .
- In step *i*, switch a random switchable triple in σ_{i-1} and proceed to σ_i .
 - A triple $\{i,j,k\} \in {[n] \choose 3}$ is switchable in σ_i if σ_i is realizable after the switch of $\sigma(i,j,k)$.
 - There is always a switchable triple and all switchable triples in σ_i can be found in time O(n).
- Accept a switch with probability $\exp\{\min\{0, (\operatorname{cr}(D_{\sigma_i}) \operatorname{cr}(D_{\sigma_{i+1}}))/T_i\}\}$ depending on a parameter $T_i \in \mathbb{R}^+$.
 - Use of the simulated annealing method [Kirkpatrick, Gellat, Vecchi (1983) and Černý (1985)].

New drawings of K_n

New drawings of K_n

n	Previously best	Currently best	n	Previously best	Currently best
42	40 590	40 588	73	403 180	403 166
44	49 370	49 366	74	426 398	426 391
46	59 463	59 459	76	475 773	475 758
48	71 010	71 007	77	502 011	501 997
50	84 223	84 219	78	529 278	529 242
52	99 161	99 158	79	557 741	557 723
54	115 975	115 953	80	587 280	587 251
56	134 917	134 901	81	617 930	617 908
57	145 164	145 158	83	682 976	682 958
58	156 042	156 040	84	717 276	717 222
59	167 506	167 490	85	752 971	752 963
60	179 523	179 514	86	789 911	789 892
63	219 659	219 637	87	828 125	828 107
64	234 447	234 441	88	867 887	867 862
65	249 962	249 938	89	908 940	908 914
66	266 151	266 142	90	951 379	951 323
67	283 238	283 230	91	995 478	995 430
68	301 057	301 043	92	1 040 946	1 040 897
69	319 691	319 679	93	1 087 899	1 087 843
70	339 252	339 241	94	1 136 586	1 136 565
71	359 645	359 635	96	1 238 646	1 238 490
72	380 925	380 900	99	1 404 552	1 404 386

• To bound $\widetilde{\operatorname{cr}}(K_n)$, we generalized (and implemented) the known blowing-up technique [Ábrego, Fernández-Merchant (2007)].

• To bound $\widetilde{\operatorname{cr}}(K_n)$, we generalized (and implemented) the known blowing-up technique [Ábrego, Fernández-Merchant (2007)].

Proposition

$$\operatorname{cr}(D') = 16\operatorname{cr}(D) + 2n_0\left(\left\lceil\frac{n_0}{2}\right\rceil^2 + \left\lfloor\frac{n_0}{2}\right\rfloor^2\right) - \frac{7n_0^2}{2} + \frac{5n_0}{2}.$$

• To bound $\widetilde{\operatorname{cr}}(K_n)$, we generalized (and implemented) the known blowing-up technique [Ábrego, Fernández-Merchant (2007)].

Proposition

$$\operatorname{cr}(D') = 16\operatorname{cr}(D) + 2n_0\left(\left\lceil\frac{n_0}{2}\right\rceil^2 + \left\lfloor\frac{n_0}{2}\right\rfloor^2\right) - \frac{7n_0^2}{2} + \frac{5n_0}{2}.$$

• To bound $\widetilde{\operatorname{cr}}(K_n)$, we generalized (and implemented) the known blowing-up technique [Ábrego, Fernández-Merchant (2007)].

Proposition

$$\operatorname{cr}(D') = 16\operatorname{cr}(D) + 2n_0\left(\left\lceil\frac{n_0}{2}\right\rceil^2 + \left\lfloor\frac{n_0}{2}\right\rfloor^2\right) - \frac{7n_0^2}{2} + \frac{5n_0}{2}.$$

• To bound $\widetilde{\operatorname{cr}}(K_n)$, we generalized (and implemented) the known blowing-up technique [Ábrego, Fernández-Merchant (2007)].

Proposition

Let D be a pseudolinear drawing of K_{n_0} that contains a halving matching. Then there is a pseudolinear drawing D' of K_{2n_0} that contains a halving matching and satisfies

$$\operatorname{cr}(D') = 16\operatorname{cr}(D) + 2n_0\left(\left\lceil\frac{n_0}{2}\right\rceil^2 + \left\lfloor\frac{n_0}{2}\right\rfloor^2\right) - \frac{7n_0^2}{2} + \frac{5n_0}{2}.$$

b) —

• To bound $\widetilde{\operatorname{cr}}(K_n)$, we generalized (and implemented) the known blowing-up technique [Ábrego, Fernández-Merchant (2007)].

Proposition

$$\operatorname{cr}(D') = 16\operatorname{cr}(D) + 2n_0\left(\left\lceil\frac{n_0}{2}\right\rceil^2 + \left\lfloor\frac{n_0}{2}\right\rfloor^2\right) - \frac{7n_0^2}{2} + \frac{5n_0}{2}.$$

• Using the blowing-up technique, we found a pseudolinear drawing of K_{216} with 33 260 204 crossings, which gives us the leading constant

$$\frac{120\,772\,213}{317\,447\,424}\sim \textcolor{red}{0.380448}.$$

• Using the blowing-up technique, we found a pseudolinear drawing of K_{216} with 33 260 204 crossings, which gives us the leading constant

$$\frac{120\,772\,213}{317\,447\,424}\sim 0.380448.$$

• Future work:

• Using the blowing-up technique, we found a pseudolinear drawing of K_{216} with 33 260 204 crossings, which gives us the leading constant

$$\frac{120\,772\,213}{317\,447\,424}\sim \textcolor{red}{0.380448}.$$

- Future work:
 - Further improve the bounds on $\widetilde{cr}(K_n)$.

• Using the blowing-up technique, we found a pseudolinear drawing of K_{216} with 33 260 204 crossings, which gives us the leading constant

$$\frac{120\,772\,213}{317\,447\,424}\sim 0.380448.$$

- Future work:
 - Further improve the bounds on $\widetilde{\operatorname{cr}}(K_n)$.
 - Check whether some of the new drawings are stretchable.

• Using the blowing-up technique, we found a pseudolinear drawing of K_{216} with 33 260 204 crossings, which gives us the leading constant

$$\frac{120\,772\,213}{317\,447\,424}\sim \textcolor{red}{0.380448}.$$

• Future work:

- Further improve the bounds on $\widetilde{\operatorname{cr}}(K_n)$.
- Check whether some of the new drawings are stretchable.
- Employ faster algorithms, a representation by rotation systems, and advanced annealing methods.

• Using the blowing-up technique, we found a pseudolinear drawing of K_{216} with 33 260 204 crossings, which gives us the leading constant

$$\frac{120\,772\,213}{317\,447\,424}\sim \textcolor{red}{0.380448}.$$

- Future work:
 - Further improve the bounds on $\widetilde{\operatorname{cr}}(K_n)$.
 - Check whether some of the new drawings are stretchable.
 - Employ faster algorithms, a representation by rotation systems, and advanced annealing methods.

Thank you.