The Erdős–Szekeres Theorem

Theorem (Erdős and Szekeres, 1935) For every k there is a least number $ES(k) = \binom{k+1}{2} - k$ such that every set of $ES(k) + 1$ points in the plane in general position contains k points in convex position.

A set of a points on a graph of a strictly concave function is an a-cap.

A set of u points on a graph of a strictly convex function is a u-cup.

In fact, they showed that every set of $N(a, u) + 1 = \frac{(a+u-4)(a-2)}{2} + 1$ points in general position contains either an a-cap or a u-cup and this is tight.
The Erdős–Szekeres Theorem

Theorem (Erdős and Szekeres, 1935)

For every k there is a least number $ES(k)$ such that every set of $ES(k) + 1$ points in the plane in general position contains k points in convex position.
The Erdős–Szekeres Theorem

Theorem (Erdős and Szekeres, 1935)

For every k there is a least number $ES(k)$ such that every set of $ES(k) + 1$ points in the plane in general position contains k points in convex position.
The Erdős–Szekeres Theorem

Theorem (Erdős and Szekeres, 1935)

For every k there is a least number $ES(k)$ such that every set of $ES(k) + 1$ points in the plane in general position contains k points in convex position.

$ES(4) = 4$
The Erdős–Szekeres Theorem

Theorem (Erdős and Szekeres, 1935)

For every k there is a least number $ES(k)$ such that every set of $ES(k) + 1$ points in the plane in general position contains k points in convex position.

$ES(4) = 4$

- A set of a points on a graph of a strictly concave function is an a-cap.
- A set of u points on a graph of a strictly convex function is a u-cup.
The Erdős–Szekeres Theorem

Theorem (Erdős and Szekeres, 1935)
For every k there is a least number $ES(k)$ such that every set of $ES(k) + 1$ points in the plane in general position contains k points in convex position.

$ES(4) = 4$

- A set of a points on a graph of a strictly concave function is an a-cap.
- A set of u points on a graph of a strictly convex function is a u-cup.

- In fact, they showed that every set of $N(a, u) + 1 = \left(\frac{a+u-4}{a-2}\right) + 1$ points in general position contains either an a-cap or a u-cup and this is tight.
The Erdős–Szekeres Conjecture

Trivially, we have $\text{ES}(k) \leq N(k, k) = (2k^2 - 4k - 2)$.

In 1960, Erdős and Szekeres showed $\text{ES}(k) \geq 2k - 2$ for every $k \geq 2$.

Conjecture (Erdős and Szekeres, 1935)
For every $k \geq 2$, $\text{ES}(k) = 2k - 2$.

In 2005, Tóth and Valtr showed current best upper bound $\text{ES}(k) \leq (2k^2 - 5k - 2)$.

The Erdős–Szekeres conjecture is known to hold for $k \leq 6$. For $k = 6$ it was shown by Peters and Szekeres using an exhaustive computer search.
The Erdős–Szekeres Conjecture

- Trivially, we have

\[\text{ES}(k) \leq \text{N}(k, k) = \binom{2k - 4}{k - 2}. \]
The Erdős–Szekeres Conjecture

- Trivially, we have
 \[ES(k) \leq N(k, k) = \binom{2k - 4}{k - 2}. \]

- In 1960, Erdős and Szekeres showed \(ES(k) \geq 2^{k-2} \) for every \(k \geq 2 \).
The Erdős–Szekeres Conjecture

- Trivially, we have
 \[\text{ES}(k) \leq N(k, k) = \binom{2k - 4}{k - 2}. \]

- In 1960, Erdős and Szekeres showed \(\text{ES}(k) \geq 2^{k-2} \) for every \(k \geq 2 \).

Conjecture (Erdős and Szekeres, 1935)

For every \(k \geq 2 \), \(\text{ES}(k) = 2^{k-2} \).
The Erdős–Szekeres Conjecture

- Trivially, we have

\[ES(k) \leq N(k, k) = \binom{2k - 4}{k - 2}. \]

- In 1960, Erdős and Szekeres showed \(ES(k) \geq 2^{k-2} \) for every \(k \geq 2 \).

Conjecture (Erdős and Szekeres, 1935)

For every \(k \geq 2 \), \(ES(k) = 2^{k-2} \).

- In 2005, Tóth and Valtr showed current best upper bound

\[ES(k) \leq \binom{2k - 5}{k - 2}. \]
The Erdős–Szekeres Conjecture

- Trivially, we have

\[ES(k) \leq N(k, k) = \binom{2k - 4}{k - 2}. \]

- In 1960, Erdős and Szekeres showed \(ES(k) \geq 2^{k-2} \) for every \(k \geq 2 \).

Conjecture (Erdős and Szekeres, 1935)

For every \(k \geq 2 \), \(ES(k) = 2^{k-2} \).

- In 2005, Tóth and Valtr showed current best upper bound

\[ES(k) \leq \binom{2k - 5}{k - 2}. \]

- The Erdős–Szekeres conjecture is known to hold for \(k \leq 6 \). For \(k = 6 \) it was shown by Peters and Szekeres using an exhaustive computer search.
General setting

Fox, Pach, Sudakov, and Suk introduced the following abstract setting. Let K^3_N be the complete 3-uniform hypergraph with the vertex set $[N]$. For vertices $v_1 < \cdots < v_k$ of K^3_N, the edges $\{v_1, v_2, v_3\}, \{v_2, v_3, v_4\}, \ldots, \{v_{k-2}, v_{k-1}, v_k\}$ form a (monotone) k-path.

A coloring of K^3_N assigns either a red or a blue color to every edge of K^3_N. Let $\hat{N}(a, u)$ be the maximum number N such that there is a coloring of K^3_N with no red a-path and no blue u-path.

In a coloring of triples of points according to their orientation, red and blue monotone k-paths correspond to k-caps and k-cups, respectively. A straightforward generalization of the proof of Erd˝ os and Szekeres gives $\hat{N}(a, u) = \binom{a + u - 4}{a - 2}$. \[\hat{N}(a, u) = N(a, u).\]
Fox, Pach, Sudakov, and Suk introduced the following abstract setting. Let K_{3N} be the complete 3-uniform hypergraph with the vertex set N. For vertices $v_1 < \cdots < v_k$ of K_{3N}, the edges $\{v_1, v_2, v_3\}, \{v_2, v_3, v_4\}, \ldots, \{v_{k-2}, v_{k-1}, v_k\}$ form a (monotone) k-path.

A coloring of K_{3N} assigns either a red or a blue color to every edge of K_{3N}. Let $\hat{N}(a, u)$ be the maximum number N such that there is a coloring of K_{3N} with no red a-path and no blue u-path. In a coloring of triples of points according to their orientation, red and blue monotone k-paths correspond to k-caps and k-cups, respectively. A straightforward generalization of the proof of Erdős and Szekeres gives $\hat{N}(a, u) = (a + u - 4a - 2) = N(a, u)$.
Fox, Pach, Sudakov, and Suk introduced the following abstract setting. Let \mathcal{K}_N^3 be the complete 3-uniform hypergraph with the vertex set $[N]$. For vertices $v_1 < \cdots < v_k$ of \mathcal{K}_N^3, the edges \{\(v_1, v_2, v_3\), \(v_2, v_3, v_4\), \ldots, \(v_{k-2}, v_{k-1}, v_k\)\} form a (monotone) k-path. A coloring of \mathcal{K}_N^3 assigns either a red or a blue color to every edge of \mathcal{K}_N^3. Let $\hat{N}(a, u)$ be the maximum N such that there is a coloring of \mathcal{K}_N^3 with no red a-path and no blue u-path. In a coloring of triples of points according to their orientation, red and blue monotone k-paths correspond to k-caps and k-cups, respectively. A straightforward generalization of the proof of Erdős and Szekeres gives $\hat{N}(a, u) = (a + u - 4a - 2)^{\ln 2} = N(a, u)$.
General setting

- Fox, Pach, Sudakov, and Suk introduced the following abstract setting.
- Let \mathcal{K}_N^3 be the complete 3-uniform hypergraph with the vertex set $[N]$.
- For vertices $v_1 < \cdots < v_k$ of \mathcal{K}_N^3, the edges $\{v_1, v_2, v_3\}, \{v_2, v_3, v_4\}, \ldots, \{v_{k-2}, v_{k-1}, v_k\}$ form a (monotone) k-path.
Fox, Pach, Sudakov, and Suk introduced the following abstract setting. Let \mathcal{K}_N^3 be the complete 3-uniform hypergraph with the vertex set $[N]$. For vertices $v_1 < \cdots < v_k$ of \mathcal{K}_N^3, the edges $\{v_1, v_2, v_3\}, \{v_2, v_3, v_4\}, \ldots, \{v_{k-2}, v_{k-1}, v_k\}$ form a (monotone) k-path.
Fox, Pach, Sudakov, and Suk introduced the following abstract setting.

Let \mathcal{K}_N^3 be the complete 3-uniform hypergraph with the vertex set $[N]$.

For vertices $v_1 < \cdots < v_k$ of \mathcal{K}_N^3, the edges $\{v_1, v_2, v_3\}, \{v_2, v_3, v_4\}, \ldots, \{v_{k-2}, v_{k-1}, v_k\}$ form a (monotone) k-path.

A coloring of \mathcal{K}_N^3 assigns either a red or a blue color to every edge of \mathcal{K}_N^3.

\[
\hat{N}(a, u) \leq (a + u - 4) = N(a, u).
\]
Fox, Pach, Sudakov, and Suk introduced the following abstract setting. Let K^3_N be the complete 3-uniform hypergraph with the vertex set $[N]$. For vertices $v_1 < \cdots < v_k$ of K^3_N, the edges $\{v_1, v_2, v_3\}, \{v_2, v_3, v_4\}, \ldots, \{v_{k-2}, v_{k-1}, v_k\}$ form a (monotone) k-path.

A coloring of K^3_N assigns either a red or a blue color to every edge of K^3_N. Let $\hat{N}(a, u)$ be the maximum number N such that there is a coloring of K^3_N with no red a-path and no blue u-path.
General setting

- Fox, Pach, Sudakov, and Suk introduced the following abstract setting.
- Let \mathcal{K}_N^3 be the complete 3-uniform hypergraph with the vertex set $[N]$.
- For vertices $v_1 < \cdots < v_k$ of \mathcal{K}_N^3, the edges $\{v_1, v_2, v_3\}, \{v_2, v_3, v_4\}, \ldots, \{v_{k-2}, v_{k-1}, v_k\}$ form a (monotone) k-path.

![Monotone 5-path diagram]

- A coloring of \mathcal{K}_N^3 assigns either a red or a blue color to every edge of \mathcal{K}_N^3.
- Let $\hat{N}(a, u)$ be the maximum number N such that there is a coloring of \mathcal{K}_N^3 with no red a-path and no blue u-path.
- In a coloring of triples of points according to their orientation, red and blue monotone k-paths correspond to k-caps and k-cups, respectively.
Fox, Pach, Sudakov, and Suk introduced the following abstract setting. Let K^3_N be the complete 3-uniform hypergraph with the vertex set $[N]$. For vertices $v_1 < \cdots < v_k$ of K^3_N, the edges $\{v_1, v_2, v_3\}$, $\{v_2, v_3, v_4\}$, \ldots, $\{v_{k-2}, v_{k-1}, v_k\}$ form a (monotone) k-path.

A coloring of K^3_N assigns either a red or a blue color to every edge of K^3_N. Let $\hat{N}(a, u)$ be the maximum number N such that there is a coloring of K^3_N with no red a-path and no blue u-path. In a coloring of triples of points according to their orientation, red and blue monotone k-paths correspond to k-caps and k-cups, respectively. A straightforward generalization of the proof of Erdős and Szekeres gives

$$\hat{N}(a, u) = \binom{a + u - 4}{a - 2} = N(a, u).$$
There are point sets in convex position that are not a cap nor a cup.

Every point set in convex position is a union of a cap and a cup.

Peters and Szekeres generalized the notion of convex position as follows.

A (convex) k-gon is an ordered 3-uniform hypergraph on k vertices consisting of a red and a blue monotone path that are vertex disjoint except for the common end-vertices.

There is exactly 2^{k-2} pairwise nonisomorphic k-gons.
Convexity generalized

- There are point sets in convex position that are not a cap nor a cup.
Convexity generalized

- There are point sets in convex position that are not a cap nor a cup.
- Every point set in convex position is a union of a cap and a cup.
There are point sets in convex position that are not a cap nor a cup.

Every point set in convex position is a union of a cap and a cup.
Convexity generalized

- There are point sets in convex position that are not a cap nor a cup.
- Every point set in convex position is a union of a cap and a cup.
Convexity generalized

- There are point sets in convex position that are not a cap nor a cup.
- Every point set in convex position is a union of a cap and a cup.
Convexity generalized

- There are point sets in convex position that are not a cap nor a cup.
- Every point set in convex position is a union of a cap and a cup.

- Peters and Szekeres generalized the notion of convex position as follows.
Convexity generalized

- There are point sets in convex position that are not a cap nor a cup.
- Every point set in convex position is a union of a cap and a cup.

Peters and Szekeres generalized the notion of convex position as follows.

- A (convex) k-gon is an ordered 3-uniform hypergraph on k vertices consisting of a red and a blue monotone path that are vertex disjoint except for the common end-vertices.
There are point sets in convex position that are not a cap nor a cup.

Every point set in convex position is a union of a cap and a cup.

Peters and Szekeres generalized the notion of convex position as follows.

A (convex) k-gon is an ordered 3-uniform hypergraph on k vertices consisting of a red and a blue monotone path that are vertex disjoint except for the common end-vertices.
Convexity generalized

- There are point sets in convex position that are not a cap nor a cup.
- Every point set in convex position is a union of a cap and a cup.

- Peters and Szekeres generalized the notion of convex position as follows.
 A (convex) k-gon is an ordered 3-uniform hypergraph on k vertices consisting of a red and a blue monotone path that are vertex disjoint except for the common end-vertices.

- There is exactly 2^{k-2} pairwise nonisomorphic k-gons.
The Peters–Szegeres Conjecture

For $k \geq 2$, let $\hat{ES}(k)$ be the maximum number N such that there is a coloring of K_3^N with no k-gon. By the results of Erdős and Szekeres, we have $2^k - 2 \leq \hat{ES}(k) \leq (2^k - 4)^2 - 2$.

Peters and Szekeres proved $\hat{ES}(k) = 2^k - 2$ for $k \leq 5$ using exhaustive computer search.

Conjecture (Peters and Szekeres, 2006) For every $k \geq 2$, $\hat{ES}(k) = 2^k - 2$.

As our main result we refute this conjecture.

Theorem We have $\hat{ES}(7) > 32$ and $\hat{ES}(8) > 64$.

We also tried to tackle the Erdős–Szekeres conjecture by restricting to special colorings of K_3^N, but this conjecture remains open.
The Peters–Szekeres Conjecture

- For $k \geq 2$, let $\hat{ES}(k)$ be the maximum number N such that there is a coloring of K^3_N with no k-gon.

- By the results of Erdős and Szekeres, we have $2^k - 2 \leq \hat{ES}(k) \leq (2^k - 4)^k - 2^k$.

- Peters and Szekeres proved $\hat{ES}(k) = 2^k - 2$ for $k \leq 5$ using exhaustive computer search.

- Conjecture (Peters and Szekeres, 2006) For every $k \geq 2$, $\hat{ES}(k) = 2^k - 2$.

- As our main result we refute this conjecture.

- Theorem We have $\hat{ES}(7) > 32$ and $\hat{ES}(8) > 64$.

- We also tried to tackle the Erdős–Szekeres conjecture by restricting to special colorings of K^3_N, but this conjecture remains open.
The Peters–Szekeres Conjecture

- For $k \geq 2$, let $\hat{ES}(k)$ be the maximum number N such that there is a coloring of K_3^N with no k-gon.
- By the results of Erdős and Szekeres, we have $2^{k-2} \leq \hat{ES}(k) \leq \binom{2^{k-4}}{k-2}$.
The Peters–Szekeres Conjecture

- For $k \geq 2$, let $\hat{ES}(k)$ be the maximum number N such that there is a coloring of K^3_N with no k-gon.
- By the results of Erdős and Szekeres, we have $2^{k-2} \leq \hat{ES}(k) \leq \binom{2k-4}{k-2}$.
- Peters and Szekeres proved $\hat{ES}(k) = 2^{k-2}$ for $k \leq 5$ using exhaustive computer search.
The Peters–Szekeres Conjecture

- For $k \geq 2$, let $\hat{ES}(k)$ be the maximum number N such that there is a coloring of K^3_N with no k-gon.
- By the results of Erdős and Szekeres, we have $2^{k-2} \leq \hat{ES}(k) \leq \binom{2k-4}{k-2}$.
- Peters and Szekeres proved $\hat{ES}(k) = 2^{k-2}$ for $k \leq 5$ using exhaustive computer search.

Conjecture (Peters and Szekeres, 2006)

For every $k \geq 2$, $\hat{ES}(k) = 2^{k-2}$.
The Peters–Szekeres Conjecture

- For $k \geq 2$, let $\hat{ES}(k)$ be the maximum number N such that there is a coloring of K_3^N with no k-gon.
- By the results of Erdős and Szekeres, we have $2^{k-2} \leq \hat{ES}(k) \leq \binom{2k-4}{k-2}$.
- Peters and Szekeres proved $\hat{ES}(k) = 2^{k-2}$ for $k \leq 5$ using exhaustive computer search.

Conjecture (Peters and Szekeres, 2006)

For every $k \geq 2$, $\hat{ES}(k) = 2^{k-2}$.

- As our main result we refute this conjecture.
The Peters–Szekeres Conjecture

- For $k \geq 2$, let $\hat{ES}(k)$ be the maximum number N such that there is a coloring of K^{3}_N with no k-gon.
- By the results of Erdős and Szekeres, we have $2^{k-2} \leq \hat{ES}(k) \leq (\binom{2^{k-4}}{k-2})$.
- Peters and Szekeres proved $\hat{ES}(k) = 2^{k-2}$ for $k \leq 5$ using exhaustive computer search.

Conjecture (Peters and Szekeres, 2006)

For every $k \geq 2$, $\hat{ES}(k) = 2^{k-2}$.

- As our main result we refute this conjecture.

Theorem

We have $\hat{ES}(7) > 32$ and $\hat{ES}(8) > 64$.

The Peters–Szekeres Conjecture

- For $k \geq 2$, let $\hat{ES}(k)$ be the maximum number N such that there is a coloring of \mathcal{K}_N^3 with no k-gon.
- By the results of Erdős and Szekeres, we have $2^{k-2} \leq \hat{ES}(k) \leq \binom{2k-4}{k-2}$.
- Peters and Szekeres proved $\hat{ES}(k) = 2^{k-2}$ for $k \leq 5$ using exhaustive computer search.

Conjecture (Peters and Szekeres, 2006)

For every $k \geq 2$, $\hat{ES}(k) = 2^{k-2}$.

- As our main result we refute this conjecture.

Theorem

We have $\hat{ES}(7) > 32$ and $\hat{ES}(8) > 64$.

- We also tried to tackle the Erdős–Szekeres conjecture by restricting to special colorings of \mathcal{K}_N^3, but this conjecture remains open.
The Erdős–Szekeres Conjecture revisited

In 1996, Erdős, Tuza, and Valtr refined the Erdős-Szekeres conjecture by adding a third parameter in $N(a, u, k)$. For integers a, u, k with $2 \leq a, u \leq k \leq a + u - 2$, let $N(a, u, k)$ be the maximum N such that there is a set of N points in the plane in general position with no a-cap, no u-cup, and no k points in convex position.

Conjecture (Erdős, Tuza, and Valtr, 1996)

For all integers a, u, k with $2 \leq a, u \leq k \leq a + u - 2$, we have $N(a, u, k) = u \sum_{i = k - a + 2}^{k} N(i, k + 2 - i) = u \sum_{i = k - a + 2}^{k} (k - 2i - 2)$. This conjecture is equivalent with the Erdős–Szekeres conjecture. In particular, showing $N(a, u, k) > \sum_{i = k - a + 2}^{k} (k - 2i - 2)$ for some a, u, k would refute the Erdős–Szekeres conjecture.
In 1996, Erdős, Tuza, and Valtr refined the Erdős-Szekeres conjecture by adding a third parameter in \(N(a, u) \).

This conjecture is equivalent with the Erdős–Szekeres conjecture. In particular, showing \(N(a, u, k) > \sum_{i=2}^{k-a+2} (k-2i-2) \) for some \(a, u, k \) would refute the Erdős–Szekeres conjecture.
The Erdős–Szekeres Conjecture revisited

- In 1996, Erdős, Tuza, and Valtr refined the Erdős-Szekeres conjecture by adding a third parameter in $N(a, u)$.
- For integers a, u, k with $2 \leq a, u \leq k \leq a + u - 2$, let $N(a, u, k)$ be the maximum N such that there is a set of N points in the plane in general position with no a-cap, no u-cup, and no k points in convex position.

Conjecture (Erdős, Tuza, and Valtr, 1996) For all integers a, u, k with $2 \leq a, u \leq k \leq a + u - 2$, we have

$$N(a, u, k) = u \sum_{i=k-a+2}^{k} N(i, k+2-i) = u \sum_{i=k-a+2}^{k} (k-2i-2).$$

This conjecture is equivalent with the Erdős–Szekeres conjecture. In particular, showing $N(a, u, k) > \sum_{i=k-a+2}^{k} (k-2i-2)$ for some a, u, k would refute the Erdős–Szekeres conjecture.
The Erdős–Szekeres Conjecture revisited

- In 1996, Erdős, Tuza, and Valtr refined the Erdős-Szekeres conjecture by adding a third parameter in \(N(a, u) \).
- For integers \(a, u, k \) with \(2 \leq a, u \leq k \leq a + u - 2 \), let \(N(a, u, k) \) be the maximum \(N \) such that there is a set of \(N \) points in the plane in general position with no \(a \)-cap, no \(u \)-cup, and no \(k \) points in convex position.

Conjecture (Erdős, Tuza, and Valtr, 1996)

For all integers \(a, u, k \) with \(2 \leq a, u \leq k \leq a + u - 2 \), we have

\[
N(a, u, k) = \sum_{i=k-a+2}^{u} N(i, k + 2 - i) = \sum_{i=k-a+2}^{u} \binom{k-2}{i-2}.
\]
The Erdős–Szekeres Conjecture revisited

- In 1996, Erdős, Tuza, and Valtr refined the Erdős-Szekeres conjecture by adding a third parameter in $N(a, u)$.
- For integers a, u, k with $2 \leq a, u \leq k \leq a + u - 2$, let $N(a, u, k)$ be the maximum N such that there is a set of N points in the plane in general position with no a-cap, no u-cup, and no k points in convex position.

Conjecture (Erdős, Tuza, and Valtr, 1996)

For all integers a, u, k with $2 \leq a, u \leq k \leq a + u - 2$, we have

$$N(a, u, k) = \sum_{i=k-a+2}^{u} N(i, k + 2 - i) = \sum_{i=k-a+2}^{u} \binom{k - 2}{i - 2}.$$

- This conjecture is **equivalent** with the Erdős–Szekeres conjecture.
The Erdős–Szekeres Conjecture revisited

- In 1996, Erdős, Tuza, and Valtr refined the Erdős-Szekeres conjecture by adding a third parameter in \(N(a, u)\).
- For integers \(a, u, k\) with \(2 \leq a, u \leq k \leq a + u - 2\), let \(N(a, u, k)\) be the maximum \(N\) such that there is a set of \(N\) points in the plane in general position with no \(a\)-cap, no \(u\)-cup, and no \(k\) points in convex position.

Conjecture (Erdős, Tuza, and Valtr, 1996)

For all integers \(a, u, k\) with \(2 \leq a, u \leq k \leq a + u - 2\), we have

\[
N(a, u, k) = \sum_{i=k-a+2}^{u} N(i, k + 2 - i) = \sum_{i=k-a+2}^{u} \binom{k - 2}{i - 2}.
\]

- This conjecture is equivalent with the Erdős–Szekeres conjecture.
- In particular, showing \(N(a, u, k) > \sum_{i=k-a+2}^{u} \binom{k - 2}{i - 2}\) for some \(a, u, k\) would refute the Erdős–Szekeres conjecture.
Bounds for $N(a, u, k)$

Erdős, Tuza, and Valtr showed $N(a, u, k) \geq \sum_{i=1}^{u} i = k - a + 2$ for all a, u, k with $2 \leq a, u \leq k \leq a + u - 2$.

The best known upper bound for $N(a, u, k)$ is $N(a, u, k) \leq (a + u - 4)$ obtained from $N(a, u, k) \leq N(a, u)$.

The conjecture is true for $k = a + u - 2$ and $k = a + u - 3$.

Proposition

For every integer $k \geq 3$, we have $N(4, k, k) \leq (k^2 - 1)$.
Bounds for $N(a, u, k)$

- Erdős, Tuza, and Valtr showed $N(a, u, k) \geq \sum_{i=k-a+2}^{u} \binom{k-2}{i-2}$ for all a, u, k with $2 \leq a, u \leq k \leq a + u - 2$.

Proposition

For every integer $k \geq 3$, we have $N(4, k, k) \leq \binom{k^2}{2} - 1$.

Bounds for $N(a, u, k)$

- Erdős, Tuza, and Valtr showed $N(a, u, k) \geq \sum_{i=k-a+2}^{u} \binom{k-2}{i-2}$ for all a, u, k with $2 \leq a, u \leq k \leq a + u - 2$.
- The best known upper bound for $N(a, u, k)$ is $N(a, u, k) \leq \binom{a+u-4}{a-2}$ obtained from $N(a, u, k) \leq N(a, u)$.

Proposition

For every integer $k \geq 3$, we have $N(4, k, k) \leq \frac{k^2}{2} - 1$.

Bounds for $N(a, u, k)$

- Erdős, Tuza, and Valtr showed $N(a, u, k) \geq \sum_{i=k-a+2}^{u} \binom{k-2}{i-2}$ for all a, u, k with $2 \leq a, u \leq k \leq a + u - 2$.

- The best known upper bound for $N(a, u, k)$ is $N(a, u, k) \leq \binom{a+u-4}{a-2}$ obtained from $N(a, u, k) \leq N(a, u)$.

- The conjecture is true for $k = a + u - 2$ and $k = a + u - 3$.
Bounds for $N(a, u, k)$

- Erdős, Tuza, and Valtr showed $N(a, u, k) \geq \sum_{i=k-a+2}^{u} \binom{k-2}{i-2}$ for all a, u, k with $2 \leq a, u \leq k \leq a + u - 2$.
- The best known upper bound for $N(a, u, k)$ is $N(a, u, k) \leq \binom{a+u-4}{a-2}$ obtained from $N(a, u, k) \leq N(a, u)$.
- The conjecture is true for $k = a + u - 2$ and $k = a + u - 3$.

Proposition

For every integer $k \geq 3$, we have $N(4, k, k) \leq \binom{k}{2} - 1$.
Erdős, Tuza, and Valtr showed $N(a, u, k) \geq \sum_{i=k-a+2}^{u} \binom{k-2}{i-2}$ for all a, u, k with $2 \leq a, u \leq k \leq a + u - 2$.

The best known upper bound for $N(a, u, k)$ is $N(a, u, k) \leq \binom{a+u-4}{a-2}$ obtained from $N(a, u, k) \leq N(a, u)$.

The conjecture is true for $k = a + u - 2$ and $k = a + u - 3$.

Proposition

For every integer $k \geq 3$, we have $N(4, k, k) \leq \binom{k}{2} - 1$.
Bounds for $N(a, u, k)$

- Erdős, Tuza, and Valtr showed $N(a, u, k) \geq \sum_{i=k-a+2}^{u} \binom{k-2}{i-2}$ for all a, u, k with $2 \leq a, u \leq k \leq a + u - 2$.
- The best known upper bound for $N(a, u, k)$ is $N(a, u, k) \leq \binom{a+u-4}{a-2}$ obtained from $N(a, u, k) \leq N(a, u)$.
- The conjecture is true for $k = a + u - 2$ and $k = a + u - 3$.

Proposition

For every integer $k \geq 3$, we have $N(4, k, k) \leq \binom{k}{2} - 1$.
Bounds for $N(a, u, k)$

- Erdős, Tuza, and Valtr showed $N(a, u, k) \geq \sum_{i=k-a+2}^{u} \binom{k-2}{i-2}$ for all a, u, k with $2 \leq a, u \leq k \leq a + u - 2$.
- The best known upper bound for $N(a, u, k)$ is $N(a, u, k) \leq \binom{a+u-4}{a-2}$ obtained from $N(a, u, k) \leq N(a, u)$.
- The conjecture is true for $k = a + u - 2$ and $k = a + u - 3$.

Proposition

For every integer $k \geq 3$, we have $N(4, k, k) \leq \binom{k}{2} - 1$.

![Graph](image-url)
Bounds for $N(a, u, k)$

- Erdős, Tuza, and Valtr showed $N(a, u, k) \geq \sum_{i=k-a+2}^{u} \binom{k-2}{i-2}$ for all a, u, k with $2 \leq a, u \leq k \leq a + u - 2$.
- The best known upper bound for $N(a, u, k)$ is $N(a, u, k) \leq \binom{a+u-4}{a-2}$ obtained from $N(a, u, k) \leq N(a, u)$.
- The conjecture is true for $k = a + u - 2$ and $k = a + u - 3$.

Proposition

For every integer $k \geq 3$, we have $N(4, k, k) \leq \binom{k}{2} - 1$.
Bounds for $N(a, u, k)$

- Erdős, Tuza, and Valtr showed $N(a, u, k) \geq \sum_{i=k-a+2}^{u} \binom{k-2}{i-2}$ for all a, u, k with $2 \leq a, u \leq k \leq a + u - 2$.
- The best known upper bound for $N(a, u, k)$ is $N(a, u, k) \leq \binom{a+u-4}{a-2}$ obtained from $N(a, u, k) \leq N(a, u)$.
- The conjecture is true for $k = a + u - 2$ and $k = a + u - 3$.

Proposition

For every integer $k \geq 3$, we have $N(4, k, k) \leq \binom{k}{2} - 1$.
Bounds for $N(a, u, k)$

- Erdős, Tuza, and Valtr showed $N(a, u, k) \geq \sum_{i=\frac{k-a+2}{2}}^{u} \binom{k-2}{i-2}$ for all a, u, k with $2 \leq a, u \leq k \leq a + u - 2$.
- The best known upper bound for $N(a, u, k)$ is $N(a, u, k) \leq \binom{a+u-4}{a-2}$ obtained from $N(a, u, k) \leq N(a, u)$.
- The conjecture is true for $k = a + u - 2$ and $k = a + u - 3$.

Proposition

For every integer $k \geq 3$, we have $N(4, k, k) \leq \binom{k}{2} - 1$.
Bounds for $N(a, u, k)$

- Erdős, Tuza, and Valtr showed $N(a, u, k) \geq \sum_{i=k-a+2}^{u} \binom{k-2}{i-2}$ for all a, u, k with $2 \leq a, u \leq k \leq a + u - 2$.
- The best known upper bound for $N(a, u, k)$ is $N(a, u, k) \leq \binom{a+u-4}{a-2}$ obtained from $N(a, u, k) \leq N(a, u)$.
- The conjecture is true for $k = a + u - 2$ and $k = a + u - 3$.

Proposition

For every integer $k \geq 3$, we have $N(4, k, k) \leq \binom{k}{2} - 1$.
Bounds for $N(a, u, k)$

- Erdős, Tuza, and Valtr showed $N(a, u, k) \geq \sum_{i=k-a+2}^{u} \binom{k-2}{i-2}$ for all a, u, k with $2 \leq a, u \leq k \leq a + u - 2$.
- The best known upper bound for $N(a, u, k)$ is $N(a, u, k) \leq \binom{a+u-4}{a-2}$ obtained from $N(a, u, k) \leq N(a, u)$.
- The conjecture is true for $k = a + u - 2$ and $k = a + u - 3$.

Proposition

For every integer $k \geq 3$, we have $N(4, k, k) \leq \binom{k}{2} - 1$.
We find an analogous refinement for the Peters–Szekeres conjecture. For integers \(a, u, k\) with \(2 \leq a, u \leq k \leq a + u - 2\), let \(\hat{N}(a, u, k)\) be the maximum number \(N\) such that there is a coloring of \(K_3^N\) with no red \(a\)-path, no blue \(u\)-path, and no \(k\)-gon.

Lemma

The following statement is equivalent with the Peters–Szekeres conjecture. For all integers \(a, u, k\) with \(2 \leq a, u \leq k \leq a + u - 2\), we have

\[
\hat{N}(a, u, k) = u \sum_{i = k - a + 2} \hat{N}(i, k + 2 - i).
\]

This allows us to employ computer experiments for larger values of \(k\).
We find an analogous refinement for the Peters–Szekeres conjecture.
We find an analogous refinement for the Peters–Szekeres conjecture.

For integers a, u, k with $2 \leq a, u \leq k \leq a + u - 2$, let $\hat{N}(a, u, k)$ be the maximum number N such that there is a coloring of K^3_N with no red a-path, no blue u-path, and no k-gon.
The Peters–Szekeres conjecture revisited

- We find an analogous refinement for the Peters–Szekeres conjecture.
- For integers a, u, k with $2 \leq a, u \leq k \leq a + u - 2$, let $\hat{N}(a, u, k)$ be the maximum number N such that there is a coloring of K_{3N} with no red a-path, no blue u-path, and no k-gon.

Lemma

The following statement is equivalent with the Peters–Szekeres conjecture. For all integers a, u, k with $2 \leq a, u \leq k \leq a + u - 2$, we have

$$\hat{N}(a, u, k) = \sum_{i=k-a+2}^{u} \hat{N}(i, k + 2 - i) = \sum_{i=k-a+2}^{u} \binom{k-2}{i-2}.$$
The Peters–Szekeres conjecture revisited

- We find an analogous refinement for the Peters–Szekeres conjecture.
- For integers \(a, u, k\) with \(2 \leq a, u \leq k \leq a + u - 2\), let \(\hat{N}(a, u, k)\) be the maximum number \(N\) such that there is a coloring of \(K^3_N\) with no red \(a\)-path, no blue \(u\)-path, and no \(k\)-gon.

Lemma

The following statement is equivalent with the Peters–Szekeres conjecture. For all integers \(a, u, k\) with \(2 \leq a, u \leq k \leq a + u - 2\), we have

\[
\hat{N}(a, u, k) = \sum_{i=k-a+2}^{u} \hat{N}(i, k + 2 - i) = \sum_{i=k-a+2}^{u} \binom{k-2}{i-2}.
\]

- This allows us to employ computer experiments for larger values of \(k\).
The SAT attack

In our experiments we use the Glucose SAT solver. We found a coloring of K_{17} with no red 4-path and no 7-gon and proved $\hat{N}(4,7,7) = 17$. By the lemma, we refute the Peters–Szekeres conjecture. We also have $\hat{N}(4,8,8) \geq 23$.

Further counterexamples:

<table>
<thead>
<tr>
<th>a</th>
<th>u</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>20</td>
<td>26</td>
<td>35</td>
</tr>
<tr>
<td>27</td>
<td>56</td>
<td>6</td>
</tr>
<tr>
<td>31</td>
<td>126</td>
<td>32</td>
</tr>
<tr>
<td>33</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>27</td>
<td>56</td>
</tr>
<tr>
<td>32</td>
<td>126</td>
<td></td>
</tr>
</tbody>
</table>

For $k = 6$, we verified the refined Peters–Szekeres conjecture in all cases, except $a = u = k$.
The SAT attack

- In our experiments we use the Glucose SAT solver.

The SAT attack

- In our experiments we use the Glucose SAT solver.
- We found a coloring of K_{17}^3 with no red 4-path and no 7-gon and proved $\hat{N}(4, 7, 7) = 17$. By the lemma, we refute the Peters–Szekeres conjecture.
The SAT attack

- In our experiments we use the Glucose SAT solver.
- We found a coloring of K_{17}^3 with no red 4-path and no 7-gon and proved $\hat{N}(4, 7, 7) = 17$. By the lemma, we refute the Peters–Szekeres conjecture.
- We also have $\hat{N}(4, 8, 8) \geq 23$.
The SAT attack

- In our experiments we use the Glucose SAT solver.
- We found a coloring of \(K_{17}^3 \) with no red 4-path and no 7-gon and proved \(\hat{N}(4, 7, 7) = 17 \). By the lemma, we refute the Peters–Szekeres conjecture.
- We also have \(\hat{N}(4, 8, 8) \geq 23 \).
- Further counterexamples:

<table>
<thead>
<tr>
<th>(\hat{N}(a, u, 7))</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>10</td>
<td>15</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>10</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>15</td>
<td>[26,35]</td>
<td>[31,70]</td>
<td>[32,126]</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>6</td>
<td>[27,56]</td>
<td>[32,126]</td>
<td>[33,210]</td>
<td></td>
</tr>
</tbody>
</table>
The SAT attack

- In our experiments we use the Glucose SAT solver.
- We found a coloring of K_{17} with no red 4-path and no 7-gon and proved $\hat{N}(4, 7, 7) = 17$. By the lemma, we refute the Peters–Szekeres conjecture.
- We also have $\hat{N}(4, 8, 8) \geq 23$.
- Further counterexamples:

<table>
<thead>
<tr>
<th>$\hat{N}(a, u, 7)$</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>10</td>
<td>20</td>
<td>[26,35]</td>
<td>[27,56]</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>15</td>
<td>[26,35]</td>
<td>[31,70]</td>
<td>[32,126]</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>6</td>
<td>17</td>
<td>[27,56]</td>
<td>[32,126]</td>
<td>[33,210]</td>
</tr>
</tbody>
</table>

- For $k = 6$, we verified the refined Peters–Szekeres conjecture in all cases, except $a = u = k$.
Pseudolinear colorings

To tackle the Erdős–Szekeres conjecture, we consider only special colorings of K_{3N}. A coloring of K_{3N} is pseudolinear if every 4-tuple of vertices of K_{3N} induces a coloring that is an order type of a set of 4 points in the plane.

For pseudolinear colorings, all our results matched the values from the refined Erdős–Szekeres conjecture. We verified the refined Erdős–Szekeres conjecture for some cases. We have $N(4,7,7) = 16$ and $N(4,8,8) = 22$.
Pseudolinear colorings

- To tackle the Erdős–Szekeres conjecture, we consider only special colorings of K_N^3.
Pseudolinear colorings

- To tackle the Erdős–Szekeres conjecture, we consider only special colorings of K^3_N.
- A coloring of K^3_N is pseudolinear if every 4-tuple of vertices of K^3_N induces a coloring that is an order type of a set of 4 points in the plane.
Pseudolinear colorings

- To tackle the Erdős–Szekeres conjecture, we consider only special colorings of K_N^3.
- A coloring of K_N^3 is pseudolinear if every 4-tuple of vertices of K_N^3 induces a coloring that is an order type of a set of 4 points in the plane.
To tackle the Erdős–Szekeres conjecture, we consider only special colorings of K^3_N.

A coloring of K^3_N is pseudolinear if every 4-tuple of vertices of K^3_N induces a coloring that is an order type of a set of 4 points in the plane.

There is a one-to-one correspondence between pseudolinear colorings of K^3_N and signatures of x-monotone pseudolinear drawings of K_N.
Pseudolinear colorings

- To tackle the Erdős–Szekeres conjecture, we consider only special colorings of K^3_N.
- A coloring of K^3_N is **pseudolinear** if every 4-tuple of vertices of K^3_N induces a coloring that is an order type of a set of 4 points in the plane.

There is a one-to-one correspondence between pseudolinear colorings of K^3_N and signatures of x-monotone pseudolinear drawings of K_N.

- For pseudolinear colorings, all our results matched the values from the refined Erdős–Szekeres conjecture.
To tackle the Erdős–Szekeres conjecture, we consider only special colorings of \mathcal{K}_N^3.

A coloring of \mathcal{K}_N^3 is pseudolinear if every 4-tuple of vertices of \mathcal{K}_N^3 induces a coloring that is an order type of a set of 4 points in the plane.

There is a one-to-one correspondence between pseudolinear colorings of \mathcal{K}_N^3 and signatures of x-monotone pseudolinear drawings of \mathcal{K}_N.

For pseudolinear colorings, all our results matched the values from the refined Erdős–Szekeres conjecture.

We verified the refined Erdős–Szekeres conjecture for some cases. We have $N(4, 7, 7) = 16$ and $N(4, 8, 8) = 22$.
Open problems

Problem (Peters and Szekeres, 2006)
For every $k \geq 2$, is it true that every pseudolinear coloring of K_{3N} with $N = 2^{k-2} + 1$ contains a k-gon?

Conjecture (Goodman and Pollack, 1981)
For every $k \geq 2$ the number $ES(k)$ equals the maximum N for which there is a pseudolinear coloring of K_{3N} with no k-gon.

Is there some structure behind the found colorings?
Is there a general construction of colorings of K_{3N} with no k-gon for arbitrarily large k and $N > 2^{k-2} + 1$. Thank you.
Open problems

Problem (Peters and Szekeres, 2006)

For every $k \geq 2$, is it true that every pseudolinear coloring of K^3_N with $N = 2^{k-2} + 1$ contains a k-gon?
Open problems

Problem (Peters and Szekeres, 2006)

For every $k \geq 2$, is it true that every pseudolinear coloring of \mathcal{K}^3_N with $N = 2^{k-2} + 1$ contains a k-gon?

Conjecture (Goodman and Pollack, 1981)

For every $k \geq 2$ the number $ES(k)$ equals the maximum N for which there is a pseudolinear coloring of \mathcal{K}^3_N with no k-gon.
Open problems

Problem (Peters and Szekeres, 2006)
For every $k \geq 2$, is it true that every pseudolinear coloring of K^3_N with $N = 2^{k-2} + 1$ contains a k-gon?

Conjecture (Goodman and Pollack, 1981)
For every $k \geq 2$ the number $ES(k)$ equals the maximum N for which there is a pseudolinear coloring of K^3_N with no k-gon.

- Is there some structure behind the found colorings?
Open problems

Problem (Peters and Szekeres, 2006)
For every $k \geq 2$, is it true that every pseudolinear coloring of K_n^3 with $N = 2^{k-2} + 1$ contains a k-gon?

Conjecture (Goodman and Pollack, 1981)
For every $k \geq 2$ the number $ES(k)$ equals the maximum N for which there is a pseudolinear coloring of K_n^3 with no k-gon.

- Is there some structure behind the found colorings?
- Is there a general construction of colorings of K_n^3 with no k-gon for arbitrarily large k and $N > 2^{k-2} + 1$.

Open problems

Problem (Peters and Szekeres, 2006)

For every $k \geq 2$, is it true that every pseudolinear coloring of \mathcal{K}_N^3 with $N = 2^{k-2} + 1$ contains a k-gon?

Conjecture (Goodman and Pollack, 1981)

For every $k \geq 2$ the number $ES(k)$ equals the maximum N for which there is a pseudolinear coloring of \mathcal{K}_N^3 with no k-gon.

- Is there some structure behind the found colorings?
- Is there a general construction of colorings of \mathcal{K}_N^3 with no k-gon for arbitrarily large k and $N > 2^{k-2} + 1$.

Thank you.