
Algorithmic game theory

Martin Balko

4th lecture

October 21st 2025



Nash equilibria in bimatrix games



What we learned last time

• Last lecture we introduced a brute-force algorithm to find all Nash
equilibria in bimatrix games.

• Recall that we have payoff matrices M and N with Mi ,j = u1(i , j) and
Ni ,j = u2(i , j). The expected payoffs are then x⊤My and x⊤Ny .

• The best response condition: If x and y are mixed strategy vectors of
players 1 and 2, respectively, then x is a best response to y iff

∀ i ∈ A1 : xi > 0 =⇒ Mi ,∗y = max{Mk,∗y : k ∈ A1}.

Analogously, y is a best response to x iff

∀ j ∈ A2 : yj > 0 =⇒ N⊤
j ,∗x = max{N⊤

k,∗x : k ∈ A2}.

• Today, we reveal a geometric structure behind finding NE in bimatrix
games and show one of the fastest known algorithms for this task.



What we learned last time

• Last lecture we introduced a brute-force algorithm to find all Nash
equilibria in bimatrix games.

• Recall that we have payoff matrices M and N with Mi ,j = u1(i , j) and
Ni ,j = u2(i , j). The expected payoffs are then x⊤My and x⊤Ny .

• The best response condition: If x and y are mixed strategy vectors of
players 1 and 2, respectively, then x is a best response to y iff

∀ i ∈ A1 : xi > 0 =⇒ Mi ,∗y = max{Mk,∗y : k ∈ A1}.

Analogously, y is a best response to x iff

∀ j ∈ A2 : yj > 0 =⇒ N⊤
j ,∗x = max{N⊤

k,∗x : k ∈ A2}.

• Today, we reveal a geometric structure behind finding NE in bimatrix
games and show one of the fastest known algorithms for this task.



What we learned last time

• Last lecture we introduced a brute-force algorithm to find all Nash
equilibria in bimatrix games.

• Recall that we have payoff matrices M and N with Mi ,j = u1(i , j) and
Ni ,j = u2(i , j).

The expected payoffs are then x⊤My and x⊤Ny .

• The best response condition: If x and y are mixed strategy vectors of
players 1 and 2, respectively, then x is a best response to y iff

∀ i ∈ A1 : xi > 0 =⇒ Mi ,∗y = max{Mk,∗y : k ∈ A1}.

Analogously, y is a best response to x iff

∀ j ∈ A2 : yj > 0 =⇒ N⊤
j ,∗x = max{N⊤

k,∗x : k ∈ A2}.

• Today, we reveal a geometric structure behind finding NE in bimatrix
games and show one of the fastest known algorithms for this task.



What we learned last time

• Last lecture we introduced a brute-force algorithm to find all Nash
equilibria in bimatrix games.

• Recall that we have payoff matrices M and N with Mi ,j = u1(i , j) and
Ni ,j = u2(i , j). The expected payoffs are then x⊤My and x⊤Ny .

• The best response condition: If x and y are mixed strategy vectors of
players 1 and 2, respectively, then x is a best response to y iff

∀ i ∈ A1 : xi > 0 =⇒ Mi ,∗y = max{Mk,∗y : k ∈ A1}.

Analogously, y is a best response to x iff

∀ j ∈ A2 : yj > 0 =⇒ N⊤
j ,∗x = max{N⊤

k,∗x : k ∈ A2}.

• Today, we reveal a geometric structure behind finding NE in bimatrix
games and show one of the fastest known algorithms for this task.



What we learned last time

• Last lecture we introduced a brute-force algorithm to find all Nash
equilibria in bimatrix games.

• Recall that we have payoff matrices M and N with Mi ,j = u1(i , j) and
Ni ,j = u2(i , j). The expected payoffs are then x⊤My and x⊤Ny .

• The best response condition: If x and y are mixed strategy vectors of
players 1 and 2, respectively, then x is a best response to y iff

∀ i ∈ A1 : xi > 0 =⇒ Mi ,∗y = max{Mk,∗y : k ∈ A1}.

Analogously, y is a best response to x iff

∀ j ∈ A2 : yj > 0 =⇒ N⊤
j ,∗x = max{N⊤

k,∗x : k ∈ A2}.

• Today, we reveal a geometric structure behind finding NE in bimatrix
games and show one of the fastest known algorithms for this task.



What we learned last time

• Last lecture we introduced a brute-force algorithm to find all Nash
equilibria in bimatrix games.

• Recall that we have payoff matrices M and N with Mi ,j = u1(i , j) and
Ni ,j = u2(i , j). The expected payoffs are then x⊤My and x⊤Ny .

• The best response condition: If x and y are mixed strategy vectors of
players 1 and 2, respectively, then x is a best response to y iff

∀ i ∈ A1 : xi > 0 =⇒ Mi ,∗y = max{Mk,∗y : k ∈ A1}.

Analogously, y is a best response to x iff

∀ j ∈ A2 : yj > 0 =⇒ N⊤
j ,∗x = max{N⊤

k,∗x : k ∈ A2}.

• Today, we reveal a geometric structure behind finding NE in bimatrix
games and show one of the fastest known algorithms for this task.



Best response polyhedra

• To reveal the geometric structure, we define labeled polyhedra for a
bimatrix game G .
• The best response polyhedron for player 1 in G is a polyhedron

P = {(x , v) ∈ Rm × R : x ≥ 0, 1⊤x = 1,N⊤x ≤ 1v}.

Similarly, we define the best response polyhedron for player 2 in G as

Q = {(y , u) ∈ Rn × R : y ≥ 0, 1⊤y = 1,My ≤ 1u}.

• Let (x , v) ∈ P , (y , u) ∈ Q and let s = (s1, s2) be a strategy profile with
mixed strategy vectors x and y .
• Then, My ≤ 1u says that u1(s) ≤ u, as the expected payoff is always

u1(s) = x⊤My ≤ x⊤1u = u
∑
i∈A1

xi = u.

• Analogously, the condition N⊤x ≤ 1v says that u2(s) ≤ v .
• Thus, points of P and Q are the mixed strategies with the “upper
envelope” of expected payoffs of the other player.



Best response polyhedra

• To reveal the geometric structure, we define labeled polyhedra for a
bimatrix game G .

• The best response polyhedron for player 1 in G is a polyhedron

P = {(x , v) ∈ Rm × R : x ≥ 0, 1⊤x = 1,N⊤x ≤ 1v}.

Similarly, we define the best response polyhedron for player 2 in G as

Q = {(y , u) ∈ Rn × R : y ≥ 0, 1⊤y = 1,My ≤ 1u}.

• Let (x , v) ∈ P , (y , u) ∈ Q and let s = (s1, s2) be a strategy profile with
mixed strategy vectors x and y .
• Then, My ≤ 1u says that u1(s) ≤ u, as the expected payoff is always

u1(s) = x⊤My ≤ x⊤1u = u
∑
i∈A1

xi = u.

• Analogously, the condition N⊤x ≤ 1v says that u2(s) ≤ v .
• Thus, points of P and Q are the mixed strategies with the “upper
envelope” of expected payoffs of the other player.



Best response polyhedra

• To reveal the geometric structure, we define labeled polyhedra for a
bimatrix game G .
• The best response polyhedron for player 1 in G is a polyhedron

P = {(x , v) ∈ Rm × R : x ≥ 0, 1⊤x = 1,N⊤x ≤ 1v}.

Similarly, we define the best response polyhedron for player 2 in G as

Q = {(y , u) ∈ Rn × R : y ≥ 0, 1⊤y = 1,My ≤ 1u}.

• Let (x , v) ∈ P , (y , u) ∈ Q and let s = (s1, s2) be a strategy profile with
mixed strategy vectors x and y .
• Then, My ≤ 1u says that u1(s) ≤ u, as the expected payoff is always

u1(s) = x⊤My ≤ x⊤1u = u
∑
i∈A1

xi = u.

• Analogously, the condition N⊤x ≤ 1v says that u2(s) ≤ v .
• Thus, points of P and Q are the mixed strategies with the “upper
envelope” of expected payoffs of the other player.



Best response polyhedra

• To reveal the geometric structure, we define labeled polyhedra for a
bimatrix game G .
• The best response polyhedron for player 1 in G is a polyhedron

P = {(x , v) ∈ Rm × R : x ≥ 0, 1⊤x = 1,N⊤x ≤ 1v}.

Similarly, we define the best response polyhedron for player 2 in G as

Q = {(y , u) ∈ Rn × R : y ≥ 0, 1⊤y = 1,My ≤ 1u}.

• Let (x , v) ∈ P , (y , u) ∈ Q and let s = (s1, s2) be a strategy profile with
mixed strategy vectors x and y .
• Then, My ≤ 1u says that u1(s) ≤ u, as the expected payoff is always

u1(s) = x⊤My ≤ x⊤1u = u
∑
i∈A1

xi = u.

• Analogously, the condition N⊤x ≤ 1v says that u2(s) ≤ v .
• Thus, points of P and Q are the mixed strategies with the “upper
envelope” of expected payoffs of the other player.



Best response polyhedra

• To reveal the geometric structure, we define labeled polyhedra for a
bimatrix game G .
• The best response polyhedron for player 1 in G is a polyhedron

P = {(x , v) ∈ Rm × R : x ≥ 0, 1⊤x = 1,N⊤x ≤ 1v}.

Similarly, we define the best response polyhedron for player 2 in G as

Q = {(y , u) ∈ Rn × R : y ≥ 0, 1⊤y = 1,My ≤ 1u}.

• Let (x , v) ∈ P , (y , u) ∈ Q

and let s = (s1, s2) be a strategy profile with
mixed strategy vectors x and y .
• Then, My ≤ 1u says that u1(s) ≤ u, as the expected payoff is always

u1(s) = x⊤My ≤ x⊤1u = u
∑
i∈A1

xi = u.

• Analogously, the condition N⊤x ≤ 1v says that u2(s) ≤ v .
• Thus, points of P and Q are the mixed strategies with the “upper
envelope” of expected payoffs of the other player.



Best response polyhedra

• To reveal the geometric structure, we define labeled polyhedra for a
bimatrix game G .
• The best response polyhedron for player 1 in G is a polyhedron

P = {(x , v) ∈ Rm × R : x ≥ 0, 1⊤x = 1,N⊤x ≤ 1v}.

Similarly, we define the best response polyhedron for player 2 in G as

Q = {(y , u) ∈ Rn × R : y ≥ 0, 1⊤y = 1,My ≤ 1u}.

• Let (x , v) ∈ P , (y , u) ∈ Q and let s = (s1, s2) be a strategy profile with
mixed strategy vectors x and y .

• Then, My ≤ 1u says that u1(s) ≤ u, as the expected payoff is always

u1(s) = x⊤My ≤ x⊤1u = u
∑
i∈A1

xi = u.

• Analogously, the condition N⊤x ≤ 1v says that u2(s) ≤ v .
• Thus, points of P and Q are the mixed strategies with the “upper
envelope” of expected payoffs of the other player.



Best response polyhedra

• To reveal the geometric structure, we define labeled polyhedra for a
bimatrix game G .
• The best response polyhedron for player 1 in G is a polyhedron

P = {(x , v) ∈ Rm × R : x ≥ 0, 1⊤x = 1,N⊤x ≤ 1v}.

Similarly, we define the best response polyhedron for player 2 in G as

Q = {(y , u) ∈ Rn × R : y ≥ 0, 1⊤y = 1,My ≤ 1u}.

• Let (x , v) ∈ P , (y , u) ∈ Q and let s = (s1, s2) be a strategy profile with
mixed strategy vectors x and y .
• Then, My ≤ 1u says that u1(s) ≤ u,

as the expected payoff is always

u1(s) = x⊤My ≤ x⊤1u = u
∑
i∈A1

xi = u.

• Analogously, the condition N⊤x ≤ 1v says that u2(s) ≤ v .
• Thus, points of P and Q are the mixed strategies with the “upper
envelope” of expected payoffs of the other player.



Best response polyhedra

• To reveal the geometric structure, we define labeled polyhedra for a
bimatrix game G .
• The best response polyhedron for player 1 in G is a polyhedron

P = {(x , v) ∈ Rm × R : x ≥ 0, 1⊤x = 1,N⊤x ≤ 1v}.

Similarly, we define the best response polyhedron for player 2 in G as

Q = {(y , u) ∈ Rn × R : y ≥ 0, 1⊤y = 1,My ≤ 1u}.

• Let (x , v) ∈ P , (y , u) ∈ Q and let s = (s1, s2) be a strategy profile with
mixed strategy vectors x and y .
• Then, My ≤ 1u says that u1(s) ≤ u, as the expected payoff is always

u1(s) = x⊤My ≤ x⊤1u = u
∑
i∈A1

xi = u.

• Analogously, the condition N⊤x ≤ 1v says that u2(s) ≤ v .
• Thus, points of P and Q are the mixed strategies with the “upper
envelope” of expected payoffs of the other player.



Best response polyhedra

• To reveal the geometric structure, we define labeled polyhedra for a
bimatrix game G .
• The best response polyhedron for player 1 in G is a polyhedron

P = {(x , v) ∈ Rm × R : x ≥ 0, 1⊤x = 1,N⊤x ≤ 1v}.

Similarly, we define the best response polyhedron for player 2 in G as

Q = {(y , u) ∈ Rn × R : y ≥ 0, 1⊤y = 1,My ≤ 1u}.

• Let (x , v) ∈ P , (y , u) ∈ Q and let s = (s1, s2) be a strategy profile with
mixed strategy vectors x and y .
• Then, My ≤ 1u says that u1(s) ≤ u, as the expected payoff is always

u1(s)

= x⊤My ≤ x⊤1u = u
∑
i∈A1

xi = u.

• Analogously, the condition N⊤x ≤ 1v says that u2(s) ≤ v .
• Thus, points of P and Q are the mixed strategies with the “upper
envelope” of expected payoffs of the other player.



Best response polyhedra

• To reveal the geometric structure, we define labeled polyhedra for a
bimatrix game G .
• The best response polyhedron for player 1 in G is a polyhedron

P = {(x , v) ∈ Rm × R : x ≥ 0, 1⊤x = 1,N⊤x ≤ 1v}.

Similarly, we define the best response polyhedron for player 2 in G as

Q = {(y , u) ∈ Rn × R : y ≥ 0, 1⊤y = 1,My ≤ 1u}.

• Let (x , v) ∈ P , (y , u) ∈ Q and let s = (s1, s2) be a strategy profile with
mixed strategy vectors x and y .
• Then, My ≤ 1u says that u1(s) ≤ u, as the expected payoff is always

u1(s) = x⊤My

≤ x⊤1u = u
∑
i∈A1

xi = u.

• Analogously, the condition N⊤x ≤ 1v says that u2(s) ≤ v .
• Thus, points of P and Q are the mixed strategies with the “upper
envelope” of expected payoffs of the other player.



Best response polyhedra

• To reveal the geometric structure, we define labeled polyhedra for a
bimatrix game G .
• The best response polyhedron for player 1 in G is a polyhedron

P = {(x , v) ∈ Rm × R : x ≥ 0, 1⊤x = 1,N⊤x ≤ 1v}.

Similarly, we define the best response polyhedron for player 2 in G as

Q = {(y , u) ∈ Rn × R : y ≥ 0, 1⊤y = 1,My ≤ 1u}.

• Let (x , v) ∈ P , (y , u) ∈ Q and let s = (s1, s2) be a strategy profile with
mixed strategy vectors x and y .
• Then, My ≤ 1u says that u1(s) ≤ u, as the expected payoff is always

u1(s) = x⊤My ≤ x⊤1u

= u
∑
i∈A1

xi = u.

• Analogously, the condition N⊤x ≤ 1v says that u2(s) ≤ v .
• Thus, points of P and Q are the mixed strategies with the “upper
envelope” of expected payoffs of the other player.



Best response polyhedra

• To reveal the geometric structure, we define labeled polyhedra for a
bimatrix game G .
• The best response polyhedron for player 1 in G is a polyhedron

P = {(x , v) ∈ Rm × R : x ≥ 0, 1⊤x = 1,N⊤x ≤ 1v}.

Similarly, we define the best response polyhedron for player 2 in G as

Q = {(y , u) ∈ Rn × R : y ≥ 0, 1⊤y = 1,My ≤ 1u}.

• Let (x , v) ∈ P , (y , u) ∈ Q and let s = (s1, s2) be a strategy profile with
mixed strategy vectors x and y .
• Then, My ≤ 1u says that u1(s) ≤ u, as the expected payoff is always

u1(s) = x⊤My ≤ x⊤1u = u
∑
i∈A1

xi

= u.

• Analogously, the condition N⊤x ≤ 1v says that u2(s) ≤ v .
• Thus, points of P and Q are the mixed strategies with the “upper
envelope” of expected payoffs of the other player.



Best response polyhedra

• To reveal the geometric structure, we define labeled polyhedra for a
bimatrix game G .
• The best response polyhedron for player 1 in G is a polyhedron

P = {(x , v) ∈ Rm × R : x ≥ 0, 1⊤x = 1,N⊤x ≤ 1v}.

Similarly, we define the best response polyhedron for player 2 in G as

Q = {(y , u) ∈ Rn × R : y ≥ 0, 1⊤y = 1,My ≤ 1u}.

• Let (x , v) ∈ P , (y , u) ∈ Q and let s = (s1, s2) be a strategy profile with
mixed strategy vectors x and y .
• Then, My ≤ 1u says that u1(s) ≤ u, as the expected payoff is always

u1(s) = x⊤My ≤ x⊤1u = u
∑
i∈A1

xi = u.

• Analogously, the condition N⊤x ≤ 1v says that u2(s) ≤ v .
• Thus, points of P and Q are the mixed strategies with the “upper
envelope” of expected payoffs of the other player.



Best response polyhedra

• To reveal the geometric structure, we define labeled polyhedra for a
bimatrix game G .
• The best response polyhedron for player 1 in G is a polyhedron

P = {(x , v) ∈ Rm × R : x ≥ 0, 1⊤x = 1,N⊤x ≤ 1v}.

Similarly, we define the best response polyhedron for player 2 in G as

Q = {(y , u) ∈ Rn × R : y ≥ 0, 1⊤y = 1,My ≤ 1u}.

• Let (x , v) ∈ P , (y , u) ∈ Q and let s = (s1, s2) be a strategy profile with
mixed strategy vectors x and y .
• Then, My ≤ 1u says that u1(s) ≤ u, as the expected payoff is always

u1(s) = x⊤My ≤ x⊤1u = u
∑
i∈A1

xi = u.

• Analogously, the condition N⊤x ≤ 1v says that u2(s) ≤ v .

• Thus, points of P and Q are the mixed strategies with the “upper
envelope” of expected payoffs of the other player.



Best response polyhedra

• To reveal the geometric structure, we define labeled polyhedra for a
bimatrix game G .
• The best response polyhedron for player 1 in G is a polyhedron

P = {(x , v) ∈ Rm × R : x ≥ 0, 1⊤x = 1,N⊤x ≤ 1v}.

Similarly, we define the best response polyhedron for player 2 in G as

Q = {(y , u) ∈ Rn × R : y ≥ 0, 1⊤y = 1,My ≤ 1u}.

• Let (x , v) ∈ P , (y , u) ∈ Q and let s = (s1, s2) be a strategy profile with
mixed strategy vectors x and y .
• Then, My ≤ 1u says that u1(s) ≤ u, as the expected payoff is always

u1(s) = x⊤My ≤ x⊤1u = u
∑
i∈A1

xi = u.

• Analogously, the condition N⊤x ≤ 1v says that u2(s) ≤ v .
• Thus, points of P and Q are the mixed strategies with the “upper
envelope” of expected payoffs of the other player.



Labelings of the Best response polyhedra

• Now, we define the labels of points from the best response polyhedra

P = {(x , v) ∈ Rm × R : x ≥ 0, 1⊤x = 1,N⊤x ≤ 1v}.

and
Q = {(y , u) ∈ Rn × R : y ≥ 0, 1⊤y = 1,My ≤ 1u}.

• We say that a point (x , v) ∈ P has label i ∈ A1 ∪ A2 if either i ∈ A1

and xi = 0 or if i ∈ A2 and N⊤
i ,∗x = v .

◦ That is, if the inequality in the definition of P is binding (i ∈ A1 is
not in the support or i ∈ A2 is a best response to x).

• Similarly, a point (y , u) ∈ Q has a label i ∈ A1 ∪A2 if either i ∈ A1 and
Mi ,∗y = u, or if i ∈ A2 and yi = 0.

• Each point from P or Q may have more labels.



Labelings of the Best response polyhedra

• Now, we define the labels of points from the best response polyhedra

P = {(x , v) ∈ Rm × R : x ≥ 0, 1⊤x = 1,N⊤x ≤ 1v}.

and
Q = {(y , u) ∈ Rn × R : y ≥ 0, 1⊤y = 1,My ≤ 1u}.

• We say that a point (x , v) ∈ P has label i ∈ A1 ∪ A2 if either i ∈ A1

and xi = 0 or if i ∈ A2 and N⊤
i ,∗x = v .

◦ That is, if the inequality in the definition of P is binding (i ∈ A1 is
not in the support or i ∈ A2 is a best response to x).

• Similarly, a point (y , u) ∈ Q has a label i ∈ A1 ∪A2 if either i ∈ A1 and
Mi ,∗y = u, or if i ∈ A2 and yi = 0.

• Each point from P or Q may have more labels.



Labelings of the Best response polyhedra

• Now, we define the labels of points from the best response polyhedra

P = {(x , v) ∈ Rm × R : x ≥ 0, 1⊤x = 1,N⊤x ≤ 1v}.

and
Q = {(y , u) ∈ Rn × R : y ≥ 0, 1⊤y = 1,My ≤ 1u}.

• We say that a point (x , v) ∈ P has label i ∈ A1 ∪ A2 if either i ∈ A1

and xi = 0 or if i ∈ A2 and N⊤
i ,∗x = v .

◦ That is, if the inequality in the definition of P is binding (i ∈ A1 is
not in the support or i ∈ A2 is a best response to x).

• Similarly, a point (y , u) ∈ Q has a label i ∈ A1 ∪A2 if either i ∈ A1 and
Mi ,∗y = u, or if i ∈ A2 and yi = 0.

• Each point from P or Q may have more labels.



Labelings of the Best response polyhedra

• Now, we define the labels of points from the best response polyhedra

P = {(x , v) ∈ Rm × R : x ≥ 0, 1⊤x = 1,N⊤x ≤ 1v}.

and
Q = {(y , u) ∈ Rn × R : y ≥ 0, 1⊤y = 1,My ≤ 1u}.

• We say that a point (x , v) ∈ P has label i ∈ A1 ∪ A2 if either i ∈ A1

and xi = 0 or if i ∈ A2 and N⊤
i ,∗x = v .

◦ That is, if the inequality in the definition of P is binding

(i ∈ A1 is
not in the support or i ∈ A2 is a best response to x).

• Similarly, a point (y , u) ∈ Q has a label i ∈ A1 ∪A2 if either i ∈ A1 and
Mi ,∗y = u, or if i ∈ A2 and yi = 0.

• Each point from P or Q may have more labels.



Labelings of the Best response polyhedra

• Now, we define the labels of points from the best response polyhedra

P = {(x , v) ∈ Rm × R : x ≥ 0, 1⊤x = 1,N⊤x ≤ 1v}.

and
Q = {(y , u) ∈ Rn × R : y ≥ 0, 1⊤y = 1,My ≤ 1u}.

• We say that a point (x , v) ∈ P has label i ∈ A1 ∪ A2 if either i ∈ A1

and xi = 0 or if i ∈ A2 and N⊤
i ,∗x = v .

◦ That is, if the inequality in the definition of P is binding (i ∈ A1 is
not in the support or i ∈ A2 is a best response to x).

• Similarly, a point (y , u) ∈ Q has a label i ∈ A1 ∪A2 if either i ∈ A1 and
Mi ,∗y = u, or if i ∈ A2 and yi = 0.

• Each point from P or Q may have more labels.



Labelings of the Best response polyhedra

• Now, we define the labels of points from the best response polyhedra

P = {(x , v) ∈ Rm × R : x ≥ 0, 1⊤x = 1,N⊤x ≤ 1v}.

and
Q = {(y , u) ∈ Rn × R : y ≥ 0, 1⊤y = 1,My ≤ 1u}.

• We say that a point (x , v) ∈ P has label i ∈ A1 ∪ A2 if either i ∈ A1

and xi = 0 or if i ∈ A2 and N⊤
i ,∗x = v .

◦ That is, if the inequality in the definition of P is binding (i ∈ A1 is
not in the support or i ∈ A2 is a best response to x).

• Similarly, a point (y , u) ∈ Q has a label i ∈ A1 ∪A2 if either i ∈ A1 and
Mi ,∗y = u, or if i ∈ A2 and yi = 0.

• Each point from P or Q may have more labels.



Labelings of the Best response polyhedra

• Now, we define the labels of points from the best response polyhedra

P = {(x , v) ∈ Rm × R : x ≥ 0, 1⊤x = 1,N⊤x ≤ 1v}.

and
Q = {(y , u) ∈ Rn × R : y ≥ 0, 1⊤y = 1,My ≤ 1u}.

• We say that a point (x , v) ∈ P has label i ∈ A1 ∪ A2 if either i ∈ A1

and xi = 0 or if i ∈ A2 and N⊤
i ,∗x = v .

◦ That is, if the inequality in the definition of P is binding (i ∈ A1 is
not in the support or i ∈ A2 is a best response to x).

• Similarly, a point (y , u) ∈ Q has a label i ∈ A1 ∪A2 if either i ∈ A1 and
Mi ,∗y = u, or if i ∈ A2 and yi = 0.

• Each point from P or Q may have more labels.



Best response polyhedra P and Q for the Battle of sexes

P (0, 1, 2)

(1, 0, 1)
(2
3
, 1
3
, 2
3
)

2

1

4

3

Q(1, 0, 2)

(0, 1, 1)
(1
3
, 2
3
, 2
3
)

3
4

1
2

P = {(x1, x2, v) ∈ R2 × R : x1, x2 ≥ 0, x1 + x2 = 1, x1 ≤ v , 2x2 ≤ v}

Q = {(y3, y4, u) ∈ R2 × R : y3, y4 ≥ 0, y3 + y4 = 1, 2y3 ≤ u, y4 ≤ u}.



Best response polyhedra P and Q for the Battle of sexes

P (0, 1, 2)

(1, 0, 1)
(2
3
, 1
3
, 2
3
)

2

1

4

3

Q(1, 0, 2)

(0, 1, 1)
(1
3
, 2
3
, 2
3
)

3
4

1
2

P = {(x1, x2, v) ∈ R2 × R : x1, x2 ≥ 0, x1 + x2 = 1, x1 ≤ v , 2x2 ≤ v}

Q = {(y3, y4, u) ∈ R2 × R : y3, y4 ≥ 0, y3 + y4 = 1, 2y3 ≤ u, y4 ≤ u}.



NE and Best response polyhedra

• What are the labels (and Best response polyhedra) for?

• They help us identify NE in G !

Proposition 2.27

A strategy profile s with u = u1(s) and v = u2(s) is NE of G iff the pair
((x , v), (y , u)) ∈ P × Q is completely labeled, that is, every label
i ∈ A1 ∪ A2 appears as a label of either (x , v) or (y , u).

• Proof: By the Best response condition, for every player i ∈ P , a mixed
strategy si is a best response to s−i if and only if all pure strategies in
the support of si are best responses to s−i .

• A missing label i ∈ A1 means that a pure strategy i ∈ Supp(s1)
(xi > 0) was not a best response (Mi ,∗y < u). Analogously for i ∈ A2.
Then, s is not NE.

• If all labels appear, then s1 and s2 are mutually best responses, as each
pure strategy is a best response or is not in the support.
Then, s is NE.



NE and Best response polyhedra

• What are the labels (and Best response polyhedra) for?

• They help us identify NE in G !

Proposition 2.27

A strategy profile s with u = u1(s) and v = u2(s) is NE of G iff the pair
((x , v), (y , u)) ∈ P × Q is completely labeled, that is, every label
i ∈ A1 ∪ A2 appears as a label of either (x , v) or (y , u).

• Proof: By the Best response condition, for every player i ∈ P , a mixed
strategy si is a best response to s−i if and only if all pure strategies in
the support of si are best responses to s−i .

• A missing label i ∈ A1 means that a pure strategy i ∈ Supp(s1)
(xi > 0) was not a best response (Mi ,∗y < u). Analogously for i ∈ A2.
Then, s is not NE.

• If all labels appear, then s1 and s2 are mutually best responses, as each
pure strategy is a best response or is not in the support.
Then, s is NE.



NE and Best response polyhedra

• What are the labels (and Best response polyhedra) for?

• They help us identify NE in G !

Proposition 2.27

A strategy profile s with u = u1(s) and v = u2(s) is NE of G iff the pair
((x , v), (y , u)) ∈ P × Q is completely labeled, that is, every label
i ∈ A1 ∪ A2 appears as a label of either (x , v) or (y , u).

• Proof: By the Best response condition, for every player i ∈ P , a mixed
strategy si is a best response to s−i if and only if all pure strategies in
the support of si are best responses to s−i .

• A missing label i ∈ A1 means that a pure strategy i ∈ Supp(s1)
(xi > 0) was not a best response (Mi ,∗y < u). Analogously for i ∈ A2.
Then, s is not NE.

• If all labels appear, then s1 and s2 are mutually best responses, as each
pure strategy is a best response or is not in the support.
Then, s is NE.



NE and Best response polyhedra

• What are the labels (and Best response polyhedra) for?

• They help us identify NE in G !

Proposition 2.27

A strategy profile s with u = u1(s) and v = u2(s) is NE of G iff the pair
((x , v), (y , u)) ∈ P × Q is completely labeled, that is, every label
i ∈ A1 ∪ A2 appears as a label of either (x , v) or (y , u).

• Proof: By the Best response condition, for every player i ∈ P , a mixed
strategy si is a best response to s−i if and only if all pure strategies in
the support of si are best responses to s−i .

• A missing label i ∈ A1 means that a pure strategy i ∈ Supp(s1)
(xi > 0) was not a best response (Mi ,∗y < u). Analogously for i ∈ A2.
Then, s is not NE.

• If all labels appear, then s1 and s2 are mutually best responses, as each
pure strategy is a best response or is not in the support.
Then, s is NE.



NE and Best response polyhedra

• What are the labels (and Best response polyhedra) for?

• They help us identify NE in G !

Proposition 2.27

A strategy profile s with u = u1(s) and v = u2(s) is NE of G iff the pair
((x , v), (y , u)) ∈ P × Q is completely labeled, that is, every label
i ∈ A1 ∪ A2 appears as a label of either (x , v) or (y , u).

• Proof:

By the Best response condition, for every player i ∈ P , a mixed
strategy si is a best response to s−i if and only if all pure strategies in
the support of si are best responses to s−i .

• A missing label i ∈ A1 means that a pure strategy i ∈ Supp(s1)
(xi > 0) was not a best response (Mi ,∗y < u). Analogously for i ∈ A2.
Then, s is not NE.

• If all labels appear, then s1 and s2 are mutually best responses, as each
pure strategy is a best response or is not in the support.
Then, s is NE.



NE and Best response polyhedra

• What are the labels (and Best response polyhedra) for?

• They help us identify NE in G !

Proposition 2.27

A strategy profile s with u = u1(s) and v = u2(s) is NE of G iff the pair
((x , v), (y , u)) ∈ P × Q is completely labeled, that is, every label
i ∈ A1 ∪ A2 appears as a label of either (x , v) or (y , u).

• Proof: By the Best response condition, for every player i ∈ P , a mixed
strategy si is a best response to s−i if and only if all pure strategies in
the support of si are best responses to s−i .

• A missing label i ∈ A1 means that a pure strategy i ∈ Supp(s1)
(xi > 0) was not a best response (Mi ,∗y < u). Analogously for i ∈ A2.
Then, s is not NE.

• If all labels appear, then s1 and s2 are mutually best responses, as each
pure strategy is a best response or is not in the support.
Then, s is NE.



NE and Best response polyhedra

• What are the labels (and Best response polyhedra) for?

• They help us identify NE in G !

Proposition 2.27

A strategy profile s with u = u1(s) and v = u2(s) is NE of G iff the pair
((x , v), (y , u)) ∈ P × Q is completely labeled, that is, every label
i ∈ A1 ∪ A2 appears as a label of either (x , v) or (y , u).

• Proof: By the Best response condition, for every player i ∈ P , a mixed
strategy si is a best response to s−i if and only if all pure strategies in
the support of si are best responses to s−i .

• A missing label i ∈ A1 means that a pure strategy i ∈ Supp(s1)
(xi > 0) was not a best response (Mi ,∗y < u).

Analogously for i ∈ A2.
Then, s is not NE.

• If all labels appear, then s1 and s2 are mutually best responses, as each
pure strategy is a best response or is not in the support.
Then, s is NE.



NE and Best response polyhedra

• What are the labels (and Best response polyhedra) for?

• They help us identify NE in G !

Proposition 2.27

A strategy profile s with u = u1(s) and v = u2(s) is NE of G iff the pair
((x , v), (y , u)) ∈ P × Q is completely labeled, that is, every label
i ∈ A1 ∪ A2 appears as a label of either (x , v) or (y , u).

• Proof: By the Best response condition, for every player i ∈ P , a mixed
strategy si is a best response to s−i if and only if all pure strategies in
the support of si are best responses to s−i .

• A missing label i ∈ A1 means that a pure strategy i ∈ Supp(s1)
(xi > 0) was not a best response (Mi ,∗y < u). Analogously for i ∈ A2.

Then, s is not NE.

• If all labels appear, then s1 and s2 are mutually best responses, as each
pure strategy is a best response or is not in the support.
Then, s is NE.



NE and Best response polyhedra

• What are the labels (and Best response polyhedra) for?

• They help us identify NE in G !

Proposition 2.27

A strategy profile s with u = u1(s) and v = u2(s) is NE of G iff the pair
((x , v), (y , u)) ∈ P × Q is completely labeled, that is, every label
i ∈ A1 ∪ A2 appears as a label of either (x , v) or (y , u).

• Proof: By the Best response condition, for every player i ∈ P , a mixed
strategy si is a best response to s−i if and only if all pure strategies in
the support of si are best responses to s−i .

• A missing label i ∈ A1 means that a pure strategy i ∈ Supp(s1)
(xi > 0) was not a best response (Mi ,∗y < u). Analogously for i ∈ A2.
Then, s is not NE.

• If all labels appear, then s1 and s2 are mutually best responses, as each
pure strategy is a best response or is not in the support.
Then, s is NE.



NE and Best response polyhedra

• What are the labels (and Best response polyhedra) for?

• They help us identify NE in G !

Proposition 2.27

A strategy profile s with u = u1(s) and v = u2(s) is NE of G iff the pair
((x , v), (y , u)) ∈ P × Q is completely labeled, that is, every label
i ∈ A1 ∪ A2 appears as a label of either (x , v) or (y , u).

• Proof: By the Best response condition, for every player i ∈ P , a mixed
strategy si is a best response to s−i if and only if all pure strategies in
the support of si are best responses to s−i .

• A missing label i ∈ A1 means that a pure strategy i ∈ Supp(s1)
(xi > 0) was not a best response (Mi ,∗y < u). Analogously for i ∈ A2.
Then, s is not NE.

• If all labels appear, then s1 and s2 are mutually best responses, as each
pure strategy is a best response or is not in the support.

Then, s is NE.



NE and Best response polyhedra

• What are the labels (and Best response polyhedra) for?

• They help us identify NE in G !

Proposition 2.27

A strategy profile s with u = u1(s) and v = u2(s) is NE of G iff the pair
((x , v), (y , u)) ∈ P × Q is completely labeled, that is, every label
i ∈ A1 ∪ A2 appears as a label of either (x , v) or (y , u).

• Proof: By the Best response condition, for every player i ∈ P , a mixed
strategy si is a best response to s−i if and only if all pure strategies in
the support of si are best responses to s−i .

• A missing label i ∈ A1 means that a pure strategy i ∈ Supp(s1)
(xi > 0) was not a best response (Mi ,∗y < u). Analogously for i ∈ A2.
Then, s is not NE.

• If all labels appear, then s1 and s2 are mutually best responses, as each
pure strategy is a best response or is not in the support.
Then, s is NE.



NE and Best response polyhedra

• What are the labels (and Best response polyhedra) for?

• They help us identify NE in G !

Proposition 2.27

A strategy profile s with u = u1(s) and v = u2(s) is NE of G iff the pair
((x , v), (y , u)) ∈ P × Q is completely labeled, that is, every label
i ∈ A1 ∪ A2 appears as a label of either (x , v) or (y , u).

• Proof: By the Best response condition, for every player i ∈ P , a mixed
strategy si is a best response to s−i if and only if all pure strategies in
the support of si are best responses to s−i .

• A missing label i ∈ A1 means that a pure strategy i ∈ Supp(s1)
(xi > 0) was not a best response (Mi ,∗y < u). Analogously for i ∈ A2.
Then, s is not NE.

• If all labels appear, then s1 and s2 are mutually best responses, as each
pure strategy is a best response or is not in the support.
Then, s is NE.



Best response polytopes

• That is nice. But we will make it even nicer!

• The best response polyhedra have some unnecessary complications
(they are unbounded and have u and v in their coordinates). We get
rid of these under certain mild assumptions.

• We assume that M and N⊤ are non-negative and have no zero column.
(simply add a large constant to the payoffs)

• Then, we can divide each inequality N⊤
i ,∗x ≤ v with v , treating xi/v as

a new variable, and do the same for Q. This normalizes the payoffs to 1
and we get the following polytopes.

• The (normalized) best response polytope for player 1 in G is a polytope

P = {x ∈ Rm : x ≥ 0,N⊤x ≤ 1}.

Similarly, the best response polytope for player 2 in G is a polytope

Q = {y ∈ Rn : y ≥ 0,My ≤ 1}.



Best response polytopes

• That is nice.

But we will make it even nicer!

• The best response polyhedra have some unnecessary complications
(they are unbounded and have u and v in their coordinates). We get
rid of these under certain mild assumptions.

• We assume that M and N⊤ are non-negative and have no zero column.
(simply add a large constant to the payoffs)

• Then, we can divide each inequality N⊤
i ,∗x ≤ v with v , treating xi/v as

a new variable, and do the same for Q. This normalizes the payoffs to 1
and we get the following polytopes.

• The (normalized) best response polytope for player 1 in G is a polytope

P = {x ∈ Rm : x ≥ 0,N⊤x ≤ 1}.

Similarly, the best response polytope for player 2 in G is a polytope

Q = {y ∈ Rn : y ≥ 0,My ≤ 1}.



Best response polytopes

• That is nice. But we will make it even nicer!

• The best response polyhedra have some unnecessary complications
(they are unbounded and have u and v in their coordinates). We get
rid of these under certain mild assumptions.

• We assume that M and N⊤ are non-negative and have no zero column.
(simply add a large constant to the payoffs)

• Then, we can divide each inequality N⊤
i ,∗x ≤ v with v , treating xi/v as

a new variable, and do the same for Q. This normalizes the payoffs to 1
and we get the following polytopes.

• The (normalized) best response polytope for player 1 in G is a polytope

P = {x ∈ Rm : x ≥ 0,N⊤x ≤ 1}.

Similarly, the best response polytope for player 2 in G is a polytope

Q = {y ∈ Rn : y ≥ 0,My ≤ 1}.



Best response polytopes

• That is nice. But we will make it even nicer!

• The best response polyhedra have some unnecessary complications
(they are unbounded and have u and v in their coordinates).

We get
rid of these under certain mild assumptions.

• We assume that M and N⊤ are non-negative and have no zero column.
(simply add a large constant to the payoffs)

• Then, we can divide each inequality N⊤
i ,∗x ≤ v with v , treating xi/v as

a new variable, and do the same for Q. This normalizes the payoffs to 1
and we get the following polytopes.

• The (normalized) best response polytope for player 1 in G is a polytope

P = {x ∈ Rm : x ≥ 0,N⊤x ≤ 1}.

Similarly, the best response polytope for player 2 in G is a polytope

Q = {y ∈ Rn : y ≥ 0,My ≤ 1}.



Best response polytopes

• That is nice. But we will make it even nicer!

• The best response polyhedra have some unnecessary complications
(they are unbounded and have u and v in their coordinates). We get
rid of these under certain mild assumptions.

• We assume that M and N⊤ are non-negative and have no zero column.
(simply add a large constant to the payoffs)

• Then, we can divide each inequality N⊤
i ,∗x ≤ v with v , treating xi/v as

a new variable, and do the same for Q. This normalizes the payoffs to 1
and we get the following polytopes.

• The (normalized) best response polytope for player 1 in G is a polytope

P = {x ∈ Rm : x ≥ 0,N⊤x ≤ 1}.

Similarly, the best response polytope for player 2 in G is a polytope

Q = {y ∈ Rn : y ≥ 0,My ≤ 1}.



Best response polytopes

• That is nice. But we will make it even nicer!

• The best response polyhedra have some unnecessary complications
(they are unbounded and have u and v in their coordinates). We get
rid of these under certain mild assumptions.

• We assume that M and N⊤ are non-negative and have no zero column.

(simply add a large constant to the payoffs)

• Then, we can divide each inequality N⊤
i ,∗x ≤ v with v , treating xi/v as

a new variable, and do the same for Q. This normalizes the payoffs to 1
and we get the following polytopes.

• The (normalized) best response polytope for player 1 in G is a polytope

P = {x ∈ Rm : x ≥ 0,N⊤x ≤ 1}.

Similarly, the best response polytope for player 2 in G is a polytope

Q = {y ∈ Rn : y ≥ 0,My ≤ 1}.



Best response polytopes

• That is nice. But we will make it even nicer!

• The best response polyhedra have some unnecessary complications
(they are unbounded and have u and v in their coordinates). We get
rid of these under certain mild assumptions.

• We assume that M and N⊤ are non-negative and have no zero column.
(simply add a large constant to the payoffs)

• Then, we can divide each inequality N⊤
i ,∗x ≤ v with v , treating xi/v as

a new variable, and do the same for Q. This normalizes the payoffs to 1
and we get the following polytopes.

• The (normalized) best response polytope for player 1 in G is a polytope

P = {x ∈ Rm : x ≥ 0,N⊤x ≤ 1}.

Similarly, the best response polytope for player 2 in G is a polytope

Q = {y ∈ Rn : y ≥ 0,My ≤ 1}.



Best response polytopes

• That is nice. But we will make it even nicer!

• The best response polyhedra have some unnecessary complications
(they are unbounded and have u and v in their coordinates). We get
rid of these under certain mild assumptions.

• We assume that M and N⊤ are non-negative and have no zero column.
(simply add a large constant to the payoffs)

• Then, we can divide each inequality N⊤
i ,∗x ≤ v with v , treating xi/v as

a new variable, and do the same for Q.

This normalizes the payoffs to 1
and we get the following polytopes.

• The (normalized) best response polytope for player 1 in G is a polytope

P = {x ∈ Rm : x ≥ 0,N⊤x ≤ 1}.

Similarly, the best response polytope for player 2 in G is a polytope

Q = {y ∈ Rn : y ≥ 0,My ≤ 1}.



Best response polytopes

• That is nice. But we will make it even nicer!

• The best response polyhedra have some unnecessary complications
(they are unbounded and have u and v in their coordinates). We get
rid of these under certain mild assumptions.

• We assume that M and N⊤ are non-negative and have no zero column.
(simply add a large constant to the payoffs)

• Then, we can divide each inequality N⊤
i ,∗x ≤ v with v , treating xi/v as

a new variable, and do the same for Q. This normalizes the payoffs to 1
and we get the following polytopes.

• The (normalized) best response polytope for player 1 in G is a polytope

P = {x ∈ Rm : x ≥ 0,N⊤x ≤ 1}.

Similarly, the best response polytope for player 2 in G is a polytope

Q = {y ∈ Rn : y ≥ 0,My ≤ 1}.



Best response polytopes

• That is nice. But we will make it even nicer!

• The best response polyhedra have some unnecessary complications
(they are unbounded and have u and v in their coordinates). We get
rid of these under certain mild assumptions.

• We assume that M and N⊤ are non-negative and have no zero column.
(simply add a large constant to the payoffs)

• Then, we can divide each inequality N⊤
i ,∗x ≤ v with v , treating xi/v as

a new variable, and do the same for Q. This normalizes the payoffs to 1
and we get the following polytopes.

• The (normalized) best response polytope for player 1 in G is a polytope

P = {x ∈ Rm : x ≥ 0,N⊤x ≤ 1}.

Similarly, the best response polytope for player 2 in G is a polytope

Q = {y ∈ Rn : y ≥ 0,My ≤ 1}.



Best response polytopes

• That is nice. But we will make it even nicer!

• The best response polyhedra have some unnecessary complications
(they are unbounded and have u and v in their coordinates). We get
rid of these under certain mild assumptions.

• We assume that M and N⊤ are non-negative and have no zero column.
(simply add a large constant to the payoffs)

• Then, we can divide each inequality N⊤
i ,∗x ≤ v with v , treating xi/v as

a new variable, and do the same for Q. This normalizes the payoffs to 1
and we get the following polytopes.

• The (normalized) best response polytope for player 1 in G is a polytope

P = {x ∈ Rm : x ≥ 0,N⊤x ≤ 1}.

Similarly, the best response polytope for player 2 in G is a polytope

Q = {y ∈ Rn : y ≥ 0,My ≤ 1}.



Best response polytopes P and Q for the Battle of sexes

P
(0, 0) (1, 0)

(1, 1
2
)(0, 1

2
)

2

1

4

3
Q

(0, 0) (1
2
, 0)

(1
2
, 1)(0, 1)

4

3 1

2

P = {(x1, x2) ∈ R2 : x1, x2 ≥ 0, x1 ≤ 1, 2x2 ≤ 1}

Q = {(y3, y4) ∈ R2 : y3, y4 ≥ 0, 2y3 ≤ 1, y4 ≤ 1}.



Best response polytopes P and Q for the Battle of sexes

P
(0, 0) (1, 0)

(1, 1
2
)(0, 1

2
)

2

1

4

3
Q

(0, 0) (1
2
, 0)

(1
2
, 1)(0, 1)

4

3 1

2

P = {(x1, x2) ∈ R2 : x1, x2 ≥ 0, x1 ≤ 1, 2x2 ≤ 1}

Q = {(y3, y4) ∈ R2 : y3, y4 ≥ 0, 2y3 ≤ 1, y4 ≤ 1}.



What did we get?

• The inequalities have the same meaning: if xi ≥ 0 is binding, then
i ∈ A1 is not in the support and if N⊤

j ,∗x ≤ 1 is binding, then j ∈ A2 is a
best response to s1. Analogously for Q.

• From the assumption on M and N , the polyhedra P and Q are
bounded (are polytopes) and have dimensions m and n.

• Disadvantage: coordinates of x and y do not sum up to 1. We can
rescale to x/(1⊤x) and y/(1⊤y).

• The polytope P is in a one-to-one correspondence with P \ {0} under
the projective transformation (x , v) 7→ x/v . Similarly Q and Q \ {0}.
◦ Projective transformations preserve incidences, so the labels stay
the same.

Corollary 2.30

A strategy profile (s1, s2) with mixed strategy vectors x and y is NE of G if
and only if the point (x/u2(s), y/u1(s)) ∈ P × Q \ {(0, 0)} is completely
labeled.



What did we get?

• The inequalities have the same meaning: if xi ≥ 0 is binding, then
i ∈ A1 is not in the support

and if N⊤
j ,∗x ≤ 1 is binding, then j ∈ A2 is a

best response to s1. Analogously for Q.

• From the assumption on M and N , the polyhedra P and Q are
bounded (are polytopes) and have dimensions m and n.

• Disadvantage: coordinates of x and y do not sum up to 1. We can
rescale to x/(1⊤x) and y/(1⊤y).

• The polytope P is in a one-to-one correspondence with P \ {0} under
the projective transformation (x , v) 7→ x/v . Similarly Q and Q \ {0}.
◦ Projective transformations preserve incidences, so the labels stay
the same.

Corollary 2.30

A strategy profile (s1, s2) with mixed strategy vectors x and y is NE of G if
and only if the point (x/u2(s), y/u1(s)) ∈ P × Q \ {(0, 0)} is completely
labeled.



What did we get?

• The inequalities have the same meaning: if xi ≥ 0 is binding, then
i ∈ A1 is not in the support and if N⊤

j ,∗x ≤ 1 is binding, then j ∈ A2 is a
best response to s1.

Analogously for Q.

• From the assumption on M and N , the polyhedra P and Q are
bounded (are polytopes) and have dimensions m and n.

• Disadvantage: coordinates of x and y do not sum up to 1. We can
rescale to x/(1⊤x) and y/(1⊤y).

• The polytope P is in a one-to-one correspondence with P \ {0} under
the projective transformation (x , v) 7→ x/v . Similarly Q and Q \ {0}.
◦ Projective transformations preserve incidences, so the labels stay
the same.

Corollary 2.30

A strategy profile (s1, s2) with mixed strategy vectors x and y is NE of G if
and only if the point (x/u2(s), y/u1(s)) ∈ P × Q \ {(0, 0)} is completely
labeled.



What did we get?

• The inequalities have the same meaning: if xi ≥ 0 is binding, then
i ∈ A1 is not in the support and if N⊤

j ,∗x ≤ 1 is binding, then j ∈ A2 is a
best response to s1. Analogously for Q.

• From the assumption on M and N , the polyhedra P and Q are
bounded (are polytopes) and have dimensions m and n.

• Disadvantage: coordinates of x and y do not sum up to 1. We can
rescale to x/(1⊤x) and y/(1⊤y).

• The polytope P is in a one-to-one correspondence with P \ {0} under
the projective transformation (x , v) 7→ x/v . Similarly Q and Q \ {0}.
◦ Projective transformations preserve incidences, so the labels stay
the same.

Corollary 2.30

A strategy profile (s1, s2) with mixed strategy vectors x and y is NE of G if
and only if the point (x/u2(s), y/u1(s)) ∈ P × Q \ {(0, 0)} is completely
labeled.



What did we get?

• The inequalities have the same meaning: if xi ≥ 0 is binding, then
i ∈ A1 is not in the support and if N⊤

j ,∗x ≤ 1 is binding, then j ∈ A2 is a
best response to s1. Analogously for Q.

• From the assumption on M and N , the polyhedra P and Q are
bounded (are polytopes) and have dimensions m and n.

• Disadvantage: coordinates of x and y do not sum up to 1. We can
rescale to x/(1⊤x) and y/(1⊤y).

• The polytope P is in a one-to-one correspondence with P \ {0} under
the projective transformation (x , v) 7→ x/v . Similarly Q and Q \ {0}.
◦ Projective transformations preserve incidences, so the labels stay
the same.

Corollary 2.30

A strategy profile (s1, s2) with mixed strategy vectors x and y is NE of G if
and only if the point (x/u2(s), y/u1(s)) ∈ P × Q \ {(0, 0)} is completely
labeled.



What did we get?

• The inequalities have the same meaning: if xi ≥ 0 is binding, then
i ∈ A1 is not in the support and if N⊤

j ,∗x ≤ 1 is binding, then j ∈ A2 is a
best response to s1. Analogously for Q.

• From the assumption on M and N , the polyhedra P and Q are
bounded (are polytopes) and have dimensions m and n.

• Disadvantage: coordinates of x and y do not sum up to 1.

We can
rescale to x/(1⊤x) and y/(1⊤y).

• The polytope P is in a one-to-one correspondence with P \ {0} under
the projective transformation (x , v) 7→ x/v . Similarly Q and Q \ {0}.
◦ Projective transformations preserve incidences, so the labels stay
the same.

Corollary 2.30

A strategy profile (s1, s2) with mixed strategy vectors x and y is NE of G if
and only if the point (x/u2(s), y/u1(s)) ∈ P × Q \ {(0, 0)} is completely
labeled.



What did we get?

• The inequalities have the same meaning: if xi ≥ 0 is binding, then
i ∈ A1 is not in the support and if N⊤

j ,∗x ≤ 1 is binding, then j ∈ A2 is a
best response to s1. Analogously for Q.

• From the assumption on M and N , the polyhedra P and Q are
bounded (are polytopes) and have dimensions m and n.

• Disadvantage: coordinates of x and y do not sum up to 1. We can
rescale to x/(1⊤x) and y/(1⊤y).

• The polytope P is in a one-to-one correspondence with P \ {0} under
the projective transformation (x , v) 7→ x/v . Similarly Q and Q \ {0}.
◦ Projective transformations preserve incidences, so the labels stay
the same.

Corollary 2.30

A strategy profile (s1, s2) with mixed strategy vectors x and y is NE of G if
and only if the point (x/u2(s), y/u1(s)) ∈ P × Q \ {(0, 0)} is completely
labeled.



What did we get?

• The inequalities have the same meaning: if xi ≥ 0 is binding, then
i ∈ A1 is not in the support and if N⊤

j ,∗x ≤ 1 is binding, then j ∈ A2 is a
best response to s1. Analogously for Q.

• From the assumption on M and N , the polyhedra P and Q are
bounded (are polytopes) and have dimensions m and n.

• Disadvantage: coordinates of x and y do not sum up to 1. We can
rescale to x/(1⊤x) and y/(1⊤y).

• The polytope P is in a one-to-one correspondence with P \ {0} under
the projective transformation (x , v) 7→ x/v .

Similarly Q and Q \ {0}.
◦ Projective transformations preserve incidences, so the labels stay
the same.

Corollary 2.30

A strategy profile (s1, s2) with mixed strategy vectors x and y is NE of G if
and only if the point (x/u2(s), y/u1(s)) ∈ P × Q \ {(0, 0)} is completely
labeled.



What did we get?

• The inequalities have the same meaning: if xi ≥ 0 is binding, then
i ∈ A1 is not in the support and if N⊤

j ,∗x ≤ 1 is binding, then j ∈ A2 is a
best response to s1. Analogously for Q.

• From the assumption on M and N , the polyhedra P and Q are
bounded (are polytopes) and have dimensions m and n.

• Disadvantage: coordinates of x and y do not sum up to 1. We can
rescale to x/(1⊤x) and y/(1⊤y).

• The polytope P is in a one-to-one correspondence with P \ {0} under
the projective transformation (x , v) 7→ x/v . Similarly Q and Q \ {0}.

◦ Projective transformations preserve incidences, so the labels stay
the same.

Corollary 2.30

A strategy profile (s1, s2) with mixed strategy vectors x and y is NE of G if
and only if the point (x/u2(s), y/u1(s)) ∈ P × Q \ {(0, 0)} is completely
labeled.



What did we get?

• The inequalities have the same meaning: if xi ≥ 0 is binding, then
i ∈ A1 is not in the support and if N⊤

j ,∗x ≤ 1 is binding, then j ∈ A2 is a
best response to s1. Analogously for Q.

• From the assumption on M and N , the polyhedra P and Q are
bounded (are polytopes) and have dimensions m and n.

• Disadvantage: coordinates of x and y do not sum up to 1. We can
rescale to x/(1⊤x) and y/(1⊤y).

• The polytope P is in a one-to-one correspondence with P \ {0} under
the projective transformation (x , v) 7→ x/v . Similarly Q and Q \ {0}.
◦ Projective transformations preserve incidences, so the labels stay
the same.

Corollary 2.30

A strategy profile (s1, s2) with mixed strategy vectors x and y is NE of G if
and only if the point (x/u2(s), y/u1(s)) ∈ P × Q \ {(0, 0)} is completely
labeled.



What did we get?

• The inequalities have the same meaning: if xi ≥ 0 is binding, then
i ∈ A1 is not in the support and if N⊤

j ,∗x ≤ 1 is binding, then j ∈ A2 is a
best response to s1. Analogously for Q.

• From the assumption on M and N , the polyhedra P and Q are
bounded (are polytopes) and have dimensions m and n.

• Disadvantage: coordinates of x and y do not sum up to 1. We can
rescale to x/(1⊤x) and y/(1⊤y).

• The polytope P is in a one-to-one correspondence with P \ {0} under
the projective transformation (x , v) 7→ x/v . Similarly Q and Q \ {0}.
◦ Projective transformations preserve incidences, so the labels stay
the same.

Corollary 2.30

A strategy profile (s1, s2) with mixed strategy vectors x and y is NE of G if
and only if the point (x/u2(s), y/u1(s)) ∈ P × Q \ {(0, 0)} is completely
labeled.



NE in nondegenerate games

• Recall that a bimatrix game is nondegenerate if there are at most k
pure best responses to every mixed strategy with support of size k .

• In these games NE correspond to pairs of completely labeled vertices.

◦ Since G is nondegenerate, each point of P has at most m labels.
This is because if x has support of size k , then x has m − k labels
in A1 and so if x had more than m labels, then x would have more
than k best responses in A2. Analogously, each point of Q has at
most n labels.
◦ Thus, P and Q are both simple polytopes (each point of P or Q
contained in more than m or n facets has more than m or n labels).
◦ Since dim(P) = m and dim(Q) = n and P and Q are bounded,
only vertices of P and Q can have m and n labels.
◦ By Corollary 2.30, only vertices of P and Q can be NE.

• ⇒ Algorithm for finding NE: check all pairs of vertices and their labels!



NE in nondegenerate games

• Recall that a bimatrix game is nondegenerate if there are at most k
pure best responses to every mixed strategy with support of size k .

• In these games NE correspond to pairs of completely labeled vertices.

◦ Since G is nondegenerate, each point of P has at most m labels.
This is because if x has support of size k , then x has m − k labels
in A1 and so if x had more than m labels, then x would have more
than k best responses in A2. Analogously, each point of Q has at
most n labels.
◦ Thus, P and Q are both simple polytopes (each point of P or Q
contained in more than m or n facets has more than m or n labels).
◦ Since dim(P) = m and dim(Q) = n and P and Q are bounded,
only vertices of P and Q can have m and n labels.
◦ By Corollary 2.30, only vertices of P and Q can be NE.

• ⇒ Algorithm for finding NE: check all pairs of vertices and their labels!



NE in nondegenerate games

• Recall that a bimatrix game is nondegenerate if there are at most k
pure best responses to every mixed strategy with support of size k .

• In these games NE correspond to pairs of completely labeled vertices.

◦ Since G is nondegenerate, each point of P has at most m labels.
This is because if x has support of size k , then x has m − k labels
in A1 and so if x had more than m labels, then x would have more
than k best responses in A2. Analogously, each point of Q has at
most n labels.
◦ Thus, P and Q are both simple polytopes (each point of P or Q
contained in more than m or n facets has more than m or n labels).
◦ Since dim(P) = m and dim(Q) = n and P and Q are bounded,
only vertices of P and Q can have m and n labels.
◦ By Corollary 2.30, only vertices of P and Q can be NE.

• ⇒ Algorithm for finding NE: check all pairs of vertices and their labels!



NE in nondegenerate games

• Recall that a bimatrix game is nondegenerate if there are at most k
pure best responses to every mixed strategy with support of size k .

• In these games NE correspond to pairs of completely labeled vertices.

◦ Since G is nondegenerate, each point of P has at most m labels.

This is because if x has support of size k , then x has m − k labels
in A1 and so if x had more than m labels, then x would have more
than k best responses in A2. Analogously, each point of Q has at
most n labels.
◦ Thus, P and Q are both simple polytopes (each point of P or Q
contained in more than m or n facets has more than m or n labels).
◦ Since dim(P) = m and dim(Q) = n and P and Q are bounded,
only vertices of P and Q can have m and n labels.
◦ By Corollary 2.30, only vertices of P and Q can be NE.

• ⇒ Algorithm for finding NE: check all pairs of vertices and their labels!



NE in nondegenerate games

• Recall that a bimatrix game is nondegenerate if there are at most k
pure best responses to every mixed strategy with support of size k .

• In these games NE correspond to pairs of completely labeled vertices.

◦ Since G is nondegenerate, each point of P has at most m labels.
This is because if x has support of size k , then x has m − k labels
in A1

and so if x had more than m labels, then x would have more
than k best responses in A2. Analogously, each point of Q has at
most n labels.
◦ Thus, P and Q are both simple polytopes (each point of P or Q
contained in more than m or n facets has more than m or n labels).
◦ Since dim(P) = m and dim(Q) = n and P and Q are bounded,
only vertices of P and Q can have m and n labels.
◦ By Corollary 2.30, only vertices of P and Q can be NE.

• ⇒ Algorithm for finding NE: check all pairs of vertices and their labels!



NE in nondegenerate games

• Recall that a bimatrix game is nondegenerate if there are at most k
pure best responses to every mixed strategy with support of size k .

• In these games NE correspond to pairs of completely labeled vertices.

◦ Since G is nondegenerate, each point of P has at most m labels.
This is because if x has support of size k , then x has m − k labels
in A1 and so if x had more than m labels, then x would have more
than k best responses in A2.

Analogously, each point of Q has at
most n labels.
◦ Thus, P and Q are both simple polytopes (each point of P or Q
contained in more than m or n facets has more than m or n labels).
◦ Since dim(P) = m and dim(Q) = n and P and Q are bounded,
only vertices of P and Q can have m and n labels.
◦ By Corollary 2.30, only vertices of P and Q can be NE.

• ⇒ Algorithm for finding NE: check all pairs of vertices and their labels!



NE in nondegenerate games

• Recall that a bimatrix game is nondegenerate if there are at most k
pure best responses to every mixed strategy with support of size k .

• In these games NE correspond to pairs of completely labeled vertices.

◦ Since G is nondegenerate, each point of P has at most m labels.
This is because if x has support of size k , then x has m − k labels
in A1 and so if x had more than m labels, then x would have more
than k best responses in A2. Analogously, each point of Q has at
most n labels.

◦ Thus, P and Q are both simple polytopes (each point of P or Q
contained in more than m or n facets has more than m or n labels).
◦ Since dim(P) = m and dim(Q) = n and P and Q are bounded,
only vertices of P and Q can have m and n labels.
◦ By Corollary 2.30, only vertices of P and Q can be NE.

• ⇒ Algorithm for finding NE: check all pairs of vertices and their labels!



NE in nondegenerate games

• Recall that a bimatrix game is nondegenerate if there are at most k
pure best responses to every mixed strategy with support of size k .

• In these games NE correspond to pairs of completely labeled vertices.

◦ Since G is nondegenerate, each point of P has at most m labels.
This is because if x has support of size k , then x has m − k labels
in A1 and so if x had more than m labels, then x would have more
than k best responses in A2. Analogously, each point of Q has at
most n labels.
◦ Thus, P and Q are both simple polytopes

(each point of P or Q
contained in more than m or n facets has more than m or n labels).
◦ Since dim(P) = m and dim(Q) = n and P and Q are bounded,
only vertices of P and Q can have m and n labels.
◦ By Corollary 2.30, only vertices of P and Q can be NE.

• ⇒ Algorithm for finding NE: check all pairs of vertices and their labels!



NE in nondegenerate games

• Recall that a bimatrix game is nondegenerate if there are at most k
pure best responses to every mixed strategy with support of size k .

• In these games NE correspond to pairs of completely labeled vertices.

◦ Since G is nondegenerate, each point of P has at most m labels.
This is because if x has support of size k , then x has m − k labels
in A1 and so if x had more than m labels, then x would have more
than k best responses in A2. Analogously, each point of Q has at
most n labels.
◦ Thus, P and Q are both simple polytopes (each point of P or Q
contained in more than m or n facets has more than m or n labels).

◦ Since dim(P) = m and dim(Q) = n and P and Q are bounded,
only vertices of P and Q can have m and n labels.
◦ By Corollary 2.30, only vertices of P and Q can be NE.

• ⇒ Algorithm for finding NE: check all pairs of vertices and their labels!



NE in nondegenerate games

• Recall that a bimatrix game is nondegenerate if there are at most k
pure best responses to every mixed strategy with support of size k .

• In these games NE correspond to pairs of completely labeled vertices.

◦ Since G is nondegenerate, each point of P has at most m labels.
This is because if x has support of size k , then x has m − k labels
in A1 and so if x had more than m labels, then x would have more
than k best responses in A2. Analogously, each point of Q has at
most n labels.
◦ Thus, P and Q are both simple polytopes (each point of P or Q
contained in more than m or n facets has more than m or n labels).
◦ Since dim(P) = m and dim(Q) = n and P and Q are bounded,
only vertices of P and Q can have m and n labels.

◦ By Corollary 2.30, only vertices of P and Q can be NE.

• ⇒ Algorithm for finding NE: check all pairs of vertices and their labels!



NE in nondegenerate games

• Recall that a bimatrix game is nondegenerate if there are at most k
pure best responses to every mixed strategy with support of size k .

• In these games NE correspond to pairs of completely labeled vertices.

◦ Since G is nondegenerate, each point of P has at most m labels.
This is because if x has support of size k , then x has m − k labels
in A1 and so if x had more than m labels, then x would have more
than k best responses in A2. Analogously, each point of Q has at
most n labels.
◦ Thus, P and Q are both simple polytopes (each point of P or Q
contained in more than m or n facets has more than m or n labels).
◦ Since dim(P) = m and dim(Q) = n and P and Q are bounded,
only vertices of P and Q can have m and n labels.
◦ By Corollary 2.30, only vertices of P and Q can be NE.

• ⇒ Algorithm for finding NE: check all pairs of vertices and their labels!



NE in nondegenerate games

• Recall that a bimatrix game is nondegenerate if there are at most k
pure best responses to every mixed strategy with support of size k .

• In these games NE correspond to pairs of completely labeled vertices.

◦ Since G is nondegenerate, each point of P has at most m labels.
This is because if x has support of size k , then x has m − k labels
in A1 and so if x had more than m labels, then x would have more
than k best responses in A2. Analogously, each point of Q has at
most n labels.
◦ Thus, P and Q are both simple polytopes (each point of P or Q
contained in more than m or n facets has more than m or n labels).
◦ Since dim(P) = m and dim(Q) = n and P and Q are bounded,
only vertices of P and Q can have m and n labels.
◦ By Corollary 2.30, only vertices of P and Q can be NE.

• ⇒ Algorithm for finding NE: check all pairs of vertices and their labels!



Algorithm for finding NE with vertex enumeration

Algorithm 0.1: Vertex enumeration(G )

Input : A nondegenerate bimatrix game G .
Output : All Nash equilibria of G .
for each pair (x , y) of vertices from (P \ {0})× (Q \ {0}){

if (x , y) is completely labeled,

then return (x/(1⊤x), y/(1⊤y)) as a Nash equilibrium

• All vertices of a simple polytope in Rd with v vertices and N defining
inequalities can be found in time O(dNv) (Avis and Fukuda).

• However, if m = n, the best response polytopes can have cn vertices for
some constant c with 1 < c < 2.9.



Algorithm for finding NE with vertex enumeration

Algorithm 0.2: Vertex enumeration(G )

Input : A nondegenerate bimatrix game G .
Output : All Nash equilibria of G .
for each pair (x , y) of vertices from (P \ {0})× (Q \ {0}){

if (x , y) is completely labeled,

then return (x/(1⊤x), y/(1⊤y)) as a Nash equilibrium

• All vertices of a simple polytope in Rd with v vertices and N defining
inequalities can be found in time O(dNv) (Avis and Fukuda).

• However, if m = n, the best response polytopes can have cn vertices for
some constant c with 1 < c < 2.9.



Algorithm for finding NE with vertex enumeration

Algorithm 0.3: Vertex enumeration(G )

Input : A nondegenerate bimatrix game G .
Output : All Nash equilibria of G .
for each pair (x , y) of vertices from (P \ {0})× (Q \ {0}){

if (x , y) is completely labeled,

then return (x/(1⊤x), y/(1⊤y)) as a Nash equilibrium

• All vertices of a simple polytope in Rd with v vertices and N defining
inequalities can be found in time O(dNv) (Avis and Fukuda).

• However, if m = n, the best response polytopes can have cn vertices for
some constant c with 1 < c < 2.9.



Algorithm for finding NE with vertex enumeration

Algorithm 0.4: Vertex enumeration(G )

Input : A nondegenerate bimatrix game G .
Output : All Nash equilibria of G .
for each pair (x , y) of vertices from (P \ {0})× (Q \ {0}){

if (x , y) is completely labeled,

then return (x/(1⊤x), y/(1⊤y)) as a Nash equilibrium

• All vertices of a simple polytope in Rd with v vertices and N defining
inequalities can be found in time O(dNv) (Avis and Fukuda).

• However, if m = n, the best response polytopes can have cn vertices for
some constant c with 1 < c < 2.9.



Polytopes can be weird and complex!

Figure: Schlegel diagram for the 120-cell.

Source: https://en.wikipedia.org/



Algorithm for finding NE with vertex enumeration

Algorithm 0.5: Vertex enumeration(G )

Input : A nondegenerate bimatrix game G .
Output : All Nash equilibria of G .
for each pair (x , y) of vertices from (P \ {0})× (Q \ {0}){

if (x , y) is completely labeled,

then return (x/(1⊤x), y/(1⊤y)) as a Nash equilibrium

• All vertices of a simple polytope in Rd with v vertices and N defining
inequalities can be found in time O(dNv) (Avis and Fukuda).

• However, if m = n, the best response polytopes can have cn vertices for
some constant c with 1 < c < 2.9.

• We can speed up the search by performing a walk on
(P \ {0})× (Q \ {0}) guided by the labels.



Algorithm for finding NE with vertex enumeration

Algorithm 0.6: Vertex enumeration(G )

Input : A nondegenerate bimatrix game G .
Output : All Nash equilibria of G .
for each pair (x , y) of vertices from (P \ {0})× (Q \ {0}){

if (x , y) is completely labeled,

then return (x/(1⊤x), y/(1⊤y)) as a Nash equilibrium

• All vertices of a simple polytope in Rd with v vertices and N defining
inequalities can be found in time O(dNv) (Avis and Fukuda).

• However, if m = n, the best response polytopes can have cn vertices for
some constant c with 1 < c < 2.9.

• We can speed up the search by performing a walk on
(P \ {0})× (Q \ {0}) guided by the labels.



The Lemke–Howson algorithm

• One of the best algorithms for finding NE in bimatrix games.

• Discovered by Lemke and Howson in 1964.

Figure: Carlton E. Lemke (1920–2004) and J. T. Howson (1937–2022).
Source: https://oldurls.inf.ethz.ch



The Lemke–Howson algorithm

• One of the best algorithms for finding NE in bimatrix games.

• Discovered by Lemke and Howson in 1964.

Figure: Carlton E. Lemke (1920–2004) and J. T. Howson (1937–2022).
Source: https://oldurls.inf.ethz.ch



The Lemke–Howson algorithm

• One of the best algorithms for finding NE in bimatrix games.

• Discovered by Lemke and Howson in 1964.

Figure: Carlton E. Lemke (1920–2004) and J. T. Howson (1937–2022).
Source: https://oldurls.inf.ethz.ch



The Lemke–Howson algorithm

• One of the best algorithms for finding NE in bimatrix games.

• Discovered by Lemke and Howson in 1964.

Figure: Carlton E. Lemke (1920–2004) and J. T. Howson (1937–2022).
Source: https://oldurls.inf.ethz.ch



The Lemke–Howson algorithm explained

• Since P is simple and dim(P) = m, its vertices are incident to exactly
m facets and m edges. So each vertex of P has m labels and each edge
of P has m − 1 labels. Similarly for Q and n.
• Dropping a label l ∈ A1 ∪ A2 in a vertex x of P means traversing the
unique edge of P that is incident to x and has all m labels that x has
besides l . The other endpoint of this edge has the same labels as x ,
only l is replaced with a new label, which is said to be picked up.
Dropping and picking up a label in vertices of Q is defined analogously.
• The algorithm starts at (0, 0) and alternately follows edges of P and Q.
• At the first step, it chooses a label k ∈ A1 ∪ A2 and drops it. Then, a
new label l is picked up. This label l has a duplicate in the other
polytope. We drop the duplicate of l in the other polytope in the next
step, which leads to picking up a new label l ′. We iterate and stop
when l ′ = k .
• Duplicate label is either a new best response, which gets a positive
probability, or a pure strategy whose probability became 0 and we move
away from its best response facet.



The Lemke–Howson algorithm explained

• Since P is simple and dim(P) = m, its vertices are incident to exactly
m facets and m edges.

So each vertex of P has m labels and each edge
of P has m − 1 labels. Similarly for Q and n.
• Dropping a label l ∈ A1 ∪ A2 in a vertex x of P means traversing the
unique edge of P that is incident to x and has all m labels that x has
besides l . The other endpoint of this edge has the same labels as x ,
only l is replaced with a new label, which is said to be picked up.
Dropping and picking up a label in vertices of Q is defined analogously.
• The algorithm starts at (0, 0) and alternately follows edges of P and Q.
• At the first step, it chooses a label k ∈ A1 ∪ A2 and drops it. Then, a
new label l is picked up. This label l has a duplicate in the other
polytope. We drop the duplicate of l in the other polytope in the next
step, which leads to picking up a new label l ′. We iterate and stop
when l ′ = k .
• Duplicate label is either a new best response, which gets a positive
probability, or a pure strategy whose probability became 0 and we move
away from its best response facet.



The Lemke–Howson algorithm explained

• Since P is simple and dim(P) = m, its vertices are incident to exactly
m facets and m edges. So each vertex of P has m labels and each edge
of P has m − 1 labels.

Similarly for Q and n.
• Dropping a label l ∈ A1 ∪ A2 in a vertex x of P means traversing the
unique edge of P that is incident to x and has all m labels that x has
besides l . The other endpoint of this edge has the same labels as x ,
only l is replaced with a new label, which is said to be picked up.
Dropping and picking up a label in vertices of Q is defined analogously.
• The algorithm starts at (0, 0) and alternately follows edges of P and Q.
• At the first step, it chooses a label k ∈ A1 ∪ A2 and drops it. Then, a
new label l is picked up. This label l has a duplicate in the other
polytope. We drop the duplicate of l in the other polytope in the next
step, which leads to picking up a new label l ′. We iterate and stop
when l ′ = k .
• Duplicate label is either a new best response, which gets a positive
probability, or a pure strategy whose probability became 0 and we move
away from its best response facet.



The Lemke–Howson algorithm explained

• Since P is simple and dim(P) = m, its vertices are incident to exactly
m facets and m edges. So each vertex of P has m labels and each edge
of P has m − 1 labels. Similarly for Q and n.

• Dropping a label l ∈ A1 ∪ A2 in a vertex x of P means traversing the
unique edge of P that is incident to x and has all m labels that x has
besides l . The other endpoint of this edge has the same labels as x ,
only l is replaced with a new label, which is said to be picked up.
Dropping and picking up a label in vertices of Q is defined analogously.
• The algorithm starts at (0, 0) and alternately follows edges of P and Q.
• At the first step, it chooses a label k ∈ A1 ∪ A2 and drops it. Then, a
new label l is picked up. This label l has a duplicate in the other
polytope. We drop the duplicate of l in the other polytope in the next
step, which leads to picking up a new label l ′. We iterate and stop
when l ′ = k .
• Duplicate label is either a new best response, which gets a positive
probability, or a pure strategy whose probability became 0 and we move
away from its best response facet.



The Lemke–Howson algorithm explained

• Since P is simple and dim(P) = m, its vertices are incident to exactly
m facets and m edges. So each vertex of P has m labels and each edge
of P has m − 1 labels. Similarly for Q and n.
• Dropping a label l ∈ A1 ∪ A2 in a vertex x of P means traversing the
unique edge of P that is incident to x and has all m labels that x has
besides l .

The other endpoint of this edge has the same labels as x ,
only l is replaced with a new label, which is said to be picked up.
Dropping and picking up a label in vertices of Q is defined analogously.
• The algorithm starts at (0, 0) and alternately follows edges of P and Q.
• At the first step, it chooses a label k ∈ A1 ∪ A2 and drops it. Then, a
new label l is picked up. This label l has a duplicate in the other
polytope. We drop the duplicate of l in the other polytope in the next
step, which leads to picking up a new label l ′. We iterate and stop
when l ′ = k .
• Duplicate label is either a new best response, which gets a positive
probability, or a pure strategy whose probability became 0 and we move
away from its best response facet.



The Lemke–Howson algorithm explained

• Since P is simple and dim(P) = m, its vertices are incident to exactly
m facets and m edges. So each vertex of P has m labels and each edge
of P has m − 1 labels. Similarly for Q and n.
• Dropping a label l ∈ A1 ∪ A2 in a vertex x of P means traversing the
unique edge of P that is incident to x and has all m labels that x has
besides l . The other endpoint of this edge has the same labels as x ,
only l is replaced with a new label, which is said to be picked up.

Dropping and picking up a label in vertices of Q is defined analogously.
• The algorithm starts at (0, 0) and alternately follows edges of P and Q.
• At the first step, it chooses a label k ∈ A1 ∪ A2 and drops it. Then, a
new label l is picked up. This label l has a duplicate in the other
polytope. We drop the duplicate of l in the other polytope in the next
step, which leads to picking up a new label l ′. We iterate and stop
when l ′ = k .
• Duplicate label is either a new best response, which gets a positive
probability, or a pure strategy whose probability became 0 and we move
away from its best response facet.



The Lemke–Howson algorithm explained

• Since P is simple and dim(P) = m, its vertices are incident to exactly
m facets and m edges. So each vertex of P has m labels and each edge
of P has m − 1 labels. Similarly for Q and n.
• Dropping a label l ∈ A1 ∪ A2 in a vertex x of P means traversing the
unique edge of P that is incident to x and has all m labels that x has
besides l . The other endpoint of this edge has the same labels as x ,
only l is replaced with a new label, which is said to be picked up.
Dropping and picking up a label in vertices of Q is defined analogously.

• The algorithm starts at (0, 0) and alternately follows edges of P and Q.
• At the first step, it chooses a label k ∈ A1 ∪ A2 and drops it. Then, a
new label l is picked up. This label l has a duplicate in the other
polytope. We drop the duplicate of l in the other polytope in the next
step, which leads to picking up a new label l ′. We iterate and stop
when l ′ = k .
• Duplicate label is either a new best response, which gets a positive
probability, or a pure strategy whose probability became 0 and we move
away from its best response facet.



The Lemke–Howson algorithm explained

• Since P is simple and dim(P) = m, its vertices are incident to exactly
m facets and m edges. So each vertex of P has m labels and each edge
of P has m − 1 labels. Similarly for Q and n.
• Dropping a label l ∈ A1 ∪ A2 in a vertex x of P means traversing the
unique edge of P that is incident to x and has all m labels that x has
besides l . The other endpoint of this edge has the same labels as x ,
only l is replaced with a new label, which is said to be picked up.
Dropping and picking up a label in vertices of Q is defined analogously.
• The algorithm starts at (0, 0)

and alternately follows edges of P and Q.
• At the first step, it chooses a label k ∈ A1 ∪ A2 and drops it. Then, a
new label l is picked up. This label l has a duplicate in the other
polytope. We drop the duplicate of l in the other polytope in the next
step, which leads to picking up a new label l ′. We iterate and stop
when l ′ = k .
• Duplicate label is either a new best response, which gets a positive
probability, or a pure strategy whose probability became 0 and we move
away from its best response facet.



The Lemke–Howson algorithm explained

• Since P is simple and dim(P) = m, its vertices are incident to exactly
m facets and m edges. So each vertex of P has m labels and each edge
of P has m − 1 labels. Similarly for Q and n.
• Dropping a label l ∈ A1 ∪ A2 in a vertex x of P means traversing the
unique edge of P that is incident to x and has all m labels that x has
besides l . The other endpoint of this edge has the same labels as x ,
only l is replaced with a new label, which is said to be picked up.
Dropping and picking up a label in vertices of Q is defined analogously.
• The algorithm starts at (0, 0) and alternately follows edges of P and Q.

• At the first step, it chooses a label k ∈ A1 ∪ A2 and drops it. Then, a
new label l is picked up. This label l has a duplicate in the other
polytope. We drop the duplicate of l in the other polytope in the next
step, which leads to picking up a new label l ′. We iterate and stop
when l ′ = k .
• Duplicate label is either a new best response, which gets a positive
probability, or a pure strategy whose probability became 0 and we move
away from its best response facet.



The Lemke–Howson algorithm explained

• Since P is simple and dim(P) = m, its vertices are incident to exactly
m facets and m edges. So each vertex of P has m labels and each edge
of P has m − 1 labels. Similarly for Q and n.
• Dropping a label l ∈ A1 ∪ A2 in a vertex x of P means traversing the
unique edge of P that is incident to x and has all m labels that x has
besides l . The other endpoint of this edge has the same labels as x ,
only l is replaced with a new label, which is said to be picked up.
Dropping and picking up a label in vertices of Q is defined analogously.
• The algorithm starts at (0, 0) and alternately follows edges of P and Q.
• At the first step, it chooses a label k ∈ A1 ∪ A2 and drops it.

Then, a
new label l is picked up. This label l has a duplicate in the other
polytope. We drop the duplicate of l in the other polytope in the next
step, which leads to picking up a new label l ′. We iterate and stop
when l ′ = k .
• Duplicate label is either a new best response, which gets a positive
probability, or a pure strategy whose probability became 0 and we move
away from its best response facet.



The Lemke–Howson algorithm explained

• Since P is simple and dim(P) = m, its vertices are incident to exactly
m facets and m edges. So each vertex of P has m labels and each edge
of P has m − 1 labels. Similarly for Q and n.
• Dropping a label l ∈ A1 ∪ A2 in a vertex x of P means traversing the
unique edge of P that is incident to x and has all m labels that x has
besides l . The other endpoint of this edge has the same labels as x ,
only l is replaced with a new label, which is said to be picked up.
Dropping and picking up a label in vertices of Q is defined analogously.
• The algorithm starts at (0, 0) and alternately follows edges of P and Q.
• At the first step, it chooses a label k ∈ A1 ∪ A2 and drops it. Then, a
new label l is picked up.

This label l has a duplicate in the other
polytope. We drop the duplicate of l in the other polytope in the next
step, which leads to picking up a new label l ′. We iterate and stop
when l ′ = k .
• Duplicate label is either a new best response, which gets a positive
probability, or a pure strategy whose probability became 0 and we move
away from its best response facet.



The Lemke–Howson algorithm explained

• Since P is simple and dim(P) = m, its vertices are incident to exactly
m facets and m edges. So each vertex of P has m labels and each edge
of P has m − 1 labels. Similarly for Q and n.
• Dropping a label l ∈ A1 ∪ A2 in a vertex x of P means traversing the
unique edge of P that is incident to x and has all m labels that x has
besides l . The other endpoint of this edge has the same labels as x ,
only l is replaced with a new label, which is said to be picked up.
Dropping and picking up a label in vertices of Q is defined analogously.
• The algorithm starts at (0, 0) and alternately follows edges of P and Q.
• At the first step, it chooses a label k ∈ A1 ∪ A2 and drops it. Then, a
new label l is picked up. This label l has a duplicate in the other
polytope.

We drop the duplicate of l in the other polytope in the next
step, which leads to picking up a new label l ′. We iterate and stop
when l ′ = k .
• Duplicate label is either a new best response, which gets a positive
probability, or a pure strategy whose probability became 0 and we move
away from its best response facet.



The Lemke–Howson algorithm explained

• Since P is simple and dim(P) = m, its vertices are incident to exactly
m facets and m edges. So each vertex of P has m labels and each edge
of P has m − 1 labels. Similarly for Q and n.
• Dropping a label l ∈ A1 ∪ A2 in a vertex x of P means traversing the
unique edge of P that is incident to x and has all m labels that x has
besides l . The other endpoint of this edge has the same labels as x ,
only l is replaced with a new label, which is said to be picked up.
Dropping and picking up a label in vertices of Q is defined analogously.
• The algorithm starts at (0, 0) and alternately follows edges of P and Q.
• At the first step, it chooses a label k ∈ A1 ∪ A2 and drops it. Then, a
new label l is picked up. This label l has a duplicate in the other
polytope. We drop the duplicate of l in the other polytope in the next
step,

which leads to picking up a new label l ′. We iterate and stop
when l ′ = k .
• Duplicate label is either a new best response, which gets a positive
probability, or a pure strategy whose probability became 0 and we move
away from its best response facet.



The Lemke–Howson algorithm explained

• Since P is simple and dim(P) = m, its vertices are incident to exactly
m facets and m edges. So each vertex of P has m labels and each edge
of P has m − 1 labels. Similarly for Q and n.
• Dropping a label l ∈ A1 ∪ A2 in a vertex x of P means traversing the
unique edge of P that is incident to x and has all m labels that x has
besides l . The other endpoint of this edge has the same labels as x ,
only l is replaced with a new label, which is said to be picked up.
Dropping and picking up a label in vertices of Q is defined analogously.
• The algorithm starts at (0, 0) and alternately follows edges of P and Q.
• At the first step, it chooses a label k ∈ A1 ∪ A2 and drops it. Then, a
new label l is picked up. This label l has a duplicate in the other
polytope. We drop the duplicate of l in the other polytope in the next
step, which leads to picking up a new label l ′.

We iterate and stop
when l ′ = k .
• Duplicate label is either a new best response, which gets a positive
probability, or a pure strategy whose probability became 0 and we move
away from its best response facet.



The Lemke–Howson algorithm explained

• Since P is simple and dim(P) = m, its vertices are incident to exactly
m facets and m edges. So each vertex of P has m labels and each edge
of P has m − 1 labels. Similarly for Q and n.
• Dropping a label l ∈ A1 ∪ A2 in a vertex x of P means traversing the
unique edge of P that is incident to x and has all m labels that x has
besides l . The other endpoint of this edge has the same labels as x ,
only l is replaced with a new label, which is said to be picked up.
Dropping and picking up a label in vertices of Q is defined analogously.
• The algorithm starts at (0, 0) and alternately follows edges of P and Q.
• At the first step, it chooses a label k ∈ A1 ∪ A2 and drops it. Then, a
new label l is picked up. This label l has a duplicate in the other
polytope. We drop the duplicate of l in the other polytope in the next
step, which leads to picking up a new label l ′. We iterate and stop
when l ′ = k .

• Duplicate label is either a new best response, which gets a positive
probability, or a pure strategy whose probability became 0 and we move
away from its best response facet.



The Lemke–Howson algorithm explained

• Since P is simple and dim(P) = m, its vertices are incident to exactly
m facets and m edges. So each vertex of P has m labels and each edge
of P has m − 1 labels. Similarly for Q and n.
• Dropping a label l ∈ A1 ∪ A2 in a vertex x of P means traversing the
unique edge of P that is incident to x and has all m labels that x has
besides l . The other endpoint of this edge has the same labels as x ,
only l is replaced with a new label, which is said to be picked up.
Dropping and picking up a label in vertices of Q is defined analogously.
• The algorithm starts at (0, 0) and alternately follows edges of P and Q.
• At the first step, it chooses a label k ∈ A1 ∪ A2 and drops it. Then, a
new label l is picked up. This label l has a duplicate in the other
polytope. We drop the duplicate of l in the other polytope in the next
step, which leads to picking up a new label l ′. We iterate and stop
when l ′ = k .
• Duplicate label is either a new best response, which gets a positive
probability, or a pure strategy whose probability became 0 and we move
away from its best response facet.



The Lemke–Howson algorithm: pseudocode

Algorithm 0.7: Lemke–Howson(G )

Input : A nondegenerate bimatrix game G .
Output : One Nash equilibrium of G .
(x , y)← (0, 0) ∈ Rm × Rn,
k ← arbitrary label from A1 ∪ A2, l ← k ,
while (true)

do



In P , drop l from x and redefine x as the new vertex,
redefine l as the newly picked up label. Switch to Q.
If l = k , stop looping.

In Q, drop l from y and redefine y as the new vertex,
redefine l as the newly picked up label. Switch to P .
If l = k , stop looping.

Output (x/(1⊤x), y/(1⊤y)).



The Lemke–Howson algorithm: pseudocode

Algorithm 0.8: Lemke–Howson(G )

Input : A nondegenerate bimatrix game G .
Output : One Nash equilibrium of G .
(x , y)← (0, 0) ∈ Rm × Rn,
k ← arbitrary label from A1 ∪ A2, l ← k ,
while (true)

do



In P , drop l from x and redefine x as the new vertex,
redefine l as the newly picked up label. Switch to Q.
If l = k , stop looping.

In Q, drop l from y and redefine y as the new vertex,
redefine l as the newly picked up label. Switch to P .
If l = k , stop looping.

Output (x/(1⊤x), y/(1⊤y)).



Lemke–Howson on the Battle of sexes (k = 3)

P
(0, 0) (1, 0)

(1, 1
2
)(0, 1

2
)

2

1

4

3
Q

(0, 0) (1
2
, 0)

(1
2
, 1)(0, 1)

4

3 1

2



Lemke–Howson on the Battle of sexes (k = 3)

P
(0, 0) (1, 0)

(1, 1
2
)(0, 1

2
)

2

1

4

3
Q

(0, 0) (1
2
, 0)

(1
2
, 1)(0, 1)

4

3 1

2



Lemke–Howson on the Battle of sexes (k = 3)

P
(0, 0) (1, 0)

(1, 1
2
)(0, 1

2
)

2

1

4

3
Q

(0, 0) (1
2
, 0)

(1
2
, 1)(0, 1)

4

3 1

2



Lemke–Howson on the Battle of sexes (k = 3)

P
(0, 0) (1, 0)

(1, 1
2
)(0, 1

2
)

2

1

4

3
Q

(0, 0) (1
2
, 0)

(1
2
, 1)(0, 1)

4

3 1

2



Lemke–Howson on the Battle of sexes (k = 3)

P
(0, 0) (1, 0)

(1, 1
2
)(0, 1

2
)

2

1

4

3
Q

(0, 0) (1
2
, 0)

(1
2
, 1)(0, 1)

4

3 1

2



Correctness of the Lemke–Howson algorithm I

Proposition 2.31

The Lemke–Howson algorithm stops after a finite number of steps and
outputs mixed strategy vectors of NE in G .

• Proof: Let k be the label chosen in the first step.
• We define a configuration graph G with the vertices formed by pairs
(x , y) of vertices from P × Q that are k-almost completely labeled
(every label from A1 ∪ A2 \ {k} is a label of x or y). A pair
{(x , y), (x ′, y ′)} is an edge of G if (x = x ′ & yy ′ ∈ E (Q)) or
(xx ′ ∈ E (P) & y = y ′). Clearly, G is finite.
• G has degrees only 1 or 2 (G is a disjoint union of paths and cycles).
◦ If (x , y) has all labels from A1 ∪ A2, then (x , y) is connected to
exactly one other vertex, as exactly one of x and y has the label k
and we can drop k only from this one vertex.
◦ Otherwise, (x , y) has all labels from A1 ∪ A2 \ {k} and there is a
unique label shared by x and y . Then (x , y) is adjacent to two
vertices, as we can drop the duplicate label from x in P or y in Q.



Correctness of the Lemke–Howson algorithm I

Proposition 2.31

The Lemke–Howson algorithm stops after a finite number of steps and
outputs mixed strategy vectors of NE in G .

• Proof: Let k be the label chosen in the first step.
• We define a configuration graph G with the vertices formed by pairs
(x , y) of vertices from P × Q that are k-almost completely labeled
(every label from A1 ∪ A2 \ {k} is a label of x or y). A pair
{(x , y), (x ′, y ′)} is an edge of G if (x = x ′ & yy ′ ∈ E (Q)) or
(xx ′ ∈ E (P) & y = y ′). Clearly, G is finite.
• G has degrees only 1 or 2 (G is a disjoint union of paths and cycles).
◦ If (x , y) has all labels from A1 ∪ A2, then (x , y) is connected to
exactly one other vertex, as exactly one of x and y has the label k
and we can drop k only from this one vertex.
◦ Otherwise, (x , y) has all labels from A1 ∪ A2 \ {k} and there is a
unique label shared by x and y . Then (x , y) is adjacent to two
vertices, as we can drop the duplicate label from x in P or y in Q.



Correctness of the Lemke–Howson algorithm I

Proposition 2.31

The Lemke–Howson algorithm stops after a finite number of steps and
outputs mixed strategy vectors of NE in G .

• Proof:

Let k be the label chosen in the first step.
• We define a configuration graph G with the vertices formed by pairs
(x , y) of vertices from P × Q that are k-almost completely labeled
(every label from A1 ∪ A2 \ {k} is a label of x or y). A pair
{(x , y), (x ′, y ′)} is an edge of G if (x = x ′ & yy ′ ∈ E (Q)) or
(xx ′ ∈ E (P) & y = y ′). Clearly, G is finite.
• G has degrees only 1 or 2 (G is a disjoint union of paths and cycles).
◦ If (x , y) has all labels from A1 ∪ A2, then (x , y) is connected to
exactly one other vertex, as exactly one of x and y has the label k
and we can drop k only from this one vertex.
◦ Otherwise, (x , y) has all labels from A1 ∪ A2 \ {k} and there is a
unique label shared by x and y . Then (x , y) is adjacent to two
vertices, as we can drop the duplicate label from x in P or y in Q.



Correctness of the Lemke–Howson algorithm I

Proposition 2.31

The Lemke–Howson algorithm stops after a finite number of steps and
outputs mixed strategy vectors of NE in G .

• Proof: Let k be the label chosen in the first step.

• We define a configuration graph G with the vertices formed by pairs
(x , y) of vertices from P × Q that are k-almost completely labeled
(every label from A1 ∪ A2 \ {k} is a label of x or y). A pair
{(x , y), (x ′, y ′)} is an edge of G if (x = x ′ & yy ′ ∈ E (Q)) or
(xx ′ ∈ E (P) & y = y ′). Clearly, G is finite.
• G has degrees only 1 or 2 (G is a disjoint union of paths and cycles).
◦ If (x , y) has all labels from A1 ∪ A2, then (x , y) is connected to
exactly one other vertex, as exactly one of x and y has the label k
and we can drop k only from this one vertex.
◦ Otherwise, (x , y) has all labels from A1 ∪ A2 \ {k} and there is a
unique label shared by x and y . Then (x , y) is adjacent to two
vertices, as we can drop the duplicate label from x in P or y in Q.



Correctness of the Lemke–Howson algorithm I

Proposition 2.31

The Lemke–Howson algorithm stops after a finite number of steps and
outputs mixed strategy vectors of NE in G .

• Proof: Let k be the label chosen in the first step.
• We define a configuration graph G with the vertices formed by pairs
(x , y) of vertices from P × Q that are k-almost completely labeled
(every label from A1 ∪ A2 \ {k} is a label of x or y).

A pair
{(x , y), (x ′, y ′)} is an edge of G if (x = x ′ & yy ′ ∈ E (Q)) or
(xx ′ ∈ E (P) & y = y ′). Clearly, G is finite.
• G has degrees only 1 or 2 (G is a disjoint union of paths and cycles).
◦ If (x , y) has all labels from A1 ∪ A2, then (x , y) is connected to
exactly one other vertex, as exactly one of x and y has the label k
and we can drop k only from this one vertex.
◦ Otherwise, (x , y) has all labels from A1 ∪ A2 \ {k} and there is a
unique label shared by x and y . Then (x , y) is adjacent to two
vertices, as we can drop the duplicate label from x in P or y in Q.



Correctness of the Lemke–Howson algorithm I

Proposition 2.31

The Lemke–Howson algorithm stops after a finite number of steps and
outputs mixed strategy vectors of NE in G .

• Proof: Let k be the label chosen in the first step.
• We define a configuration graph G with the vertices formed by pairs
(x , y) of vertices from P × Q that are k-almost completely labeled
(every label from A1 ∪ A2 \ {k} is a label of x or y). A pair
{(x , y), (x ′, y ′)} is an edge of G if (x = x ′ & yy ′ ∈ E (Q)) or
(xx ′ ∈ E (P) & y = y ′).

Clearly, G is finite.
• G has degrees only 1 or 2 (G is a disjoint union of paths and cycles).
◦ If (x , y) has all labels from A1 ∪ A2, then (x , y) is connected to
exactly one other vertex, as exactly one of x and y has the label k
and we can drop k only from this one vertex.
◦ Otherwise, (x , y) has all labels from A1 ∪ A2 \ {k} and there is a
unique label shared by x and y . Then (x , y) is adjacent to two
vertices, as we can drop the duplicate label from x in P or y in Q.



Correctness of the Lemke–Howson algorithm I

Proposition 2.31

The Lemke–Howson algorithm stops after a finite number of steps and
outputs mixed strategy vectors of NE in G .

• Proof: Let k be the label chosen in the first step.
• We define a configuration graph G with the vertices formed by pairs
(x , y) of vertices from P × Q that are k-almost completely labeled
(every label from A1 ∪ A2 \ {k} is a label of x or y). A pair
{(x , y), (x ′, y ′)} is an edge of G if (x = x ′ & yy ′ ∈ E (Q)) or
(xx ′ ∈ E (P) & y = y ′). Clearly, G is finite.

• G has degrees only 1 or 2 (G is a disjoint union of paths and cycles).
◦ If (x , y) has all labels from A1 ∪ A2, then (x , y) is connected to
exactly one other vertex, as exactly one of x and y has the label k
and we can drop k only from this one vertex.
◦ Otherwise, (x , y) has all labels from A1 ∪ A2 \ {k} and there is a
unique label shared by x and y . Then (x , y) is adjacent to two
vertices, as we can drop the duplicate label from x in P or y in Q.



Correctness of the Lemke–Howson algorithm I

Proposition 2.31

The Lemke–Howson algorithm stops after a finite number of steps and
outputs mixed strategy vectors of NE in G .

• Proof: Let k be the label chosen in the first step.
• We define a configuration graph G with the vertices formed by pairs
(x , y) of vertices from P × Q that are k-almost completely labeled
(every label from A1 ∪ A2 \ {k} is a label of x or y). A pair
{(x , y), (x ′, y ′)} is an edge of G if (x = x ′ & yy ′ ∈ E (Q)) or
(xx ′ ∈ E (P) & y = y ′). Clearly, G is finite.
• G has degrees only 1 or 2

(G is a disjoint union of paths and cycles).
◦ If (x , y) has all labels from A1 ∪ A2, then (x , y) is connected to
exactly one other vertex, as exactly one of x and y has the label k
and we can drop k only from this one vertex.
◦ Otherwise, (x , y) has all labels from A1 ∪ A2 \ {k} and there is a
unique label shared by x and y . Then (x , y) is adjacent to two
vertices, as we can drop the duplicate label from x in P or y in Q.



Correctness of the Lemke–Howson algorithm I

Proposition 2.31

The Lemke–Howson algorithm stops after a finite number of steps and
outputs mixed strategy vectors of NE in G .

• Proof: Let k be the label chosen in the first step.
• We define a configuration graph G with the vertices formed by pairs
(x , y) of vertices from P × Q that are k-almost completely labeled
(every label from A1 ∪ A2 \ {k} is a label of x or y). A pair
{(x , y), (x ′, y ′)} is an edge of G if (x = x ′ & yy ′ ∈ E (Q)) or
(xx ′ ∈ E (P) & y = y ′). Clearly, G is finite.
• G has degrees only 1 or 2 (G is a disjoint union of paths and cycles).

◦ If (x , y) has all labels from A1 ∪ A2, then (x , y) is connected to
exactly one other vertex, as exactly one of x and y has the label k
and we can drop k only from this one vertex.
◦ Otherwise, (x , y) has all labels from A1 ∪ A2 \ {k} and there is a
unique label shared by x and y . Then (x , y) is adjacent to two
vertices, as we can drop the duplicate label from x in P or y in Q.



Correctness of the Lemke–Howson algorithm I

Proposition 2.31

The Lemke–Howson algorithm stops after a finite number of steps and
outputs mixed strategy vectors of NE in G .

• Proof: Let k be the label chosen in the first step.
• We define a configuration graph G with the vertices formed by pairs
(x , y) of vertices from P × Q that are k-almost completely labeled
(every label from A1 ∪ A2 \ {k} is a label of x or y). A pair
{(x , y), (x ′, y ′)} is an edge of G if (x = x ′ & yy ′ ∈ E (Q)) or
(xx ′ ∈ E (P) & y = y ′). Clearly, G is finite.
• G has degrees only 1 or 2 (G is a disjoint union of paths and cycles).
◦ If (x , y) has all labels from A1 ∪ A2, then (x , y) is connected to
exactly one other vertex,

as exactly one of x and y has the label k
and we can drop k only from this one vertex.
◦ Otherwise, (x , y) has all labels from A1 ∪ A2 \ {k} and there is a
unique label shared by x and y . Then (x , y) is adjacent to two
vertices, as we can drop the duplicate label from x in P or y in Q.



Correctness of the Lemke–Howson algorithm I

Proposition 2.31

The Lemke–Howson algorithm stops after a finite number of steps and
outputs mixed strategy vectors of NE in G .

• Proof: Let k be the label chosen in the first step.
• We define a configuration graph G with the vertices formed by pairs
(x , y) of vertices from P × Q that are k-almost completely labeled
(every label from A1 ∪ A2 \ {k} is a label of x or y). A pair
{(x , y), (x ′, y ′)} is an edge of G if (x = x ′ & yy ′ ∈ E (Q)) or
(xx ′ ∈ E (P) & y = y ′). Clearly, G is finite.
• G has degrees only 1 or 2 (G is a disjoint union of paths and cycles).
◦ If (x , y) has all labels from A1 ∪ A2, then (x , y) is connected to
exactly one other vertex, as exactly one of x and y has the label k
and we can drop k only from this one vertex.

◦ Otherwise, (x , y) has all labels from A1 ∪ A2 \ {k} and there is a
unique label shared by x and y . Then (x , y) is adjacent to two
vertices, as we can drop the duplicate label from x in P or y in Q.



Correctness of the Lemke–Howson algorithm I

Proposition 2.31

The Lemke–Howson algorithm stops after a finite number of steps and
outputs mixed strategy vectors of NE in G .

• Proof: Let k be the label chosen in the first step.
• We define a configuration graph G with the vertices formed by pairs
(x , y) of vertices from P × Q that are k-almost completely labeled
(every label from A1 ∪ A2 \ {k} is a label of x or y). A pair
{(x , y), (x ′, y ′)} is an edge of G if (x = x ′ & yy ′ ∈ E (Q)) or
(xx ′ ∈ E (P) & y = y ′). Clearly, G is finite.
• G has degrees only 1 or 2 (G is a disjoint union of paths and cycles).
◦ If (x , y) has all labels from A1 ∪ A2, then (x , y) is connected to
exactly one other vertex, as exactly one of x and y has the label k
and we can drop k only from this one vertex.
◦ Otherwise, (x , y) has all labels from A1 ∪ A2 \ {k} and there is a
unique label shared by x and y .

Then (x , y) is adjacent to two
vertices, as we can drop the duplicate label from x in P or y in Q.



Correctness of the Lemke–Howson algorithm I

Proposition 2.31

The Lemke–Howson algorithm stops after a finite number of steps and
outputs mixed strategy vectors of NE in G .

• Proof: Let k be the label chosen in the first step.
• We define a configuration graph G with the vertices formed by pairs
(x , y) of vertices from P × Q that are k-almost completely labeled
(every label from A1 ∪ A2 \ {k} is a label of x or y). A pair
{(x , y), (x ′, y ′)} is an edge of G if (x = x ′ & yy ′ ∈ E (Q)) or
(xx ′ ∈ E (P) & y = y ′). Clearly, G is finite.
• G has degrees only 1 or 2 (G is a disjoint union of paths and cycles).
◦ If (x , y) has all labels from A1 ∪ A2, then (x , y) is connected to
exactly one other vertex, as exactly one of x and y has the label k
and we can drop k only from this one vertex.
◦ Otherwise, (x , y) has all labels from A1 ∪ A2 \ {k} and there is a
unique label shared by x and y . Then (x , y) is adjacent to two
vertices, as we can drop the duplicate label from x in P or y in Q.



Correctness of the Lemke–Howson algorithm II

• The Lemke–Howson algorithm starts at the leaf (0, 0) of a path in G.
• Then it walks along this path and does not visit any vertex of the
configuration graph twice.

◦ The next vertex pair on the path is always unique (we move to the
other endpoint of the unique edge that contains the current vertex
and corresponds to the dropped label).
◦ Visiting the same vertex twice would give a vertex of degree larger
than 2 in G since we started at a leaf.

• Thus, the algorithm terminates after a finite number of steps in the
other leaf (x∗, y ∗) of the path. Since (x∗, y ∗) is a leaf in the
configuration graph, it is completely labeled.

• This endpoint is not of the form (x , 0) or (0, y) (Exercise).

• By Corollary 2.30, (x∗, y ∗) corresponds to NE after rescaling.



Correctness of the Lemke–Howson algorithm II

• The Lemke–Howson algorithm starts at the leaf (0, 0) of a path in G.

• Then it walks along this path and does not visit any vertex of the
configuration graph twice.

◦ The next vertex pair on the path is always unique (we move to the
other endpoint of the unique edge that contains the current vertex
and corresponds to the dropped label).
◦ Visiting the same vertex twice would give a vertex of degree larger
than 2 in G since we started at a leaf.

• Thus, the algorithm terminates after a finite number of steps in the
other leaf (x∗, y ∗) of the path. Since (x∗, y ∗) is a leaf in the
configuration graph, it is completely labeled.

• This endpoint is not of the form (x , 0) or (0, y) (Exercise).

• By Corollary 2.30, (x∗, y ∗) corresponds to NE after rescaling.



Correctness of the Lemke–Howson algorithm II

• The Lemke–Howson algorithm starts at the leaf (0, 0) of a path in G.
• Then it walks along this path and does not visit any vertex of the
configuration graph twice.

◦ The next vertex pair on the path is always unique (we move to the
other endpoint of the unique edge that contains the current vertex
and corresponds to the dropped label).
◦ Visiting the same vertex twice would give a vertex of degree larger
than 2 in G since we started at a leaf.

• Thus, the algorithm terminates after a finite number of steps in the
other leaf (x∗, y ∗) of the path. Since (x∗, y ∗) is a leaf in the
configuration graph, it is completely labeled.

• This endpoint is not of the form (x , 0) or (0, y) (Exercise).

• By Corollary 2.30, (x∗, y ∗) corresponds to NE after rescaling.



Correctness of the Lemke–Howson algorithm II

• The Lemke–Howson algorithm starts at the leaf (0, 0) of a path in G.
• Then it walks along this path and does not visit any vertex of the
configuration graph twice.

◦ The next vertex pair on the path is always unique

(we move to the
other endpoint of the unique edge that contains the current vertex
and corresponds to the dropped label).
◦ Visiting the same vertex twice would give a vertex of degree larger
than 2 in G since we started at a leaf.

• Thus, the algorithm terminates after a finite number of steps in the
other leaf (x∗, y ∗) of the path. Since (x∗, y ∗) is a leaf in the
configuration graph, it is completely labeled.

• This endpoint is not of the form (x , 0) or (0, y) (Exercise).

• By Corollary 2.30, (x∗, y ∗) corresponds to NE after rescaling.



Correctness of the Lemke–Howson algorithm II

• The Lemke–Howson algorithm starts at the leaf (0, 0) of a path in G.
• Then it walks along this path and does not visit any vertex of the
configuration graph twice.

◦ The next vertex pair on the path is always unique (we move to the
other endpoint of the unique edge that contains the current vertex
and corresponds to the dropped label).

◦ Visiting the same vertex twice would give a vertex of degree larger
than 2 in G since we started at a leaf.

• Thus, the algorithm terminates after a finite number of steps in the
other leaf (x∗, y ∗) of the path. Since (x∗, y ∗) is a leaf in the
configuration graph, it is completely labeled.

• This endpoint is not of the form (x , 0) or (0, y) (Exercise).

• By Corollary 2.30, (x∗, y ∗) corresponds to NE after rescaling.



Correctness of the Lemke–Howson algorithm II

• The Lemke–Howson algorithm starts at the leaf (0, 0) of a path in G.
• Then it walks along this path and does not visit any vertex of the
configuration graph twice.

◦ The next vertex pair on the path is always unique (we move to the
other endpoint of the unique edge that contains the current vertex
and corresponds to the dropped label).
◦ Visiting the same vertex twice would give a vertex of degree larger
than 2 in G since we started at a leaf.

• Thus, the algorithm terminates after a finite number of steps in the
other leaf (x∗, y ∗) of the path. Since (x∗, y ∗) is a leaf in the
configuration graph, it is completely labeled.

• This endpoint is not of the form (x , 0) or (0, y) (Exercise).

• By Corollary 2.30, (x∗, y ∗) corresponds to NE after rescaling.



Correctness of the Lemke–Howson algorithm II

• The Lemke–Howson algorithm starts at the leaf (0, 0) of a path in G.
• Then it walks along this path and does not visit any vertex of the
configuration graph twice.

◦ The next vertex pair on the path is always unique (we move to the
other endpoint of the unique edge that contains the current vertex
and corresponds to the dropped label).
◦ Visiting the same vertex twice would give a vertex of degree larger
than 2 in G since we started at a leaf.

• Thus, the algorithm terminates after a finite number of steps in the
other leaf (x∗, y ∗) of the path.

Since (x∗, y ∗) is a leaf in the
configuration graph, it is completely labeled.

• This endpoint is not of the form (x , 0) or (0, y) (Exercise).

• By Corollary 2.30, (x∗, y ∗) corresponds to NE after rescaling.



Correctness of the Lemke–Howson algorithm II

• The Lemke–Howson algorithm starts at the leaf (0, 0) of a path in G.
• Then it walks along this path and does not visit any vertex of the
configuration graph twice.

◦ The next vertex pair on the path is always unique (we move to the
other endpoint of the unique edge that contains the current vertex
and corresponds to the dropped label).
◦ Visiting the same vertex twice would give a vertex of degree larger
than 2 in G since we started at a leaf.

• Thus, the algorithm terminates after a finite number of steps in the
other leaf (x∗, y ∗) of the path. Since (x∗, y ∗) is a leaf in the
configuration graph, it is completely labeled.

• This endpoint is not of the form (x , 0) or (0, y) (Exercise).

• By Corollary 2.30, (x∗, y ∗) corresponds to NE after rescaling.



Correctness of the Lemke–Howson algorithm II

• The Lemke–Howson algorithm starts at the leaf (0, 0) of a path in G.
• Then it walks along this path and does not visit any vertex of the
configuration graph twice.

◦ The next vertex pair on the path is always unique (we move to the
other endpoint of the unique edge that contains the current vertex
and corresponds to the dropped label).
◦ Visiting the same vertex twice would give a vertex of degree larger
than 2 in G since we started at a leaf.

• Thus, the algorithm terminates after a finite number of steps in the
other leaf (x∗, y ∗) of the path. Since (x∗, y ∗) is a leaf in the
configuration graph, it is completely labeled.

• This endpoint is not of the form (x , 0) or (0, y) (Exercise).

• By Corollary 2.30, (x∗, y ∗) corresponds to NE after rescaling.



Correctness of the Lemke–Howson algorithm II

• The Lemke–Howson algorithm starts at the leaf (0, 0) of a path in G.
• Then it walks along this path and does not visit any vertex of the
configuration graph twice.

◦ The next vertex pair on the path is always unique (we move to the
other endpoint of the unique edge that contains the current vertex
and corresponds to the dropped label).
◦ Visiting the same vertex twice would give a vertex of degree larger
than 2 in G since we started at a leaf.

• Thus, the algorithm terminates after a finite number of steps in the
other leaf (x∗, y ∗) of the path. Since (x∗, y ∗) is a leaf in the
configuration graph, it is completely labeled.

• This endpoint is not of the form (x , 0) or (0, y) (Exercise).

• By Corollary 2.30, (x∗, y ∗) corresponds to NE after rescaling.



Correctness of the Lemke–Howson algorithm II

• The Lemke–Howson algorithm starts at the leaf (0, 0) of a path in G.
• Then it walks along this path and does not visit any vertex of the
configuration graph twice.

◦ The next vertex pair on the path is always unique (we move to the
other endpoint of the unique edge that contains the current vertex
and corresponds to the dropped label).
◦ Visiting the same vertex twice would give a vertex of degree larger
than 2 in G since we started at a leaf.

• Thus, the algorithm terminates after a finite number of steps in the
other leaf (x∗, y ∗) of the path. Since (x∗, y ∗) is a leaf in the
configuration graph, it is completely labeled.

• This endpoint is not of the form (x , 0) or (0, y) (Exercise).

• By Corollary 2.30, (x∗, y ∗) corresponds to NE after rescaling.



The Lemke–Howson algorithm: remarks

• By the Degree sum formula, the number of vertices of degree 1 is even.

Corollary 2.32

A nondegenerate bimatrix game has an odd number of NE.

• Degenerate games can have infinite number of NE.

• The Lemke–Howson algorithm finds only a single NE.

• The algorithm can be implemented using so-called complementary
pivoting (we will see it at the tutorials).

• The running time can still be exponential (O(2n) steps for n = m)! It
performs well in practise (polynomial on uniformly random games).

• Is there an efficient algorithm to find NE?



The Lemke–Howson algorithm: remarks

• By the Degree sum formula, the number of vertices of degree 1 is even.

Corollary 2.32

A nondegenerate bimatrix game has an odd number of NE.

• Degenerate games can have infinite number of NE.

• The Lemke–Howson algorithm finds only a single NE.

• The algorithm can be implemented using so-called complementary
pivoting (we will see it at the tutorials).

• The running time can still be exponential (O(2n) steps for n = m)! It
performs well in practise (polynomial on uniformly random games).

• Is there an efficient algorithm to find NE?



The Lemke–Howson algorithm: remarks

• By the Degree sum formula, the number of vertices of degree 1 is even.

Corollary 2.32

A nondegenerate bimatrix game has an odd number of NE.

• Degenerate games can have infinite number of NE.

• The Lemke–Howson algorithm finds only a single NE.

• The algorithm can be implemented using so-called complementary
pivoting (we will see it at the tutorials).

• The running time can still be exponential (O(2n) steps for n = m)! It
performs well in practise (polynomial on uniformly random games).

• Is there an efficient algorithm to find NE?



The Lemke–Howson algorithm: remarks

• By the Degree sum formula, the number of vertices of degree 1 is even.

Corollary 2.32

A nondegenerate bimatrix game has an odd number of NE.

• Degenerate games can have infinite number of NE.

• The Lemke–Howson algorithm finds only a single NE.

• The algorithm can be implemented using so-called complementary
pivoting (we will see it at the tutorials).

• The running time can still be exponential (O(2n) steps for n = m)! It
performs well in practise (polynomial on uniformly random games).

• Is there an efficient algorithm to find NE?



The Lemke–Howson algorithm: remarks

• By the Degree sum formula, the number of vertices of degree 1 is even.

Corollary 2.32

A nondegenerate bimatrix game has an odd number of NE.

• Degenerate games can have infinite number of NE.

• The Lemke–Howson algorithm finds only a single NE.

• The algorithm can be implemented using so-called complementary
pivoting (we will see it at the tutorials).

• The running time can still be exponential (O(2n) steps for n = m)! It
performs well in practise (polynomial on uniformly random games).

• Is there an efficient algorithm to find NE?



The Lemke–Howson algorithm: remarks

• By the Degree sum formula, the number of vertices of degree 1 is even.

Corollary 2.32

A nondegenerate bimatrix game has an odd number of NE.

• Degenerate games can have infinite number of NE.

• The Lemke–Howson algorithm finds only a single NE.

• The algorithm can be implemented using so-called complementary
pivoting (we will see it at the tutorials).

• The running time can still be exponential (O(2n) steps for n = m)! It
performs well in practise (polynomial on uniformly random games).

• Is there an efficient algorithm to find NE?



The Lemke–Howson algorithm: remarks

• By the Degree sum formula, the number of vertices of degree 1 is even.

Corollary 2.32

A nondegenerate bimatrix game has an odd number of NE.

• Degenerate games can have infinite number of NE.

• The Lemke–Howson algorithm finds only a single NE.

• The algorithm can be implemented using so-called complementary
pivoting (we will see it at the tutorials).

• The running time can still be exponential (O(2n) steps for n = m)!

It
performs well in practise (polynomial on uniformly random games).

• Is there an efficient algorithm to find NE?



The Lemke–Howson algorithm: remarks

• By the Degree sum formula, the number of vertices of degree 1 is even.

Corollary 2.32

A nondegenerate bimatrix game has an odd number of NE.

• Degenerate games can have infinite number of NE.

• The Lemke–Howson algorithm finds only a single NE.

• The algorithm can be implemented using so-called complementary
pivoting (we will see it at the tutorials).

• The running time can still be exponential (O(2n) steps for n = m)! It
performs well in practise (polynomial on uniformly random games).

• Is there an efficient algorithm to find NE?



The Lemke–Howson algorithm: remarks

• By the Degree sum formula, the number of vertices of degree 1 is even.

Corollary 2.32

A nondegenerate bimatrix game has an odd number of NE.

• Degenerate games can have infinite number of NE.

• The Lemke–Howson algorithm finds only a single NE.

• The algorithm can be implemented using so-called complementary
pivoting (we will see it at the tutorials).

• The running time can still be exponential (O(2n) steps for n = m)! It
performs well in practise (polynomial on uniformly random games).

• Is there an efficient algorithm to find NE?



Figure: A view on the complexity classes classification.

Source: https://complexityzoo.uwaterloo.ca/Complexity Zoo

• “P=NP” is one of the most important problems in computer science.
The website https://www.win.tue.nl/~gwoegi/P-versus-NP.htm
contains a collection of over 100 attempts to solve it.

Thank you for your attention.

https://www.win.tue.nl/~gwoegi/P-versus-NP.htm


Figure: A view on the complexity classes classification.

Source: https://complexityzoo.uwaterloo.ca/Complexity Zoo

• “P=NP” is one of the most important problems in computer science.
The website https://www.win.tue.nl/~gwoegi/P-versus-NP.htm
contains a collection of over 100 attempts to solve it.

Thank you for your attention.

https://www.win.tue.nl/~gwoegi/P-versus-NP.htm


Figure: A view on the complexity classes classification.

Source: https://complexityzoo.uwaterloo.ca/Complexity Zoo

• “P=NP” is one of the most important problems in computer science.
The website https://www.win.tue.nl/~gwoegi/P-versus-NP.htm
contains a collection of over 100 attempts to solve it.

Thank you for your attention.

https://www.win.tue.nl/~gwoegi/P-versus-NP.htm

