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What we learned last time

e Last lecture we introduced a brute-force algorithm to find all Nash
equilibria in bimatrix games.

e Recall that we have payoff matrices M and N with M; ; = u(i, /) and
N;; = us(i,j). The expected payoffs are then x' My and x " Ny.

e The best response condition: If x and y are mixed strategy vectors of
players 1 and 2, respectively, then x is a best response to y iff

VieA :x>0= M,y =max{M.y: k € A}
Analogously, vy is a best response to x iff
VjeA yy>0= NJT*X = max{N,I*x: k € Ay}

e Today, we reveal a geometric structure behind finding NE in bimatrix
games and show one of the fastest known algorithms for this task.
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To reveal the geometric structure, we define labeled polyhedra for a
bimatrix game G.
The best response polyhedron for player 1 in G is a polyhedron
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Best response polyhedra

To reveal the geometric structure, we define labeled polyhedra for a

bimatrix game G.

The best response polyhedron for player 1 in G is a polyhedron
P={(xv)ER"xR:x>0,1"x=1,N"x <1v}.

Similarly, we define the best response polyhedron for player 2 in G as
Q={(y,u)eR"xR: y>0,1Ty =1, My < 1u}.

Let (x,v) € P, (y,u) € Q and let s = (51, 5,) be a strategy profile with
mixed strategy vectors x and y.
Then, My < 1u says that u;(s) < u, as the expected payoff is always

un(s)=x My < x"lu= UZX,' =u.

i€EA;

Analogously, the condition NTx < 1v says that u,(s) < v.
Thus, points of P and @ are the mixed strategies with the "upper
envelope” of expected payoffs of the other player.
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e Now, we define the labels of points from the best response polyhedra

P={(x,v)ER"xR: x>0,1"x=1N"x < 1v}.

and

Q={(r,u) eR"xR:y>0,1"y =1, My < 1u}.

e We say that a point (x,v) € P has label i € A; U A, if either i € A4
and x; =0 orif i € Ay and N x = v.

o That is, if the inequality in the definition of P is binding (i € A; is
not in the support or i € A is a best response to x).

e Similarly, a point (y, 1) € Q has a label i € A; U A, if either i € A; and
M,'7*_)/ = u, or if i € A2 and Yi = 0.

e Each point from P or @ may have more labels.
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P={(x,x,vV) ER*XR:x3,% >0,x +% =1,x < v,2x < v}

Q={(ys,ya,u) ER*XR: ys,y4 > 0,y5+ys = 1,2y < u, ys < u}.
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Best response polytopes

e That is nice. But we will make it even nicer!

e The best response polyhedra have some unnecessary complications
(they are unbounded and have u and v in their coordinates). We get
rid of these under certain mild assumptions.

e We assume that M and N are non-negative and have no zero column.
(simply add a large constant to the payoffs)

e Then, we can divide each inequality N/, x < v with v, treating x;/v as

a new variable, and do the same for Q. This normalizes the payoffs to 1
and we get the following polytopes.

e The (normalized) best response polytope for player 1 in G is a polytope
P={xeR™: x>0,N"x <1}
Similarly, the best response polytope for player 2 in G is a polytope

Q={yeR"y>0My <1}
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(0,1) (3,1)
(0,1) gumme (1, 1) 31Q 1
1 3
(0,0)-2(1,0) (0,0) p (3,0)

P={(x1,x%) €ER?* x1,x0 >0,x <1,2x <1}

Q = {(y37.y4) € Rz: Y3, Ya Z 072)’3 S 1,)/4 S 1}
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What did we get?

The inequalities have the same meaning: if x; > 0 is binding, then

i € Aq is not in the support and if NJT*X < 1 is binding, then j € Ay is a
best response to s;. Analogously for Q.

From the assumption on M and N, the polyhedra P and Q are
bounded (are polytopes) and have dimensions m and n.

Disadvantage: coordinates of x and y do not sum up to 1. We can
rescale to x/(17x) and y/(1"y).

The polytope P is in a one-to-one correspondence with P\ {0} under
the projective transformation (x, v) — x/v. Similarly @ and Q \ {0}.
o Projective transformations preserve incidences, so the labels stay
the same.

Corollary 2.30

A strategy profile (s, s;) with mixed strategy vectors x and y is NE of G if
and only if the point (x/ux(s),y/ui(s)) € P x Q\ {(0,0)} is completely
labeled. O]




BN
NE in nondegenerate games



NE in nondegenerate games

e Recall that a bimatrix game is nondegenerate if there are at most k
pure best responses to every mixed strategy with support of size k.



NE in nondegenerate games

e Recall that a bimatrix game is nondegenerate if there are at most k
pure best responses to every mixed strategy with support of size k.

e In these games NE correspond to pairs of completely labeled vertices.



NE in nondegenerate games

e Recall that a bimatrix game is nondegenerate if there are at most k
pure best responses to every mixed strategy with support of size k.

e In these games NE correspond to pairs of completely labeled vertices.
o Since G is nondegenerate, each point of P has at most m labels.



NE in nondegenerate games

e Recall that a bimatrix game is nondegenerate if there are at most k
pure best responses to every mixed strategy with support of size k.

e In these games NE correspond to pairs of completely labeled vertices.

o Since G is nondegenerate, each point of P has at most m labels.
This is because if x has support of size k, then x has m — k labels
in Al



NE in nondegenerate games

e Recall that a bimatrix game is nondegenerate if there are at most k
pure best responses to every mixed strategy with support of size k.

e In these games NE correspond to pairs of completely labeled vertices.

o Since G is nondegenerate, each point of P has at most m labels.
This is because if x has support of size k, then x has m — k labels
in A; and so if x had more than m labels, then x would have more
than k best responses in A,.



NE in nondegenerate games

e Recall that a bimatrix game is nondegenerate if there are at most k
pure best responses to every mixed strategy with support of size k.

e In these games NE correspond to pairs of completely labeled vertices.

o Since G is nondegenerate, each point of P has at most m labels.
This is because if x has support of size k, then x has m — k labels
in A; and so if x had more than m labels, then x would have more
than k best responses in A,. Analogously, each point of @ has at
most n labels.



NE in nondegenerate games

e Recall that a bimatrix game is nondegenerate if there are at most k
pure best responses to every mixed strategy with support of size k.

e In these games NE correspond to pairs of completely labeled vertices.

o Since G is nondegenerate, each point of P has at most m labels.
This is because if x has support of size k, then x has m — k labels
in A; and so if x had more than m labels, then x would have more
than k best responses in A,. Analogously, each point of @ has at
most n labels.

o Thus, P and @ are both simple polytopes



NE in nondegenerate games

e Recall that a bimatrix game is nondegenerate if there are at most k
pure best responses to every mixed strategy with support of size k.

e In these games NE correspond to pairs of completely labeled vertices.

o Since G is nondegenerate, each point of P has at most m labels.
This is because if x has support of size k, then x has m — k labels
in A; and so if x had more than m labels, then x would have more
than k best responses in A,. Analogously, each point of @ has at
most n labels.

o Thus, P and @ are both simple polytopes (each point of P or Q
contained in more than m or n facets has more than m or n labels).



NE in nondegenerate games

e Recall that a bimatrix game is nondegenerate if there are at most k
pure best responses to every mixed strategy with support of size k.

e In these games NE correspond to pairs of completely labeled vertices.

o Since G is nondegenerate, each point of P has at most m labels.
This is because if x has support of size k, then x has m — k labels
in A; and so if x had more than m labels, then x would have more
than k best responses in A,. Analogously, each point of @ has at
most n labels.

o Thus, P and @ are both simple polytopes (each point of P or Q
contained in more than m or n facets has more than m or n labels).

o Since dim(P) = m and dim(Q) = n and P and Q are bounded,
only vertices of P and Q can have m and n labels.



NE in nondegenerate games

e Recall that a bimatrix game is nondegenerate if there are at most k
pure best responses to every mixed strategy with support of size k.

e In these games NE correspond to pairs of completely labeled vertices.

o Since G is nondegenerate, each point of P has at most m labels.
This is because if x has support of size k, then x has m — k labels
in A; and so if x had more than m labels, then x would have more
than k best responses in A,. Analogously, each point of @ has at
most n labels.

o Thus, P and @ are both simple polytopes (each point of P or Q
contained in more than m or n facets has more than m or n labels).

o Since dim(P) = m and dim(Q) = n and P and Q are bounded,
only vertices of P and Q can have m and n labels.

o By Corollary 2.30, only vertices of P and @ can be NE.



NE in nondegenerate games

e Recall that a bimatrix game is nondegenerate if there are at most k
pure best responses to every mixed strategy with support of size k.

e In these games NE correspond to pairs of completely labeled vertices.

o Since G is nondegenerate, each point of P has at most m labels.
This is because if x has support of size k, then x has m — k labels
in A; and so if x had more than m labels, then x would have more
than k best responses in A,. Analogously, each point of @ has at
most n labels.

o Thus, P and @ are both simple polytopes (each point of P or Q
contained in more than m or n facets has more than m or n labels).

o Since dim(P) = m and dim(Q) = n and P and Q are bounded,
only vertices of P and Q can have m and n labels.

o By Corollary 2.30, only vertices of P and @ can be NE.

e = Algorithm for finding NE: check all pairs of vertices and their labels!
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Algorithm 0.4: VERTEX ENUMERATION(G)

Input : A nondegenerate bimatrix game G.
Output : All Nash equilibria of G.

for each pair (x,y) of vertices from (P \ {0}) x (Q \ {0})
{ if (x,y) is completely labeled,

then return (x/(1"x),y/(1"y)) as a Nash equilibrium

e All vertices of a simple polytope in R with v vertices and N defining
inequalities can be found in time O(dNv) (Avis and Fukuda).

e However, if m = n, the best response polytopes can have c¢” vertices for
some constant ¢ with 1 < ¢ < 2.9.



Polytopes can be weird and complex!

Figure: Schlegel diagram for the 120-cell.

Source: https://en.wikipedia.org/
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Algorithm 0.5: VERTEX ENUMERATION(G)

Input : A nondegenerate bimatrix game G.
Output : All Nash equilibria of G.

for each pair (x,y) of vertices from (P \ {0}) x (Q \ {0})
{ if (x,y) is completely labeled,

then return (x/(17x),y/(17y)) as a Nash equilibrium

e All vertices of a simple polytope in R with v vertices and N defining
inequalities can be found in time O(dNv) (Avis and Fukuda).
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Algorithm 0.6: VERTEX ENUMERATION(G)

Input : A nondegenerate bimatrix game G.

Output : All Nash equilibria of G.

for each pair (x,y) of vertices from (P \ {0}) x (Q \ {0})
if (x,y) is completely labeled,

{ then return (x/(17x),y/(1"y)) as a Nash equilibrium

e All vertices of a simple polytope in R with v vertices and N defining
inequalities can be found in time O(dNv) (Avis and Fukuda).

e However, if m = n, the best response polytopes can have c¢” vertices for
some constant ¢ with 1 < ¢ < 2.9.

e We can speed up the search by performing a walk on

(P\ {0}) x (Q\ {0}) guided by the labels.
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The Lemke—Howson algorithm

e One of the best algorithms for finding NE in bimatrix games.
e Discovered by Lemke and Howson in 1964.

5L NN ‘\

Figure: Carlton E. Lemke (1920-2004) and J. T. Howson (1937-2022).

Source: https://oldurls.inf.ethz.ch
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The Lemke—Howson algorithm explained

Since P is simple and dim(P) = m, its vertices are incident to exactly
m facets and m edges. So each vertex of P has m labels and each edge
of P has m — 1 labels. Similarly for @ and n.

Dropping a label / € A; U A; in a vertex x of P means traversing the
unique edge of P that is incident to x and has all m labels that x has
besides /. The other endpoint of this edge has the same labels as x,
only / is replaced with a new label, which is said to be picked up.
Dropping and picking up a label in vertices of Q is defined analogously.

e The algorithm starts at (0,0) and alternately follows edges of P and Q.
e At the first step, it chooses a label kK € A; U A, and drops it. Then, a

new label / is picked up. This label / has a duplicate in the other
polytope. We drop the duplicate of / in the other polytope in the next
step, which leads to picking up a new label /". We iterate and stop
when /' = k.

Duplicate label is either a new best response, which gets a positive
probability, or a pure strategy whose probability became 0 and we move
away from its best response facet.
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The Lemke—Howson algorithm: pseudocode

Algorithm 0.8: LEMKE-HOWSON(G)

Input : A nondegenerate bimatrix game G.

Output : One Nash equilibrium of G.

(x,¥) < (0,0) e R” x R",

k < arbitrary label from A; U Ay, | + Kk,

while (true)

(In P, drop / from x and redefine x as the new vertex,
redefine / as the newly picked up label. Switch to Q.
If I = k, stop looping.

do
In Q, drop / from y and redefine y as the new vertex,
redefine / as the newly picked up label. Switch to P.
| If / = k, stop looping.

Output (x/(1"x),y/(1"y)).
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Proposition 2.31

The Lemke—Howson algorithm stops after a finite number of steps and
outputs mixed strategy vectors of NE in G.

e Proof: Let k be the label chosen in the first step.

e We define a configuration graph G with the vertices formed by pairs
(x,y) of vertices from P x @ that are k-almost completely labeled
(every label from A; U Ay \ {k} is a label of x or y). A pair
{(x,y),(x',y")} is an edge of G if (x = x" & yy' € E(Q)) or
(xx" € E(P) & y = y’). Clearly, G is finite.

e G has degrees only 1 or 2 (G is a disjoint union of paths and cycles).

o If (x,y) has all labels from A; U Ay, then (x, y) is connected to
exactly one other vertex, as exactly one of x and y has the label k
and we can drop k only from this one vertex.
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Proposition 2.31

The Lemke—Howson algorithm stops after a finite number of steps and
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e G has degrees only 1 or 2 (G is a disjoint union of paths and cycles).

o If (x,y) has all labels from A; U Ay, then (x, y) is connected to
exactly one other vertex, as exactly one of x and y has the label k
and we can drop k only from this one vertex.

o Otherwise, (x, y) has all labels from A; U A \ {k} and there is a
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e By the Degree sum formula, the number of vertices of degree 1 is even.

Corollary 2.32
A nondegenerate bimatrix game has an odd number of NE. J

e Degenerate games can have infinite number of NE.
e The Lemke—Howson algorithm finds only a single NE.

e The algorithm can be implemented using so-called complementary
pivoting (we will see it at the tutorials).

e The running time can still be exponential (O(2") steps for n = m)! It
performs well in practise (polynomial on uniformly random games).

e |s there an efficient algorithm to find NE?
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e “P=NP"” is one of the most important problems in computer science.
The website https://www.win.tue.nl/~gwoegi/P-versus-NP.htm
contains a collection of over 100 attempts to solve it.

Thank you for your attention.
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