Linearni programovani a kombinatoricka optimalizace —
priklady na 1. cviceni*

1 Linearni nerovnice

Spousta praktickych tloh i ¢isté kombinatorickych 1ze naformulovat jako tloha linedrntho pro-
gramovan{ (LP). Na tlohu LP muzeme pouzit zndmé metody a efektivné ji vytesit. Kazda uloha
linearniho programovani se dé prevést do jednoho z téchto dvou tvari.

Uloha LP v kanonickém tvaru je nésledujici optimalizacni tloha dand matici A € R™*™ a
vektory b € R™ a c € R™

max CTX

pro x € R"
za podminek Ax < b.

Uloha LP v rovnicovém tvaru je nasledujici optimaliza¢ni dloha dand matici A € R™*" a
vektory b € R™ a c € R™:

max CTX

prox >0
za podminek Ax = b.

Priklad 1. Pekdrna pece chleby, housky, bagety a koblihy.
o K upecent jednoho chleba potrebuje pul kila mouky, 10 vajec a 50 g soli.
o Na jednu housku je zapotrebi 150 g mouky, 2 vejce a 10 g soli.
o Na bagetu potrebuje 230 g mouky, 7 vajec a 15 g soli.
e Na jednu koblihu je tireba 100 g mouky a 1 vejce.

Pekdarna ma k dispozici 5 kilo mouky, 125 vajec a pul kila soli. Za jeden chleba ziskd pekdrna 20
korun, za housku 2 koruny, za bagetu 10 korun a za koblihu 7 korun.

Pekdrna se snazi vydélat co nejvice. Jak ale zjisti kolik chlebu, housek, baget a koblih md upéci?
Zformulujte prislusnou wlohu LP.

Grafickd metoda na feseni tiloh LP: d4 se pouzit mame-li jen dvé proménné, tedy x € R2.
Potom mnozina piipustnych feSeni je konvexni polygon P, ktery si muzeme nakreslit a hledat na
ném optimum tcelové funkce ¢ " x. Optimum najdeme tak, ze uvazime piimku {x € R?: (c,x) = 0}
kolmou na vektor ¢ a prochazejici pocatkem a posouvame ji ve sméru vektoru c, ¢imz dostavame
pifmky {x € R?: (c,x) = h} s h = {¢,x) = ¢"x odpovidajici hodnoté ticelové funkce. Posledni
body z P, na které narazime, jsou potom hledanymi optimy.

Priklad 2. Vyreste grafickou metodou ndsledujici systém nerovnic (neboli ndsledujici linedrni
program,):
—2x+3y<3
r+y<6
—r4+y>—4
r+ 3y <12
x>0
y=0

Pro tcelové funkce:

*Informace o cvic¢eni naleznete na |http://kam.mff.cuni.cz/~balko/


http://kam.mff.cuni.cz/~balko/

(a) max = +y
(b) max —3x+vy
Co se stane, kdyz odebereme posledni dvé podminky, tedy x > 0,y > 07
Priklad 3. Ukazte, jok lze:
1. Prevést mazximalizacni ilohu LP na minimalizaéni a naopak.

2. Prevést ilohu LP, kterd md vsechny proménné x > 0, na lohu LP s proménnymi x' € R™
a naopak.

3. Prevést ulohu LP s podminkami ve tvaru nerovnosti na ulohu LP, jejiz podminky jsou pouze
rovnosti a naopak.

Sit je uspofddans ctvefice (G, z, s, ¢), kde G = (V, E) je orientovany graf, neboli E C VXV, za
s jsou dva rtizné vrcholy grafu G (zvané zdroj a stok) a kapacita c: E — R je funkce ohodnocujici
hrany. Tok v siti je kazda funkce f: E — R spliujici 0 < f(e) < ¢(e) pro kazdou hranu e € F a

Z f(u,v) = Z flv,u)
v:(u,v)EE vi(v,u)€E

pro kazdy vrchol uw € V mimo stok a zdroj. Velikost toku je

w(f)= Y. fmo)— D f2)

vi(z,w)EE v:(v,z)EE
Priklad 4. Vytvorte linedrni program, ktery najde mazimdlnd tok v siti (G = (V, E), z, s, ¢).

Priklad 5. Formulujte Proklddéni primkou jako dlohu LP. Neboli mdme-li n bodi (x1,y1),- .-,

(Tn,yn) v roviné, tak najdéte primku {x € R: y = ax + b}, kterd minimalizuje soucet vertikdlnich

vzddlenosti bodu od visledné primky. Vertikdlni vzdalenost je vzddlenost mérena pouze na ose y.
Pro jednoduchost predpokladejte, Ze viyslednd primka neni kolmd na osu x.
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