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Proof of the Minimax Theorem



The Minimax Theorem

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players
exist and can be efficiently computed. There is a number v such that, for
any worst-case optimal strategies x* and y*, the strategy profile (x*, y*) is a
Nash equilibrium and B(x*) = (x*)' My* = a(y*) = v.

Figure: John von Neumann (1903-1957) and Oskar Morgenstern (1902-1977).

Sources: https://en.wikiquote.org and https://austriainusa.org




The Minimax Theorem

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players
exist and can be efficiently computed. There is a number v such that, for

any worst-case optimal strategies x* and y*, the strategy profile (x*, y*) is a
Nash equilibrium and 8(x*) = (x*)' My* = a(y*) = v.

o

e Recall that 3(x) = min,cs, x' My and a(y) = max,es, x My is the
best possible cost of player 2 to x and payoff and of player 1 to y,
respectively.

e Also, the worst-case optimal strategy x for player 1, satisfies

B(%) = max B(x).

XES

e [he worst-case optimal strategy y for player 2, satisfies

a(y) = min a(y).

e \We prove the theorem using linear programming.



Preliminaries from geometry

T

o A hyperplane in R? isaset {x € R?: v'x = w} for some v € RY and

w € R.
o A halfspace in R% isaset {x e R?: v'x < w}.

\ \




Preliminaries from geometry

o A (convex) polyhedron P in R? is an intersection of finitely many
halfspaces in R?. Thatis, P = {x € R?: Vx < u} for some V € R"™*¢
and u € R"”, where n is the number of halfspaces determining P.

e A bounded polyhedron is called polytope. A d-dimensional polytope is
simple if no point is contained in more than d facets.
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Preliminaries from geometry

o A (convex) polyhedron P in R? is an intersection of finitely many
halfspaces in R?. Thatis, P = {x € R?: Vx < u} for some V € R"™*¢
and u € R"”, where n is the number of halfspaces determining P.

e A bounded polyhedron is called polytope. A d-dimensional polytope is
simple if no point is contained in more than d facets.




Examples of polytopes in R?




Linear programming

e A linear program is an optimization problem with a linear objective
function and linear constraints.

e Every linear program P can be expressed in the canonical form: given
c € R™, beR", and A™™, we want to maximize ¢ ' x subject to the
constraints Ax < b and x > 0.

e Can be solved in polynomial time. In practice, the Simplex method
works, although it does not have a polynomial worst-case running time.
The Ellipsoid method runs in polynomial time even in the worst-case.

e Solving linear programs graphically:
p
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Linear programming

e A linear program (LP) is an optimization problem with a linear
objective function and linear constraints.

e Every linear program P can be expressed in the canonical form: given
c € R™, beR", and A™™, we want to maximize ¢ ' x subject to the
constraints Ax < b and x > 0.

e LP can be solved in polynomial time. In practice, the Simplex method
works, although it does not have a polynomial worst-case running time.
The Ellipsoid method runs in polynomial time even in the worst-case.

e Solving linear programs graphically:
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Duality of linear programming

e The linear program P where we want to

-

maximize ¢ ' x subject to the constraints Ax < band x > 0

iIs called the primal linear program.
e [he associated dual linear program D is to

minimize b' y subject to constraints A'y > c and y > 0.

o “Solving a system of linear equalities from the rows-perspective
instead of the columns-perspective”.

e The following Duality Theorem has several important consequences.

The Duality Theorem (Theorem 2.22)

If both linear programs P and D have feasible solutions, then they both have
optimal solutions. Moreover, if x* and y* are optimal solutions of P and D,

respectively, then ¢' x* = b'y*. That is, the maximum of P equals the
minimum of D.

e Dual programs can be constructed for any linear program.




General recipe for duality

Primal linear program

Dual linear program

Variables
Matrix
Right-hand side
Objective function

Constraints

X1yeeo 3y Xm
A E Rnxm
beR"
max ¢ ' x

ith constraint has <

1V

xj 2 0
xp <0

xi € R

Yis-++3Yn
AT € Rmx7
c e R”
minb'y

yi >0

yi <0

yieR
Jth constraint has >
<

Table: A recipe for making dual programs.



Proof of the Minimax Theorem |

e \We now proceed with the proof of the Minimax Theorem.

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players
exist and can be efficiently computed. There is a number v such that, for
any worst-case optimal strategies x* and y*, the strategy profile (x*, y*) is a
Nash equilibrium and B(x*) = (x*)' My* = a(y*) = v.

v

e We want to compute x* such that 5(x*) = max,cs, 5(x) where
B(x) = min,cs, x My using LP. We first show how not to do it.

e Naive straightforward approach with variables xq, ..., x,,:

m
maximize B(x) subject to the constraints Zx,- =1and x > 0.
i=1

e This is not LP! (the objective function 3(x) = min,cs, x' My is not
linear in x) What can we compute with LP?



Proof of the Minimax Theorem ||

e For fixed x € 51, we can compute a best response of 2 to x.
e \We use the following linear program P with variables y1, ..., y,:

(P) minimize x' My subject to Zyj =1land y > 0.
j=1

e |ts dual is the following LP D with a single variable x; (Exercise):
(D) maximize xp subject to 1xg < M ' x.

e By the Duality Theorem, P and D have the same optimal value §(x).

e Thus, if we treat xq,...,X,, as variables in D, we obtain the following
linear program D’ with variables xg, x1, ..., X:

(D') maximize xu subject to 1xg — M'x < 0, Zx,- =1and x > 0.
i=1

e The optimum x* of D’ is a worst-case optimum strategy for 1!



Proof of the Minimax Theorem IlI

Analogously, we can compute a worst-case optimum strategy y* for 2
using this linear program P’ with variables yg, y1, ..., Va:

(P’) minimize yp subject to 1y, — My > 0, Zyj —1land y > 0.
j=1
So we, proved the first part of the Minimax Theorem. It remains to
show that (x*, y*) is NE and B(x*) = (x*)" My* = a(y*) = v.
Using the general recipe for duality, we see that P’ and D’ are dual to
each other! (Exercise)

By the Duality Theorem, P’ and D’ have the same optimal value

B(x*) = x5 =y = a(y”).

This value v Is attained in any worst-case optimal strategy.

By part (c) of Lemma 2.20, (x*,y*) is NE, that is, we have
Blx*) = (x*) My = a(y”). m



Nash equilibria in bimatrix games



Bimatrix games

e Since zero-sum games are solved now, we try to efficiently find Nash
equilibria in bimatrix games, that is, games of 2-players (not necessarily

zero-sum).
e Example: Prisoner’'s dilemma

Testify | Remain silent
Testify (-2,-2) (-3,0)
Remain silent | (0,-3) (-1,-1)

Sources: https://sciworthy.com/



Bimatrix games examples: collaborative projects

Source: https://filestage.io/



Bimatrix games examples: education, knowledge sharing
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Bimatrix games examples: the battle for Gotham's soul

Cooperate | Detonate
Cooperate (0,0) (0,1)
Detonate (1,0) (0,0)

Sources: https://www.cbr.com/



Nash equilibria in bimatrix games by brute force

e We try to design an algorithm for finding Nash equilibria in games of
two players (bimatrix games).

e \We state some observations that yield a brute-force algorithm.

SIMPLY EXPLAINED:
BRUTE FORCE ATTACK

geek & poke

... TIM? JACK?
TIMOTHY? PETE?
HARRY? ...

W,

i

MEETING AN OLD SCHOOLMATE

Source: https://pinterest.com

e Later, we show the currently best known algorithm for this problem.



Best response condition

e We first state the perhaps most useful observation in our course.

e The support of a mixed strategy is Supp(s;) = {a; € A;: si(a;) > 0}.

Best response condition (Observation 2.23)

In a normal-form game G = (P, A, u) of n players, for every player i € P, a
mixed strategy s; is a best response to s_; if and only if all pure strategies in
the support of s; are best responses to s_;.

e Thus, the problem of finding NE is combinatorial problem, not a
continuous one.

e The hearth of the problem is in finding the right supports.

e Once we have the right supports, the precise mixed strategies can be
computed by solving a system of algebraic equations (which are linear
in the case of two players).



Proof of the Best response condition

e First, assume every a; € Supp(s;) satisfies u;(a;;s_;) > u;(s;;s_;) for
every s. € S;. Then, for every s; € §;, the linearity of u; implies

u(s) = > si@)uaiss) > Y sia)ui(shis=i) = uils);s-).

a;eSupp(s;) a;€Supp(s;)

e Second, assume s; is a best response of i to s_;. Suppose for
contradiction there is 3, € Supp(s;) that is not a best response of i to
s_;. Then, there is s € S; with u;(3;;5_;) < u;i(s!;s_;). Since s; is a
best response to s_;, we get s;(3;) < 1. By the linearity of u;, there is
a; € Supp(s;) with u;(&;;s_;) > ui(3;;s_;). We define a new mixed
strategy s € S; by setting s*(a;) = 0, s*(&;) = s;(&;) + si(a;) and
keeping s’(a;) = s;(a;) otherwise. Then, by the linearity of u;

U,'(S;k; S_,') — Z sf(a,-)u,-(a,-; S_,') > Z s,-(a,-)u,-(a,-; S_,') — U,'(S),
a;EA; a;EA;

a contradiction. []



Best response condition in bimatrix games

We can use this simple observation to design a brute-force algorithm for
finding NE in bimatrix games.

Let G = ({1,2}, A= A; X Ay, u) be a bimatrix game.

Let Ay ={1,...,m} and A, = {1,..., n} (later considered disjoint).
The payoffs u; and u, can be represented by matrices M, N € R™*" as
M;; = ui(i,j) and N;; = us(i,j) for every (i,)) € A1 x As.

The expected payoffs of s with mixed strategy vectors x and y are then

ui(s) =x'My and w(s)=x'Ny.
By the Best response condition, x is a best response to y iff
VieA 1 x;>0= M.y =max{M.y: k € A }. (1)
Analogously, y is a best response to x iff

Vj€A 1y >0= N x=max{N/ x: k € A}. (2)

K



NE by support enumeration |

e \We consider only special bimatrix games (the reason will be clear later).

e A bimatrix game is nondegenerate if there are at most k pure best
responses to every mixed strategy with support of size k.

o “Most bimatrix games are nondegenerate”’ and there are
perturbation methods to deal with degenerate games.

e Let /| C A; and J C A, be supports in a nondegenerate game G.

e We define |/| 4 |J| variables x; for i € | and y; for j € J that will
represent non-zero values in mixed strategy vectors x and y.

o We define equations ), ., x; =1and > ., y; =1, and |[/| + |J]
equations to ensure that the expected payoffs are equal and maximized
at the support (but not necessarily over the entire A; or A):

g NJ-—;-X,' — v and E My, = u,
icl jed

where u and v are two new variables. Note that they attain values
u=max{M;,y:i€l}and v=max{N' x:jeJ}.



NE by support enumeration |l

e We have a system S(/,J) of |I| 4 |J| + 2 variables
X1y X1, Y1, - - Y, U, v and 1] + |J]| + 2 linear equations.

e |f the numbers in the solution are all positive and satisfy (1) and (2),
then we have a NE by the Best response condition. If G is
nondegenerate, then such a solution is unique if it exists (Exercise).

e It follows immediately from the Best response condition that supports
of strategies in NE of a non-degenerate game have the same size.

e This suggests a simple algorithm for finding NE of G.

e Support enumeration: go through all possible supports /| C A; and
J C Ay of size k € {1,...,min{m, n}} and verify whether the supports
| and J yield NE by solving the system S(/, J) of linear equations.

e The running time is then about 4" for m = n.



Example: Battle of sexes

e \We show the Support enumeration on the Battle of sexes game.
Football (1) | Opera (2)
Football (1) (2,1) (0,0)

Opera (2) (0,0) (1,2)

e Thatis, we have M = (29)and N =(}9)=N".

o If /| ={1,2} and J = {1,2}, then we want to solve the following
system of 6 equations with 6 variables xi, x>, y1, y», U, v:

1=V, 2=V, Xx1+Xx =1

21=u, ya=U, ; y1+y2=1

e This yields a unique solution (x1,x) = (%, 3) and ()1, 2) = (3, ).
Since x,y > 0 and there is no better pure strategy, we have NE.



e Next lecture we learn the Lemke—Howson algorithm, the best known
algorithm to find Nash equilibria in bimatrix games.

— 1 DON'T KNOW WHAT
THENASH EQUILIBRIUM IS

IM'I'IIII AFRAIDTOASK
Thank you for your attention.



