Algorithmic game theory

Martin Balko

6th lecture

November 11th 2025

Regret minimization

Regret minimization

e We introduce a completely new model of interactions based on
so-called regret minimization. We apply online learning.

Sources: https://blogger.googleusercontent.com/

e Later, we apply these new methods to design new fast algorithms to
approximate correlated equilibria.

e Today, we introduce the model and some basic algorithms on how to
minimize regret.

The setting

e Since we are introducing a new model, we will need some notation.
e \We have an agent A in an adversary environment.
e There are N available actions for A in the set X ={1,... N}.

e Ateachstept=1,...,T:
t

o Our agent A selects a probability distribution p* = (pi, ..., py)
over X, where p! is the probability that A selects / in step t.

o Then, the adversary chooses a loss vector (* = ({3, ...,), where
(% € [-1,1] is the loss of action i in step t.

o The agent A then experiences loss (, = Z, . pili. This is the
expected loss of A in step t.

o After T steps, the cumulative loss of action jis L] = Z;l 43

e The cumulative loss of Ais L = Z;l 0

External regret

e \We need to be able to tell how well is our agent doing. We choose an

“external approach” and compare his loss to the loss of the best agent
from some comparison class A.

e We will mostly consider the class Ax = {A;: i € X}, where an agent
A; always chooses action 1.

e Let R =L} —min{L}: B € Ax} be the external regret of A (with
respect to Ax). Thatis, R =L} —min{L]: i e X}

e Until specified otherwise, we consider only loss vectors from {0, 1}".
This is only to simplify the notation, all presented results can be
extended to the general case.

Example

No Regret Learning

(review)

No single action significantly
outperforms the dynamic.

Weather L.oss
Algorithm ; 1
Umbrella) 1

J I() J
Sunscreen 3

Is the setting too restrictive?

e |t might seem that the class Ax contains too simple agents. However,
we show that large comparison classes lead to a very large regret.

o Let A,, be the set of agents that assign probability 1 to an arbitrary
action from X in every step.

o In Ax each agent has to select the same action in all steps.

Observation 2.45

For any agent A and every T € N, there is a sequence of T loss vectors and
an agent B € A,y suchthat L) — L) > T(1—1/N).

e That is almost as bad as it can get.

e Proof: For every t, let i; be the action with the lowest probability p!.
We set (; = 0 and (; = 1 for every i # i.

e Since p; <1/N, we have ¢, > 1 —1/N and thus the cumulative loss
L} of A after T steps is at least T(1 — 1/N).

e The algorithm B € A, that selects the action /; in step t with
probability 1 has the cumulative loss L. = 0. O

Greedy algorithm

e So we are good with the comparison class Ax. How to design an agent
A that performs well against agents from Ax?

e We first try a natural greedy approach: select an action / € X for which
the cumulative loss LI at step t — 1 is the smallest.

Algorithm 0.12: GREEDY ALGORITHM(X, T)

Input : A set of actions X = {1,..., N} and number of steps T € N.
Output : A probability distribution p° for every t € {1,..., T}.

pt < (1,0,...,0),

fort=2,.... T

(Lipin ¢ minjex{L; "},
StledieX: Lt =10
k < min St~

\pr < 1,p; < 0 for i # k,
Output {p*: t € {1,..., T}}.

do <

Analysis of the Greedy algorithm

Proposition 2.46

For any sequence of {0, 1}-valued loss vectors, the cumulative loss L/, ., of
the Greedy algorithm at time T € N satisfies

<N-L'. 4+ (N—1).

LGreedy min

e Proof: At step t, if the Greedy algorithm incurs a loss of 1 and L} .
does not increase, then at least one action disappears from St in the
next step. This occurs at most N times and then L' . increases by 1.

e Thus, the Greedy algorithm incurs a loss of at most N between
successive increments of Lf . by 1. It follows that

min

LGreedy < N - LT + N — ‘ST’ < N - me (o 1)

min

[]

e This is rather weak since A can perform roughly N times worse than
the best action.

Randomized Greedy algorithm

e There is a good reason for the poor behavior. No deterministic
algorithm can perform significantly better (Exercise).

e S0 it makes sense to introduce some randomness. We break ties at
random, splitting weights between the currently best actions.

Algorithm 0.25: RANDOMIZED GREEDY ALGORITHM(X, T)

Input : A set of actions X = {1,..., N} and number of steps T € N.
Output : A probability distribution p* for every t € {1,..., T}.
ot (1/N,. .., 1/N),

fort=2,.... T
(Liin ¢ minjex{L; "},
do ¢ Sl {ieX: LIt =1"10
pl 1/|STH for every i € S™! and pf « 0 otherwise.

Output {p*: t € {1,..., T}}.

Analysis of the Randomized greedy algorithm

Proposition 2.48

For any sequence of {0, 1}-valued loss vectors, the cumulative loss L}, of
the Randomized greedy algorithm at time T € N satisfies
L <(1+InN)-L]

min

+InN.

e Proof (sketch): We proceed as in the previous proof. For j € N, let ¢
be the time step t at which the loss L! . first reaches value j. We
estimate the loss of the algorithm between steps t; and t;,;.

e Note that 1 < |S%| < N. If the size of S* shrinks by k from n’ to n" — k
at some time t € (t;, tj;1], then the loss of the algorithm at step t is
k/n', since the weight of each such action is 1/n".

o Clearly, k/n" <1/n"+1/(n"—1)+---+1/(n" — k+ 1), so we obtain
that the loss for the entire time interval (t;, tj;+1] is at most
1/N+1/(N—-1)+---4+1/1 <1+ InN. It follows that

Lo <@ +InN)- L +(1/N+1/(N—-1)4---+1/(|ST| +1)).

Polynomial weights algorithm

e This is better, but still not optimal. The losses are greatest when the
sets S* are small since the loss can be viewed as proportional to 1/|57|.

e \We overcome this issue by assigning larger weights to actions that are
close to the best one.

Algorithm 0.37: POLYNOMIAL WEIGHTS ALGORITHM(X, T,n)

Input : A set of actions X ={1,...,N}, T € N, and 1 € (0,1/2].
Output : A probability distribution p* for every t € {1,..., T}.
w' < 1 for every i € X,

pt < (1/N,...,1/N),

fort=2,.... T

(W w1 =),

do ¢ W< > . w/,

p; < w; /W for every i € X.

Output {pt: t €{1,..., T}}

Analysis of the Polynomial weights algorithm |

Theorem 2.49

For 1 € (0,1/2], every sequence of [—1, 1]-valued loss vectors, and every
k € X, the cumulative loss L], of the Polynomial weights algorithm satisfies

Lw < LI +0Q +InN/n,

where @7 = ST (¢%)2. In particular, if T > 4In N, then by setting
n = +/InN/T and noting that Q] < T, we obtain

Ll < LT +2VTInN.

e Proof (sketch): We show that if there is a significant loss, then the
total weight W' must drop substantially. For step t, we have

by = ZN wilt/WE, that is, {5, is the expected loss at step t.

e The weight w! of every action i is multiplied by (1 — n¢!™') at step t.
Thus, W1 = Wt — SN qwiet = W1 — nts,).

Analysis of the Polynomial weights algorithm Il

o Using W!=Nand1—2z<e? for every z € R, we obtain
T
Wi = wH (1 = nthy) < NHe Mhw = Ne ™15 lhw,
t=1
e Taking the logarithms, we obtain

nWT <InN — "Zf w=InN-=—nLl,
t=1

e For the lower bound, we have W™+ > w/ ! and thus, by taking

logarithms, using the recursive definition of weights and
In(l1—2)> —z—z%forz < 1/2 we obtain

N W > Inw/* = Zln (1—ntt) > —nL] —n?Q/.
t=1
e Combining the lower and the upper bound, we have

— L] —n*Qf <InN —nlly

Polynomial weights algorithm: remarks

e This algorithm produces very good external regret. Time-averaged
external regret goes to zero.

e The bound L}y < LI. +2v/TInN is essentially optimal.

Proposition 2.50
For integers NV and T with T < |log, N |, there exists a stochastic

generation of losses such that, for every online algorithm A, we have
E[L}]> T/2andyet L. =0.

min

Proposition 2.51

In the case of N = 2 actions, there exists a stochastic generation of losses
such that, for every online algorithm A, we have E[L] — L. 1> Q(\/T).

e See lecture notes for the proofs.
e We do not need to know T in advance (Exercise).

e Besides game theory, the “multiplicative weight update method” has
many applications in various fields of science, for example in
optimization, theoretical computer science, and machine learning.

X~ 4

X-4x <0

n(BNC)=2
n(B) =68
n(C) =84
n(BUC) =n(B)+n(C)n(BNC) oy

- log,x + log,y

-log,x - log,y a(bc) = (ab)c
at+b=b+a

B a(b+c)=ab+ac
126 =6xy
. 2x+2y=20
X

Sources: https://clubitc.ro

e See https://en.wikipedia.org/wiki/Multiplicative_weight_
update_method#Applications

e There are other algorithms producing small external regret, for example,
the Regret matching algorithm.

Regret matching

e Algorithm with external regret at most O(+/T) for fixed N.
e Introduced by Hart and Mas-Colell in 2000.

e For a vector v € RV, we use [v]" to denote the vector
(max{0, v;}: i € [N]).

e The algorithm works as follows. We choose R; = 0 € R" and then let
fort >1

. IRY
IGERE

p and R =R'4 (p' 0" -1/,

where 0/0 is defined as the uniform distribution.

e Strong empirical performance and admits many variants.

The No-regret dynamics

e “Players in a normal-form game play against each other by selecting
actions according to the Polynomial-weights algorithm.”

Algorithm 0.40: NO-REGRET DYNAMICS(G, T,¢)

Input : A normal-form game G = (P, A, C) of n players, T € N, and ¢ > 0.
Output : A prob. distribution p! on A; for each i € P and t € {1,..., T}.
for every stept =1,..., T

(Each player i € P independently chooses a mixed strategy p?
using an algorithm with average regret at most ¢, with actions
corresponding to pure strategies.

Each player i € P receives a loss vector ¢f = (£}(a;))a.ca., where
li(ai) < Ege pr [Ci(ai;at;)] for the product distribution

\'Dt—i — HJ#" Pf.

Output {p*: t € {1,..., T}}.

"ENROLL IN AGT" THEY SAID

Algorithm 2.6.4: No-rREGRET Dynamics((+. T, =)

Input : A normal-form game G = (P, A, C) of n players, T € N and £ > 0.
Output : A probability distribution p! on A; foreachi € Pandt € {1,..., T}.
for everystept=1,..., i iy
‘Each player i € P independently chooses a mixed strategy p; using
an algorithm with average regret at most £, with actions
corresponding to pure strategies.
Each player i € P receives a loss vector I: = H:(n,))a,eA,, Where
fi(a;) « Ep o0 [Cilagia’)] for the product distribution

do ¢

L

urTlr.' — l_[_r,drpfn"
Qutput {p*: t € {1,..., ‘ 3§ X

"THERE'LL BE NO REGRET" THEY SAID

Sources: Students of MFF UK

Thank you for your attention.

